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Abstract— Conventional vessel enhancement approaches used in
literature are Hessian-based filters, which are sensitive to noise and
sometimes give discontinued vessels due to junction suppression.
In this paper, we propose a new approach incorporating the use of
linear directional features of vessels to get more precise estimates
of the Hessian eigenvalues in noisy environment. The directional
features are extracted from a set of directional images which
are obtained by decomposing the input image using a Directional
Filter Bank. In addition, the directional image decomposition helps
to avoid junction suppression, which in turn, yields continuous
vessel tree. Experimental results show that the proposed filter
generates better performance in comparison against conventional
Hessian-based approaches.

I. INTRODUCTION

Vessel enhancement procedure is an important preprocessing
step in automatic vessel-tree reconstruction which is critical to a
number of clinical procedures, but has proven to be a challeng-
ing task, especially with angiography images. The key fact is
that vessels cannot be characterized uniformly: arteries, or big
vessels, usually have high contrast while small ones resemble
the background, as can be seen in Fig. 4(a). In literature, there
are many vessel enhancement methods. The simplest one is to
threshold the raw data but this makes the segmentation process
incorrectly label bright noise regions as vessels and cannot
recover small vessels which may not appear connected in the
image. Recently, Hessian-based approaches have been utilized
in numerous vessel enhancement filters [1], [2], [3], and [4].
These filters are based on the principal curvatures, which are
determined by the Hessian eigenvalues, to differentiate the
line-like (vessel) from the blob-like (background) structures.
Fig. 1 provides the block diagram of the procedures commonly
employed in these conventional approaches. However, their
main disadvantage is that they are highly sensitive to noise due
to second-order derivatives and sometimes give discontinued
vessels due to junction suppression [5].

In this paper, we propose a new framework for the ves-
sel enhancement utilizing the linear directional information
present in a set of directional images which are obtained by
decomposing the input image using an appropriate Directional
Filter Bank. The directional decomposition has two advantages.
One is, noise in each directional image will be significantly
reduced compared to that in the original one due to its omni-
directional nature. The second is, because one directional image

contains vessels with similar directions, the principal curvature
calculation in it is facilitated. After obtaining directional im-
ages, appropriate vessel enhancement filters are applied and
the enhanced directional images are re-combined to generate
the output image with enhanced vessels and suppressed noise.
This decomposition-filtering-recombination scheme also helps
to preserve junctions. The experimental results show that our
approach is less noise sensitive and avoid junction suppression.

II. METHODOLOGY

The proposed framework consists of four steps, as shown
in Fig. 2: Step 1) construction of directional images, Step 2)
vessel axis aligning, Step 3) vessel enhancement, and Step 4)
recombination of enhanced directional images.

A. Construction of Directional Images

Directional Filter Bank and Decimation-Free Directional
Filter Bank: Directional Filter Bank (DFB) was originally
proposed by Bamberger and Smith [6] and then improved by
Park, Smith and Mersereau [7], [8]. It was shown that DFB can
decompose the spectral region of an input image into wedge-
shaped like passbands which correspond to linear features in a
specific direction in spatial domain. Outputs of DFB are named
as subbands whose sizes are smaller than that of the input
image. The reduction in size is due to the presence of deci-
mators. As far as image compression is concerned, decimation
is a must condition. But whenever DFB is employed for image
analysis purposes, decimation causes two problems. One is, as
we increase the directional resolution, spatial resolution starts to
decrease [9], due to which we loose the correspondence among
the pixels of DFB outputs. The other is, an extra process of
interpolation is involved prior to enhancement or recognition
algorithm implementation [10], [11]. This extra interpolation
process does not only affect the efficiency of whole system but
also produces false artifacts which can be harmful especially
in case of medical imagery. Some vessels may be broken and
some can be falsely connected to some other vessels due to
the artifacts produced by interpolation. So a need arises to
modify directional filter bank structure in the sense that no
decimation is required during analysis section. To meet that
need, the authors in [12] and [7] presented new rules to modify
DFB. Based on those rules, we suggest to shift the decimators
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Fig. 1. Block diagrams of conventional Hessian-based approaches.

Fig. 2. Block diagram of the proposed enhancement framework. There are
four main steps: construction of directional images, vessel axis aligning, vessel
enhancement, and recombination of enhanced directional images.

and resamplers to the right of the filters to make a Decimation-
free Directional Filter Bank (DDFB), which yields directional
images rather than directional subbands. This consequently
results in elimination of interpolation and naturally fits the
purposes of feature analysis. The block diagram of the DDFB
structure is shown in Fig. 3. In this diagram, H00(ω1, ω2)
and H11(ω1, ω2) are hourglass-shaped like passbands, Q is
a Quincunx downsampling matrix, and Ri’s are resampling
matrices as used in [7], [8].

In Step 1 of our framework, the input image is decomposed
to n = 2k (k = 1, 2, ...) directional images Ii using DDFB.
The motivation here is to detect thin and low-contrast vessels
(which are largely directional in nature) while avoiding false
detection of non-vascular structures. Directional segregation
property of DDFB is helpful in eliminating randomly oriented

(a)

(b)

(c)

Fig. 3. DDFB structure a) First stage b) Second stage c) Third stage, where
H00(ω1, ω2) and H11(ω1, ω2) are hourglass-shaped like passbands, Q and
Ri are respectively downsampling and resampling matrices as in [7], [8].
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Fig. 4. Two demonstrative directional images obtained by DDFB with k = 3.
(a) Input image, (b) Directional image corresponds to orientations in the range
0-22.5 degree, and (c) 135-157.5 degree.

noise patterns and non-vascular structures which normally yield
similar amplitudes in all directional images. Two out of eight
(n = 8 or k = 3) resulting directional images of DDFB are
demonstratively shown in Fig. 4. All those images are then
aligned in the following step.

B. Vessel Axis Aligning

An intensity image I(p), where p = (x, y), can be approxi-
mated by its Taylor expansion about a point p0 up to the second
order:

I(p) � I(p0) + ∆pT · ∇I(p0) +
1
2
∆pT H(I(p0))∆p (1)

∆p = p − p0 (2)

where ∇I(p0) and H(I(p0)) are respectively the gradient
vector and the Hessian matrix at point p0.

In angiography images, vessels are bright over the dark
background and the brightness is decreased from their centers
toward their boundaries. Therefore, a vessel is modeled as a
tube with a Gaussian profile across its axis, which is identical
to the x-axis:

I0(x, y) =
C

2πσ2
0

e
− y2

2σ2
0 . (3)

The Hessian can then be expressed as:

H =
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0
σ4
0

I0

]
(4)

and its eigenvalues and eigenvectors:

λ1 = 0 λ2 = y2−σ2
0

σ4
0

I0

�v1 = (1, 0) �v2 = (0, 1).
(5)

In order to capture vessels with various sizes, one should
compute the gradient and the Hessian at multiple scales σ

in a certain range. In this case, the only way to ensure the
well-posed properties, such as linearity, translation invariance,
rotation invariance, and re-scaling invariance, is the use of
linear scale space theory [13], [14], in which differentiation
is calculated by a convolution with derivatives of a Gaussian:

Ix = σγGx,σ ∗ I ; Iy = σγGy,σ ∗ I (6)

where Ix, Iy, Gx,σ and Gy,σ are respectively the spatial deriva-
tives in x- and y- direction of the image I(x, y) and of a
Gaussian with standard deviation σ:

Gσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2 . (7)

The parameter γ was proposed by Lindeberg [14], [15] to
normalize the derivatives of the image. This normalization is
necessary for comparison of the response of differentiations at
multiple scales because the intensity and its derivatives are de-
creasing functions of scale. In vessel enhancement application,
where no scale is preferred, γ is usually set to one.

When applying the multiscale analysis, the model in (3)
is convolved with a Gaussian of standard deviation σ. The
derivations in (4) and (5) are still correct except that σ0 is
replaced with

√
σ2

0 + σ2. We can see from those derivations
that, when the vessel direction (�v1) is aligned with the x-axis,
eigenvalues of the Hessian are same as its diagonal values.
Exploiting this fact, we can compute the principal curvatures
with less noise sensitiveness compared to the normal way. To
do so, the directional images Ii’s obtained from the previous
step are rotated such that the vessel axis is aligned with the
x-axis.

Suppose the directional image Ii corresponds to the orien-
tations ranging from αi

min to αi
max (counterclockwise). It will

be rotated by an amount as large as the mean value mi
α:

mi
α =

αi
min + αi

max

2
. (8)

Let I ′i denote the aligned directional images. Then

I ′i = rotate(Ii,m
i
α) (9)

where i = 1, 2, ..., n, and n is the total number of directional
images.

C. Vessel Enhancement

In this step, every aligned directional image is filtered by an
appropriate vessel enhancement filter. Because the directions
of vessels in these directional images are now aligned with the
x-axis, the proposed enhancement filter utilizes the diagonal
values of the Hessian matrix instead of its eigenvalues, as
proven in (3)−(5). These values are:

h11 = 0; h22 = y2−(σ2
0+σ2)

(σ2
0+σ2)2

I0(x, y) (10)

where σ selected in a range S is the standard deviation of the
Gaussian kernel used in multiscale analysis.

Practically, the vessel axis is not, in general, identical to the
x−axis and so h11 ≈ 0. Inside the vessel, |y| <

√
σ2

0 + σ2



and thus h22 is negative. Therefore, vessel pixels are declared
when h22 < 0 and

∣∣∣h11
h22

∣∣∣ << 1.

To distinguish background pixels from others, we define a
structureness measurement which is similar to the “second-
order structureness” defined in [1]:

C =
√

h2
11 + h2

22. (11)

This structureness C should be low for background which has
no structure and small derivative magnitude.

Based on the above observations, the vessel filter output can
be defined as

φσ(p) = η(h22)exp

(
− R2

2β2

)[
1 − exp

(
− C2

2γ2

)]
(12)

where p = (x, y), R = h11
h22

, β and γ are adjusting constants,
and

η(z) =
{

0 if z ≥ 0;
1 if z < 0.

(13)

The filter is analyzed at different scales σ in a range S. When
the scale matches the size of the vessel, the filter response will
be maximum. Therefore, the final vessel filter response is:

Φ(p) = max
σ∈S

φσ(p). (14)

One filter (14) is applied to one directional image to enhance
vessel structures in it. Then all enhanced directional images are
re-combined to generate the final result.

D. Recombination of Enhanced Directional Images

Each directional image now contains enhanced vessels in its
directional range and is called the enhanced directional image.

Denote Φi(p), i = 1..n, as the enhanced directional images.
These images need rotating back to their original orientations:

Φ′
i(p) = rotate(Φi(p),−mi

α) (15)

where mi
α is given in (8).

The output enhanced image F (p) can be obtained by

F (p) =
1
n

n∑
i=1

Φ′
i(p). (16)

The whole filtering procedures can be summarized as fol-
lows. First, the input angiography image is decomposed into
n = 2k (k = 1, 2, ...) directional images Ii using DDFB.
Then, every directional image Ii is rotated based on (9).
Next, the rotated directional images I ′i are enhanced according
to (12)−(14). Finally, all enhanced images are rotated back
using (15) and re-combined to yield the final filtered image F
as in (16).

(a) (b)

(c) (d)

Fig. 5. Vessel enhancement results. (a) The original synthetic image. (b)
Enhanced image by Frangi method, (c) by Shikata method, and (d) by our
approach. The Frangi and Shikata models unexpectedly suppress the junctions
while ours does not.

III. EXPERIMENTAL RESULTS

In this section, experiments have been performed with both
synthetic images and real angiography images to verify the
performance of the proposed enhancement filter in comparison
with the filters introduced by Frangi [1] and Shikata [4], which
are considered as the standard techniques. In experiments using
our proposed filter, the input image is decomposed to sixteen
directional images (k = 4) as a trade-off between performance
and execution time. The scale range S = {1,

√
2, 2, 2

√
2, 4} is

used for all three models as proposed in [4] .

A. Junction Suppression

Fig. 5 shows the results of an synthetic image which was
processed by the three filter models. The synthetic image is
designed to contain vessels of different sizes and junctions of
different types. It is possible to see that the Frangi and Shikata
filters unexpectedly suppress junctions while our proposed
approach does not. The suppressed junctions make vessels
discontinuous. Although this error may be small, it can cause
the splitting of a single vessel, which in turn has a critical effect
on the vessel-tree reconstruction accuracy.

It is the use of directional image decomposition that makes
the proposed model work. Normally, a vessel has one principal
direction, which is mathematically indicated by a small ratio
between the smaller and larger Hessian eigenvalue. Meanwhile,
at a junction, where a vessel branches off, there are more than
two principal directions, and thus the ratio of two eigenvalues
is no longer small. As a result, the conventional enhancement
filters [1], [4] consider those points as noise and then suppress



them. Our proposed approach, on the other hand, decom-
poses the input image to various directional images, each of
which contains vessels with similar orientations. Consequently,
junctions do not exist in directional images and so are not
suppressed during the filtering process. After that, due to the
re-combination of enhanced directional images, junctions are
re-constructed at those points which have vessel values in more
than two directional images. Therefore, junctions are not only
preserved but also enhanced in the final output image.

B. Simulation Study - A Quantitative Evaluation

To evaluate our approach, mathematical models of phantoms
were constructed. First of all, one original phantom image with
various typical enhancement hindrances such as the diversity in
vessel orientations and widths, the presence of close parallel
vessels, very thin vessels, discontinued vessels, and vessels
with variable intensities along their length, etc. was created.
This original phantom image is used as the “ground truth”.
Then, a set of testing images were generated from the original
phantom by adding various levels of white noise, having
variance from 5% to 80%. The noise variance is calculated
as a percentage of the 8-bit dynamic range of the image (0-
255). The 80%-noise variance image was selected to explore
the enhancement performance for the worst case. It means
that, to our experience, this image represents the most possibly
challenging situation, which is well beyond any worst case of
real angiography images.

In this experiment, every sample image in the testing dataset
was first processed by each of the three enhancement algorithms
(Frangi filter, Shikata filter, and our DFB-based filter). The
results were then segmented by using an adaptive global
threshold as follows. Let the vessel ratio of an image be the
ratio between the number of vessel-labeled pixels and the total
number of pixels in that image. Then, for each filtered image,
the global threshold value is chosen so that its vessel ratio is as
close to that of the “ground truth”, which is approximately 11%
in this case, as possible. Finally, a “goodness” measurement is
used to quantitatively evaluate the filters’ performances.

There are many kinds of performance measurement that are
not uniquely defined in the literature. In this paper, the accuracy
definition introduced in [16] is adopted:

accuracy =
TP + TN

TP + FP + TN + FN
. (17)

Here, vessel-labeled pixels are considered positive and back-
ground pixels negative. TP denotes the number of true pos-
itive pixels (correctly classified as vessels) compared with
the “ground truth”, TN true negative (correctly classified as
background), FP false positive (background misclassified as
vessels), and FN false negative (vessels misclassified as back-
ground).

Fig. 6 shows the enhancement results for one sample data
having noise variance 10% using the three enhancement algo-
rithms. Visually, the proposed filter gives better enhancement
results. The performances of these algorithms applied on the
whole testing data are presented in Fig. 7. In this figure, the

(a) (b)

(c) (d)

Fig. 6. Sample enhancement results. (a) Sample phantom image with noise
variance 10%. (b) Enhanced image by Frangi filter, (c) by Shikata filter, and (d)
by our approach. Visually, the proposed filter gives better enhancement results.

accuracy measurements are plotted as a function of the noise
variance. It is clear that the our approach outperformed the
others for this dataset.

C. Real Data

Similar to junction suppression problem, small vessel en-
hancement is critical because those thin vessels which may
appear broken or disconnected from larger structures will often
be omitted in reconstruction procedures. The major fact which
prevents small vessels from being easily enhanced is that
small vessels usually have low intensity and thus resemble
background.

Fig. 8 shows our approach enhancement results (right col-
umn) together with the results acquired using Frangi (middle
left) and Shikata (middle right) filters for the input images
shown in the left column. As can be observed, Frangi filter
gives good results with large vessels but fails to detect small
ones while Shikata model is able to enhance small vessels but
unfortunately enhances background noise also. Conversely, our
proposed filter can enhance small vessels with more continuous
appearances.

IV. CONCLUSION

We have presented in this paper a novel approach for vessel
enhancement in angiography images. The approach utilizes the
image directional information obtained by the decimation-free
directional filter bank to provide a relief for Hessian analysis in
noisy environment. In addition, the fact that enhancement filters
are applied not on the original image but on the directional



Fig. 8. Vessel enhancement in actual angiography images. LEFT columm: Original images, MIDDLE LEFT column: Enhanced images by Frangi method,
MIDDLE RIGHT columm: by Shikata method, and RIGHT column: by our approach. The Frangi and Shikata models fail to correctly enhance small vessels
but our approach succeeds.
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Fig. 7. Vessel enhancement performance of our proposed filter, Frangi
filter, and Shikata filter as a function of noise variance. The noise variance
is calculated as the percentage of the grayscale range (0-255). The proposed
filter gives the best results for this dataset.

ones, which contains vessels in similar orientations, helps
to avoid unexpected junction suppression. Consequently, as
shown in the experiment results, the proposed filter overcomes
limitations of conventional Hessian-based methods such as
the noise sensitivity, junction suppression, and limited small
vessel enhancement. In conclusion, we consider it a suitable
candidate for a pre-processing step in an accurate vessel-tree
reconstruction in clinical tasks.
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