
Abstract 
 In this paper, we present a preemptive joint scheduling 
of hard deadline periodic and hard deadline aperiodic 
tasks on a uniprocessor real-time system. The scheduling 
has extended the Critical Task Indicating (CTI) algorithm 
[4] of which simulation study shows a considerable 
performance improvement over the other soft aperiodic 
task schedulings, especially under a heavy transient 
overload. Since a hard deadline aperiodic task has its own 
deadline, the proposed algorithm has a decision making 
mechanism that performs the on-line acceptance/rejection 
test upon its arrival.  For simplicity and good 
performance, the algorithm reuses the original CTI table 
being used in the CTI algorithm as a slack search domain.  
Moreover, by searching the CTI table similarly to a 
circular list, it has removed the problem of search space 
limitation caused by the hyperperiod bound. 

 
1. Introduction 
 
 
 Real-time systems are used to control the physical 
processes that range in complexity from an automobile fuel 
ignition device to a large military defense system.  
Stankovic [16] addressed that it is very important to 
develop an aperiodic task scheduler which works well over 
the transient overload and serves a fast response time for 
aperiodic tasks while guaranteeing the deadlines of 
periodic tasks in the unpredictable environment.   
 Over the last decade, the problem of jointly scheduling 
hard deadline periodic tasks and soft deadline aperiodic 

tasks using fixed-priority methods [5],[14],[15] has been 
investigated by many researchers in the real-time systems 
community.  Recently, Lehoczky and Ramos-Theul [6] 
have developed a slack stealing algorithm which has 
proved to be optimal in the sense that it simultaneously 
minimizes the response time of all aperiodic tasks, 
provided they are served in FIFO order.  The slack stealing 
algorithm does not create a periodic server for aperiodic 
task service.  Rather it creates a passive task, referred to as 
the slack stealer, which when prompted for service 
attempts to make time for servicing aperiodic tasks by 
stealing all the processing time it can from the periodic 
tasks without causing their deadlines to be missed.  This 
algorithm, however, has some drawbacks.  Firstly, it 
requires a relatively large amount of calculation. 
Consequently, a direct implementation may not be 
practical.  Secondly, it can not fully utilize all the available 
slacks for the largest amount of aperiodic processing due 
to the ceiling value of periodic processing requirements.   
 The slack stealing approach was generalized by Davis 
et. al. [2] to a wide class of scheduling problems. Also it 
has been improved by Tia et. al. [18] by means of a non-
greedy approach while the slack stealing algorithm as 
defined in [6] is a greedy method.  In [18], they showed 
that the total slack available during certain specific 
intervals can be larger than that available to the slack 
stealing algorithm if certain lower priority tasks are 
serviced before the available slack is used.  They also 
pointed out that the greedy approach in [6] is not optimal 
when the class of algorithms is enlarged to include non-
greedy algorithms. 
 A different type of approach to the algorithm, called the 
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Critical Task Indicating (CTI) algorithm, jointly 
scheduling hard deadline periodic and soft deadline 
aperiodic tasks was introduced by Lee, Kim, and Lee [4] 
(the authors).  Goals of the algorithm are not only to 
guarantee the deadline of all periodic tasks and to get the 
response time for soft aperiodic tasks as small as possible, 
but also to achieve a considerable scheduling 
predictability.  In order to achieve these goals, the authors 
adopted a hybrid manner of fixed-priority and dynamic-
priority methods.  By the fixed-priority methods, the spirit 
of a predictability can be achieved, and by the dynamic-
priority methods using a deadlinewise preassignment 
reference table, the objective of the fast response time for 
the soft aperiodic tasks can be retained.   
 The deadlinewise preassignment for a periodic task set 
in a single hyperperiod produces a scheduling table, so 
called the critical task indicator (CTI table), which will be 
referenced by the scheduler to see if there are slacks 
available for aperiodic tasks at run time.  The role of a CTI 
table is to indicate a critical task (if any) at each scheduling 
point that must be assigned and executed immediately to 
meet its deadline.   
 The key to the matter of the CTI algorithm converges to 
the creations of the required CTI tables in a priori.  To 
work this out, the authors carefully developed a different 
kind of fixed-priority preassignment strategy, deadlinewise 
preassignment, for which a periodic task set defers each 
task's execution start time toward the deadline at its 
maximum.  This idea comes from the fact that the value 
functions of a set of hard periodic tasks are generally step 
functions.  Thus, the values of the functions are constant 
upto their deadlines [3] which means the execution time of 
tasks can be deferred till their deadlines if necessary. 
Consequently, the slacks which were made by artificially 
deferring the execution time can be utilized by the 
aperiodic tasks if they arrive at those time zones.  
Otherwise, the slacks can be used for the periodic tasks by 
the normal fixed-priority scheduling. 
 The result of the deadlinewise preassignment for a 
given periodic task set has scheduling information 
including the sequence of starting points of execution and 
the computation requirement of all task instances, on each 
instance whose execution is delayed at its maximum.  This 

information gives us the valuable knowledge that a 
periodic task preassigned to a scheduling point would miss 
its deadline under a real time scheduling situation unless it 
is assigned and executed immediately at that time.  This 
means that the periodic task is a critical task at that time in 
a real time scheduling circumstance.  The CTI algorithm, 
consequently, is reasonably simple to implement and offers 
an improvement to aperiodic response time over the slack 
stealing algorithm, especially under the transient overload.   
 Meanwhile, considerable research has been done in the 
area of the joint scheduling of hard deadline periodic tasks 
and hard deadline aperiodic tasks with respect to either 
fixed-priority or dynamic priority systems.  Recently, 
Thuel and Lehoczky [7],[11],[17] have developed an 
extension of the slack stealing algorithm [6], which 
provides the largest amount of processing capacity for 
aperiodic tasks subject to guaranteeing the deadlines of the 
periodic tasks, in fixed-priority systems.  The algorithm 
tests acceptance for hard aperiodic tasks for guaranteeing 
tasks at any priority level while it assumes that the periodic 
deadlines must all be met.  
 Work on the on-line scheduling of hard aperiodic tasks 
in dynamic priority methods has been reported by Chetto 
and Chetto[1], and Schwan and Zhou [12].  Their work 
assumes that all periodic tasks are scheduled according to 
the Earliest Deadline algorithm [10].  Especially a point to 
note is that Schwan and Zhou's algorithm does not give 
any preferential treatment to the periodic tasks, unlike 
common approaches to soft aperiodic tasks in fixed-
priority preemptive systems.  Every task is subject to an 
acceptance-rejection test upon arrival.  The algorithm, 
however, may lead to an undesirable implementation 
overhead if the real-time workload is mainly periodic.  
 In this paper, we present an extended CTI algorithm for 
the jointly scheduling the hard deadline periodic tasks and 
hard deadline aperiodic tasks based on the CTI table.  The 
tasks are scheduled in a way of mixed scheduling of a 
static and dynamic priority algorithm.  The proposed 
algorithm is not only to guarantee all the deadlines of 
periodic tasks, but also performs an on-line acceptance test 
upon arrival of aperiodic tasks.  The algorithm offers a less 
computational complexity than those of the other on-line 
schedulings of hard deadline aperiodic tasks in fixed-



 

priority systems. Moreover, the algorithm demonstrates a 
remarkable scheduling predictability since it maintains the 
CTI table which has scheduling information and has been 
built off-line. 
 The remainder of this paper is organized as follows.  
The next section introduces the background of the CTI 
algorithm including general terms, notations, assumptions, 
and description of how to build a CTI table. Section 3 
describes the CTI algorithm including a feasibility 
analysis.  Section 4 discusses the extension of the CTI 
algorithm to maintain the accept-reject test for hard 
aperiodic tasks.  Section 5 addresses some open issues and 
problems on the CTI approach.  Finally, section 6 
concludes the paper. 
 
2. The background of the CTI Algorithm 
 
 In this section, we briefly review the background of the 
CTI algorithm including the basic notions, notations, and 
its major properties. 
 
2.1 Task Execution Model 
 
 A periodic task, denoted by τ, is an infinite sequence 
of task instances requested at a fixed rate in a real time 
system environment. The request rate is defined to be its 
period, denoted by T. Each of the task instances has the 
same magnitude of computation requirements, denoted by 
C, and the deadline, denoted by D, by which it must be 
completed. A periodic task set, denoted by {τ1,τ2 ,...,τn}, 
is defined to be a set of arbitrary positive number of such 
periodic tasks. Any periodic task set has its hyperperiod 
which is the least common multiple of all the periods of the 
tasks in it. Note that every task in a task set is requested 
simultaneously at the start point of the hyperperiod and has 
the same deadline at the end point of it. An aperiodic task, 
denoted by A, is a task having non-periodic request 
intervals. A slack is an available time interval, which has 
the length of a scheduling unit, for an aperiodic task. 
  
2.2 Assumptions 
 
 To develop the CTI scheduling algorithm, we need 

some assumptions which include: 
 
 (A1) Deadline for a periodic task's instance is equal to 
the next request of the task. 
 (A2) Preemption over a periodic or an aperiodic task is 
always possible.          
 (A3) All overhead for context switching is counted into 
the corresponding periodic and aperiodic task's 
computation requirements. 
 
2.3 Fixed-Priority Deadlinewise Preassignment    
      Concepts 
 
 A periodic task scheduling method is classified to a 
fixed-priority deadlinewise preassignment if the tasks are 
assigned one after another according to the given 
fixed-priority in such a way that all the tasks are 
preassigned toward deadlines at their maximum.  The 
priority preemptions in a deadlinewise preassignment take 
place in a similar manner of the other fixed-priority 
scheduling methods (e.g. rate monotonic priority 
assignment) except that the part or all of the preempted task 
instance should be assigned prior to the preempting task 
instance. 
 
 Example 1. Suppose that a periodic task set with two 
tasks, τ 1 and τ 2, having the computation requirements, 
C1=1 and C2=2, and the periods, T1=3 and T2=5, 
respectively, is to be preassigned over a single hyperperiod, 
H=15, using the rate monotonic fixed-priority deadlinewise 
preassignment. The preassigning process is depicted in 
Figure 1. At start time, two task instances, τ11 and τ21, are 
arrived and assigned toward the deadlines, D11=3 and 
D21=5, respectively. At time 6, the task instance τ 13 
preempts τ22. Also, at time 12, another preemption has 
occurred. 
 



 

C1 = 1, T1 = 3

C2 = 2, T2 = 5

Hyperperiod

τ1

τ2
3 6 9 12 150
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Figure 1. An example of the preassigning process using  
                 the deadlinewise preassignment. 
  
 Next we establish some of the basic notions used to 
analyze the feasibility of the deadlinewise preassignment 
for a given periodic task set.  For a set of periodic tasks 
preassigned according to the deadlinewise preassignment, 
we say that an underflow occurs at t if a task is forced out 
of its given period beginning at t as a result of the others' 
preemptions.  The concept of overflow is applicable to both 
the on-line and the off-line fixed-priority schedulings, but 
on the other hand that of underflow only to the off-line 
fixed-priority schedulings.  A deadlinewise critical instant 
for a given periodic task preassigned according to the 
deadlinewise preassignment is an instant at which the 
execution of a request for that task will begin, so that the 
largest time interval is required to its completion.  The 
period of a periodic task having the shortest waiting time 
from the request to the start of the execution contain its 
deadlinewise critical instant.  A deadlinewise critical zone 
for a given periodic task preassigned according to the 
deadlinewise preassignment is the time interval between a 
deadlinewise critical instant and the deadline for the 
corresponding request.  The above two definitions are 
hinted at the definitions of the normal critical instant and 
critical time zone presented in [10]. The only difference 
between normal and deadlinewise is that the latter count on 
the deadlines instead of the requests. Any periodic task set 
with a fixed-priority order is deadlinewisely preassignable 
if no underflow occurs through all the deadlinewise critical 
zones for all the tasks over a single hyperperiod. 
 
 Example 2. Figure 1 shows two deadlinewise critical 
instants, execution start points of τ22 and τ23 , at priority 
level 2 and consequently two deadlinewise critical zones, 
[7,10] and [12,15], respectively. Moreover, the periodic 

task set is deadlinewisely preassignable because no 
underflow occurs through all the deadlinewise critical 
zones. Note that every execution start point of the task 
instances at the priority level 1 is a deadlinewise critical 
instant. 
 
 Let us consider one of the properties related to a 
deadlinewise critical instant and the relationships between 
normal and deadlinewise schedulability.  The proofs of the 
Theorems and Lemmas are shown in [4]. 
 
 Theorem 1. For a given periodic task set with a 
fixed-priority order, the deadlinewise critical instant for 
any task occurs whenever the deadline of the task is 
identical to that of all higher priority tasks.    
 
 Example 3. The normal critical zone at the lowest 
priority level for the periodic task set given in Example 1 is 
the interval [0,3]. On the other hand, the deadlinewise 
critical zone for the same task is the interval [12,15]. 
 
 Theorem 2. A periodic task set {τ1,τ2 ,...,τn} with a 
fixed-priority order is deadlinewisely preassignable if, and 
only if, it is normally schedulable. 
 
 Lemma 1. For a given periodic task set with a 
fixed-priority order, the deadlinewise preassignment is 
feasible if , and only if, the fixed-priority assignment is 
feasible. 
 
3. The CTI Algorithm 
 
 A result of the deadlinewise preassignment for a given 
periodic task set is composed of scheduling information, a 
sequence of the execution start points and computation 
requirements of all task instances, on each instance the 
execution is delayed at its maximum. The information 
gives us the valuable knowledge that a periodic task 
preassigned to a scheduling point would miss its deadline 
under a real time scheduling situation unless it is assigned 
and executed immediately at that time. This means that the 
periodic task is critical (critical task) at that time in a real 
time scheduling situation. Moreover, the preassignment is 



 

the worst schedulable case with respect to the periodic task 
set under the condition that all the deadlines must be met.  
In this point of view, a new aperiodic task scheduling 
algorithm, called the CTI algorithm, for a mixed 
scheduling of periodic and aperiodic tasks came to mind.  
 
 
3.1 Algorithm Description 

 
 Conceptually, the new algorithm is to assign a mixture 
of periodic and aperiodic tasks based on a hybrid 
scheduling method of the normal fixed-priority assignment 
and the deadlinewise preassignment information. The 
deadlinewise preassignment for a periodic task set through 
a single hyperperiod produces a scheduling table, called 
the CTI table, to be used in the real time assignment. At 
runtime the table is frequently referenced by the scheduler 
to see if there are slacks available for aperiodic tasks.  
 In practice, a CTI table may be a character string for a 
small number of periodic tasks or may be an array of 
integers in general, i.e., an ordered sequence of periodic 
task's identifiers. For example, the CTI table for the 
periodic task set given in Example 1 will be a character 
string "001221021201221" with the length of its single 
hyperperiod, where '0', '1', and '2' denote identifiers of an 
empty slack, τ1, and τ2, respectively. With this simple data 
structure, all the execution start points and computation 
requirements of the periodic tasks can be fully represented 
in addition to the empty slacks for soft aperiodic tasks. 
 The behavior of the hybrid algorithm is dynamically 
determined at runtime depending on the information in the 

CTI table and arrivals of aperiodic tasks. For an arrival of 
an aperiodic task, the algorithm checks to see if (C1) there 
are slacks available for the aperiodic task in the CTI table 
at the current time, or (C2) the current critical task unit 
(whole or part of the task instance) already has been 
serviced. If one of the two conditions is met, it services the 
aperiodic task immediately. If not, it services the critical 
task. All of the works are done based on the CTI table, i.e., 
the deadlinewise preassignment. On the other hand, if no 
aperiodic task arrived and no critical task is indicated, the 
algorithm works based on the fixed-priority assignment 
rule of which the fixed-priority order was taken by the 
deadlinewise preassignment. 
 This dynamic property of the algorithm behavior 
provides that the maximum aperiodic capacity is always 
preserved through a single hyperperiod, although all the 
periodic deadlines are met strictly. 
 Let us examine the hybrid algorithm more 
systematically using a pseudocode written as in the 
following Figure 2. At line 1, the data structures for the 
algorithm including the CTI table, the timer, and the 
hyperperiod are initialized for a given periodic task set. 
Lines 2 to 9 form an infinite loop. The above two 
conditions, (C1) or (C2), for an aperiodic task ready (or 
arrived) are examined at line 3. If neither of them is met, 
the critical task is serviced. Otherwise, an aperiodic task 
which is ready (or newly arrived) is serviced immediately 
at line 4. If no aperiodic task is ready (or arrived) at line 4, 
the normal fixed-priority assignment algorithm is applied 
to the periodic tasks ready at that time at line 5. The 
pseudocode segment in line 6 takes over the control to the 
processor to cope with the CPU idle state whenever there 

Figure 2. A pseudocode of the CTI algorithm 

 1  initialize data structures   
 2  loop begin 
 3       if (a critical periodic task unit not yet been serviced has occurred) then service it   
 4            else if (an aperiodic task(s) is ready or arrived) then service it 
 5            else if (a periodic task(s) is ready or arrived) then service it 
 6            else process CPU idle state 
 7       advance timer 
 8       if ((timer_value MOD hyperperiod) is equal to zero)  
             then reinitialize the global parameters  
 9 end loop 



 

is no aperiodic and no periodic task ready at that time. 
Although the pseudocode segment in line 7 should be 
ignored in a practical situation, it is necessary in a 
simulation. At line 8, the boundary for the hyperperiod is 
checked. If a boundary overflow occurs, all the global 
parameters such as the current pointer to the CTI table are 
renewed. Finally, the control goes back to line 3. 
 
3.2 An Example 
 

  Suppose that there is a periodic task set with three 
tasks, τ1, τ2, and τ3, with T1=3, T2=5, T3=15, C1=1, and 
C2=C3=2. We restrict our attention to the interval [0,15] 
which is a single hyperperiod for the task set. To obtain a 
CTI table for our task set, one can use the deadlinewise 
preassignment method described in subsection 2.3. In this 
example, the rate monotonic fixed-priority order has been 
applied.  The obtaining procedure is fully depicted in 
Figure 3.  Figure 3-A shows the deadlinewise 
preassignment results for each priority level.  Figure 3-B 
shows the final result, the CTI table. 
 

[CTI table] - Figure 3-B

[Deadlinewise preassignment results for each priority level
based on the rate monotonic fixed-priority order] - Figure 3-A

T1 =3
C1 =1

T2 =5
C2 =2

T3  =15
C3  =2

Figure 3.  An example of creating a CTI table 
 
 Next we will examine the behavior of our CTI 
algorithm for the periodic task set given above and two 
aperiodic tasks with computation requirements C=1 
arriving at t=5 and t=8, respectively. Figure 4 shows the 
mixed scheduling. The processor assigns periodic tasks by 
using the normal rate monotonic algorithm during [1,5] 
and [6,8] because there is no aperiodic task ready (or 
arrived) and no critical periodic task unit occurred. The 

first aperiodic task A1 has arrived at t=5 and serviced 
immediately because the current critical task unit, whole of 
the instance τ 12, had already been serviced at t=3. 
Similarly, the second aperiodic task A2 has arrived at t=8 
and been serviced immediately because the current critical 
task unit, the whole of the instance τ13, had already been 
serviced at t=6. During the remaining interval [9,15], all 
the periodic tasks will be scheduled in accordance with the 
information on the CTI table. The reason is that there 
always exists through the interval a critical periodic task 
unit which has not yet been serviced.  

 

[CTI table]

T1 = 3
C1 = 1

T2 = 5
C2 = 2

T3 = 15
C3 = 2

Aperiodic Task
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t=5 t=8
 * The circles denote that the periodic tasks will be serviced in accordance
   with the CTI table.
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Figure 4. An example of the behavior of CTI algorithm  

 
3.3 Feasibility Analysis      
 
 The major virtue of the fixed-priority assignment 
algorithms comprises of its simplicity and ability to handle 
many practical problems, stability under transient 
overload, low scheduling overhead, and so on [8],[9],[10]. 
In this subsection, we will analyze the feasibility of the 
CTI algorithm to show that almost all of these qualities 
supported by the fixed-priority algorithms could also be 
retained for periodic tasks. 
 
 Lemma 2. For a given periodic task set with a 
fixed-priority order, the CTI algorithm is feasible if, and 
only if, the normal fixed-priority algorithm is feasible. 
 
 Note that the above Lemma 2 gives us that the CTI 
algorithm could be applicable for all the periodic task set 



 

schedulable using a fixed-priority algorithm. And hence, 
our algorithm also provides almost all of the fixed-priority 
algorithms' nice features, especially its high schedulable 
utilization for periodic tasks. Moreover, it provides 
stability and predictability for mixed scheduling. 

 
4. The Accept-Reject Decision Algorithm 
 
 The purpose of this section is to extend the CTI 
algorithm to manipulate hard deadline aperiodic tasks 
instead of ones with soft deadlines.  Although a number of 
extension methods may be possible, the one using the CTI 
table is the most plausible candidate.  In the following, we 
assume that all hard aperiodic tasks are known to their 
execution times and deadlines when they have arrived to 
the system. 

 
4.1 The Slack Discriminants 
 

 In the CTI algorithm, two consecutive conditions (C1) 
and (C2) given in subsection 3.1 are used successively to 
test whether the current scheduling unit on the CTI table is 
a slack for a soft aperiodic task or not. To be more specific, 
the condition (C1) will be evaluated first, simply by 
looking up the CTI table unit corresponding to the current 
value of the scheduling timer. If the unit denotes a slack 
identifier (i.e., a character '0' or an integer 0 depending on 
its data structure), then the required test comes to an end. 
However, if the unit denotes an identifier of a periodic 
task, it may be a slack or not. For these cases, the condition 
(C2) will be evaluated in sequence. This second condition 
will easily be checked based on the two kinds of special 
computation counters for each periodic task: one for 
cumulating all the computation processing completed and 
the other for cumulating all the computation requirement 
on the CTI table until current scheduling time. Namely, 
the difference between the two counters for the task 
currently indicated by the CTI table makes it possible to 
check if the task has already been serviced. To extend the 
above conditions to support a slack search mechanism for 
hard aperiodic tasks, first we need to formalize these to a 
slack discriminant that can be used for distinguishing a 

slack from the CTI table at the current scheduling point. 
Suppose that all the periodic tasks are sorted depending on 
those priorities so that the mapping from the set of task 
numbers (identifiers) to the set of positive integers Y = {1, 
2, ..., n} is one-to-one and onto Y where n denotes the 
number of periodic tasks. The resulting first slack 
discriminant for CTI algorithm is  

 

where t denotes current scheduling time, CTI denotes CTI 
table (an array of integers, each element of which 
represents a slack or a periodic task), CP[i] and CR[i] (i 
represents an identifier of a periodic task) respectively 
denote all the computation processing done and all the 
computation requirement for each periodic task until t.  
 Since a hard aperiodic task has its own deadline, a new 
version of the CTI algorithm should provide an additional 
function to decide the acceptance of the task on its arrival. 
In other word, if the total number of slacks available from 
the current or the reserved (for the arrived and accepted 
before) point to the deadline of the hard aperiodic task is 
less than its total computation requirements, then it must be 
rejected so that the others including periodic tasks can use 
the slacks. To do this, the decision making procedure has 
to search slacks through the CTI table. Therefore, another 
slack discriminant that discriminates slacks at each search 
point from the CTI table is required. 
 The second slack discriminant is as follows: 
 
    ⎧  slack   if CTI[st] = 0 or   
   ⎟      CP[CTI[st]] - SCR[CTI[st]] > 0 
 g(st) = ⎨  
     ⎩  critical task   otherwise 
 
It is based on the counter CP that was used in the first 
slack discriminant and a new computation counter SCR 
representing all the computation requirement searched. 
Also, it substitutes a search timer st for the scheduling 
timer t. 
 
4.2 The Extended Algorithm 

 
     ⎧ slack    if CTI[t] = 0 or   
    ⎢     CP[CTI[t]] - CR[CTI[t]] > 0 
 f(t) = ⎨ 
     ⎩ critical task   otherwise 



 

  
 To develop an accept-reject decision making 
mechanism for hard aperiodic tasks, the original CTI 
algorithm dealing with soft aperiodic tasks should be 
specified in detail. For that purpose, we have prepared the 
original CTI algorithm and its extension written in C 
programming language style (see Figure 5 and 6). It 
mainly uses the data structures supporting the first and 
second slack discriminants given above. The rectangled 
areas (1), (2), and (3) in Figure 5 have been extended to 
the areas (1'), (2'), and (3') respectively in Figure 6. The 
routine (2') contains the slack search and accept-reject 
decision making components. Note that the integer counter 
HD has been introduced to handle the problem of search 
space limitation caused by the hyperperiod bound. For a 
detailed explanation, the comment lines in the figures will 
help. 
 

4.3 Some Comments 
 

 The extended CTI algorithm leaves some aspects to be 
enhanced. One is its recovery procedure from a rejection of 
a hard aperiodic task. Currently, it restores the very 
previous state (returning back to the point at which the 
search began) after a rejection by backwarding the search 
steps done that caused the waste of CPU time twice. It is a 
minor problem and can be fixed simply by using additional 
temporary counters. Another to be considered is the arrival 
queue handling of hard aperiodic tasks. The extended CTI 
algorithm assumes that the hard periodic arrival queue is 
only in FIFO order. Thuel and Lehoczky [17] mentioned 
the problem that the selection of a proper priority level for 
hard aperiodic processing in their algorithm involves a 
tradeoff and indicated adequate heuristics as an optimal 
solution to this problem. At our viewpoint, it is a kind of 
hard aperiodic arrival queue (prior to the acceptance 
decision making process) handling problems, since every 
hard aperiodic task should be assigned a priority and 
queued depending on its degree of importance.  The 
queueing theory approach would be desirable to handle the 
problem. 
 
5. Discussion 

 

 In this section, we discuss some open issues and 
problems on the CTI approach.  
 
5.1 Major Differences with the Conventional Reverse 

Schedulings 
 
 Under the strong assumption (A1) given in the 
subsection 2.2, a deadlinewise preassignment for a 
periodic task set according to their fixed-priority basis can 
also be obtained by rotating the normal fixed-priority 
preassignment in a 180° on the axis of the beginning or the 
ending point of the hyperperiod.  Because of this 
transposed property for a special case, the CTI approach 
may be considered as the same reverse schedule introduced 
by Chetto and Chetto[1], and Shih and Liu [13].  Some of 
the properties such as laying out the schedule in reverse 
time order to determine the maximum delay in executing 
periodic tasks without causing their deadlines to be missed 
has already been shown in [1] and [13]. 
 
 We, however, would like to point out the major 
differences between the pervious works and our approach 
in terms of application scope (constraint) and pursuing 
goal.  In the light of application scope, our approach can 
fully be used to relax the constraint of Chetto and Chetto's 
scheduling method.    While the reverse schedule of EDL 
(Earliest Deadline as Late as possible) proposed by the 
authors of [1] is restricted to the fact that the deadlines 



 #define N         /* # of periodic tasks given to be scheduled */ 
  #define H          /* hyperperiod(least common multiple of all periods) */ 
  int CTI[H-1];        /* CTI table */ 
  int CP[N];         /* all the periodic computation processing done until now */  
  int CR[N];         /* all the periodic computation requirement until now */ 
  int t = 0;          /* time counter */ 
  boolean CT_occurred;      /* flag indicating critical task occurrence */ 
 
  build(CTI);              /* build CTI table */ 
  for (i = 1; i <= N; i++)           /* initialize periodic computation counters */ 
     CP[i] = CR[i] = 0;            …(1)     
  while (TRUE) {              /* repeat forever */ 
        if As_arrived()               /* if aperiodic tasks have arrived, */ 
             insert(new_As, A_queue);   …(2)    /* insert these into the aperiodic queue. */ 
    if Ps_arrived() {           /* if periodic tasks have arrived, */ 
    insert(new_Ps, P_queue);        /* insert these into the periodic queue. */ 
    adjust_element_order(P_queue);      /* sort queue elements based on fixed-priority */ 
   }   
   CT_occurred = TRUE;          /* assume a critical task has occurred */ 
   if (CTI[t] <> 0) {           /* if CTI table does not indicate a slack, */ 
    if ((CP[CTI[t]] - CR[CTI[t]]) > 0)      /* if the periodic computation processing */ 
                                        /* done is greater than the requirement, */ 
     CT_occurred = FALSE;        /* the indicated task had already been processed */ 
    CR[CTI[t]]++;           /* cumulate periodic comp. requirement */ 
   } 
   if CT_occurred {           /* if a critical task has occurred, */ 
    P = remove_any(CTI[t], P_queue);     /* get it from the queue (not on the front) */ 
    service(P);            /* process it */ 
    CP[P.id]++;            /* cumulate periodic comp. processing done */ 
   } 
   else if (!empty(A_queue)) {         /* else, if an aperiodic task is ready, */ 
    A = remove(A_queue);         /* get it from the queue (on the front) */ 
    service(A);            /* process it */ 
   } 
   else if (!empty(P_queue)) {         /* else, if a periodic task is ready, */ 
    P = remove(P_queue);         /* get it from the queue (on the front) */ 
    service(P);            /* process it */ 
    CP[P.id]++;            /* cumulate periodic comp. processing done */ 
   } 
   else cpu_idle();            /* otherwise, CPU is idle */ 
   t++;               /* advance timer */ 
       if (t == H) {                 /* if a hyperperiod has finished, */ 
          t = 0;                              /* reset timer and */ 
          for (i = 1; i <= N; i++)         …(3)    /* reinitialize periodic comp. counters */ 
           CR[i] = CP[i] = 0;     
       }                             
  } 

Figure 5. Critical Task Indicating Algorithm in C (Soft Aperiodic Version) 



 

  int SCR[N];      /* all the periodic computation requirement searched */ 
  int S;        /* # of slacks searched */  
  int HD = 0;      /* distance between t and st in the unit of hyperperiod */  
  int st = 0;      /* search timer */ 
                                                   
  for (i=1; i <= N; i++)                          …(1')  /* initialize periodic comp. counters */ 
    CR[i] = CP[i] = SCR[i] = 0;                         
               
  while (As_exist()) {                                   /* while there exist aperiodic tasks arrived...*/ 
    if ((HD == 0) && (st < t)) st = t;                    /* if t and st lies on the same hyperperiod...*/ 
    if (HD < 0) {                                     /* if t outdistances st in one or more hyperperiod...*/  
       HD = 0;                                       /* reinit. the hyperperiodic distance value */ 
     for (i = 1; i <= N; i++) SCR[i] = 0;              /* reinit. all the periodic comp. requirement...*/ 
     st = t;                                        /* move search start point to the current... */ 
    }                                                
    S = 0;                                          /* initialize searched slack counter */ 
    X = st + new_A.D;                                   /* set up search deadline */ 
    while ((st < X) && (S < new_A.C)) {                  /* while (st < deadline) and (total slacks */ 
                                                     /* found < new aperiodic comp. requirement)*/ 
     if (CTI[st%H] == 0) S++;                         /* if CTI table indicates a slack, cumulate it */ 
     else {                                            /* otherwise, i.e., if CTI table indicates a task, */ 
        if (SCR[CTI[st%H]] < CR[CTI[st%H]])       /* backed up the comp. counter to... */ 
       SCR[CTI[st%H]] = CR[CTI[st%H]];        
      if ((CP[CTI[st%H]] - SCR[CTI[st%H]])> 0)    /* if the periodic task had already been */ 
         S++;                                  …(2')  /* serviced, it is a slack */ 
      SCR[CTI[st%H]]++;                           /* increase searched comp. requirement */ 
          }                                            
     st++;                                             /* increase search timer */ 
     if ((st%H) == 0) HD++;                           /* if st gets to a hyperperiod bound, ... */ 
    }                                                 
    if (S == new_A.C) {                /* if the required slacks found, */ 
     insert(new_A, A_queue);                           /* accept the aperiodic task */ 
     st = st % H;                                         /* set up new start point for next search */ 
    }                                                  
    else {                      /* otherwise, */ 
             reject(new_A);                                    /* reject the aperiodic task requested */ 
     for (i = 0; i < new_A.D; i++) {                /* restore the previous state */ 
      if ((st%H) == 0) HD--;                      
               st--;                                         
      if (CTI[st%H] != 0) SCR[CTI[st%H]--;       
     }                                               
    }                                                
  }                                                      
 
  if (t == H) {                                                 /* if t gets to a hyperperiod bound, */ 
    t = 0;                                                    /* reinitialize it and */ 
    if (HD > 0)                                              /* if the hyperperiodic distance is positive */ 
     for (i=1; i <= N; i++)                                /* take out comp. requirement from the */ 
      SCR[i] -= CR[i];         …(3')   /* corresp. searched comp. requirement */ 
    HD--;                                                   /* decrease hyperperiodic distance */ 
    for (i=1; i <= N; i++)                                     /* reinit. periodic comp. counters */ 
     CR[i] = CP[i] = 0;                               
  }                                                      

Figure 6. CTI Accept-Reject Decision Algorithm in C



of periodic tasks must be same as the periods of periodic 
tasks, an extension of our approach will remove the 
limitation in a way to build a CTI table using deadlinewise 
preassignment according to the EDF (Earliest Deadline 
First) priority order.  By using this deadlinewise 
preassignment, our CTI approach does not need to reverse 
the scheduling domain, so that the deadlines of the periodic 
tasks are not necessarily to be same as the periods of those 
periodic tasks.  Further, Chetto and Chetto have introduced 
the EDL scheme as an acceptance test mechanism for hard 
aperiodic tasks while we have suggested the CTI approach 
as a mechanism for mainly reducing computational 
complexity in calculating the slacks. 
 
5.2 Priority Inversion 
 
   In the course of the scheduling by using the CTI 
algorithm, we may be faced with the priority inversion 
problem. When there is no aperiodic task request, the 
periodic tasks are scheduled according to their fixed-
priorities, i.e., by the normal fixed-priority scheduling 
scheme.  But when there are aperiodic requests, the 
original fixed-priority assignment order of the periodic 
tasks may be inverted. This priority inversion phenomenon 
seems to hurt the merits of the fixed-priority  scheduling 
method.  We,  however,  have to  carefully  examine the  
tradeoffs between  the  advantages of  the  fixed-priority  
scheme  and  the expenses  of  the  heavy computational 
complexity to find slacks in the joint scheduling. Since the 
cost of calculating the available slacks for aperiodic tasks 
in the fixed-priority system is very expensive, we must 
consider an alternative scheduling  mechanism which may 
violate the fixed-priority order, but is remarkably simple in 
calculating the slacks. For example, while the complexity 
of computing all the slack values in the static slack stealing 
algorithm is O(n2), that of the soft aperiodic CTI algorithm 
is O(1) because of its use of the one or  two step slack 
discriminant. In this respect, we have adopted the CTI 
algorithm which gains huge benefits from using simple 
slack calculation method at the expenses of the merit of  
fixed-priority scheduling.  It also meets the goals of  joint 
scheduling which are not  only to  guarantee all  the 
deadlines  of periodic tasks and  to obtain the fast  response 
time for aperiodic  tasks, but also to  get the 
implementation simplicity and the scheduling predictability. 

 
5.3 Discrete Unit Time Scheduling 
 
 The CTI algorithm clearly depends on the unit time 
scheduling policy that causing each unit of periodic 
computation must be checked in the interval over which a 
periodic or an aperiodic task is active.  For the tasks with a 
small number of computation units, it is not a big problem 
because the checking process is involved only on referring 
to the CTI table that taking extremely small computational 
overheads.  However, for the tasks with relatively large 
number of computation units it may lead to a drastic 
degradation of the efficiency of the algorithm. 
 The best solution is to slightly modify the algorithm as 
pertaining the following three basic rules: 
 
 Rule 1. For a critical task at a scheduling point that 
consists of two or more units of computations, do not 
interrupt its service procedure until all of its computation 
units are consumed out. 
 
 Rule 2. For an aperiodic task allowed to be serviced at 
a scheduling point, calculate sum of the available units 
(i.e., slacks) to the next critical task unit and allocate whole 
or part of its computation units.  Then it is not necessary to 
check each unit of CTI table over the interval. 
 
 Rule 3.  For a periodic task which is not critical at a 
scheduling point, service it until a new aperiodic task's 
arrival or a critical task's occurrence. 
 
 Rule 3 may require a somewhat different interrupt 
handling mechanism of the algorithm that deals with 
arrivals of aperiodic tasks. 
5.4 Other Issues 
 
 Since tasks rarely take worst case execution times, a 
pre-allocation of processor utilization based on these 
execution times may result in an undesirable waste of 
processing time.  Some of the previous approaches 
[2],[6],[15] have taken advantage of the additional spare 
capacity, so called gain time, produced by pre-allocated 
tasks to improve average system performance.  While 
Lehoczky and Ramos-Thuel [6] presented an easy way of 
reclaiming gain time for their static slack stealing 



 

algorithm, Davis et. al. [2] mentioned three major methods 
of identifying gain time to provide a less pessimistic worst 
case execution time for a task in addition to reclaiming 
gain time to their dynamic slack stealing algorithm. 
 Unfortunately, the currently running version of the CTI 
algorithm does not provide the ability to reclaim gain times 
of tasks because of its time-driven scheduling property  
(i.e., discrete unit time scheduling policy).  However, an 
extension of the algorithm that may successfully reflect the 
three basic rules suggested in subsection 5.3 can easily be 
modified to efficiently reclaim gain time.  An expected 
reclaiming mechanism would be simple enough to just add 
gain time to the total sum of the available slacks found at a 
scheduling point in a similar manner of the static slack 
stealing reclaimer. 
 On the other hand, the proposed algorithm somewhat 
suffers from misindicating of a non-critical task as a 
critical one which may lead to the result that the algorithm 
can not find the available slacks at the scheduling point 
unless otherwise.  Let us consider two periodic task T1 and 
T2, with T1 having the higher priority.   Suppose there is no 
aperiodic request initially.  The first instant of T1 finishes 
executing.  An aperiodic task comes.  Now, according to 
the CTI table, T2 may now be critical because the 
deadlinewise preassignment scheduled is constructed with 
T2 first, followed by T1.  But T1 has already finished 
executing, and the CTI algorithm may not detect this.   So 
instead of pushing T2 back and schedule the aperiodic 
request, the scheduler schedules T2 instead, thinking that it 
is critical when in fact it is not critical because T1 has 
finished and there may be more time later to execute T2.   
 This phenomenon indicates the proposed algorithm may 
not be optimal.   This is, however, obviously  not an usual 
case.  Furthermore, our simulation study showed the  
misindicating problem never affect to the overall 
performance significantly.  Rather, in many cases, we 
found that the CTI algorithm can probabilistically find 
more  slacks for aperiodic tasks compared to the static 
slack stealing algorithm.  An exact example and simulation 
study on this matter will be shown on another work that is 
now under preparing by the authors.   
 
6. Summary 

 
 This paper discusses the problem of jointly scheduling 
hard deadline periodic and hard deadline aperiodic tasks in 
hybrid static/dynamic priority systems.  The paper 
develops a hard aperiodic tasks' acceptance test algorithm 
based on the CTI algorithm.  The deadlinewise 
preassignment for a periodic task set in a single 
hyperperiod produces a scheduling table, called CTI table, 
which is frequently referenced by the scheduler whether 
there are slacks for hard aperiodic tasks.  The CTI 
algorithm shows a good performance as much as the slack 
stealing algorithm in most cases and even better than the 
case of a transient overload.   
 The proposed algorithm using the CTI table, 
consequently, keeps the benefits of the CTI algorithm as 
well as performs well to test acceptance-rejection for hard 
aperiodic tasks at run time.  Moreover, it offers remarkable 
scheduling predictability since the algorithm refers the CTI 
table which has considerable approximated scheduling 
information and has been built off-line.   
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