
Abstract
 In this paper, we present a preemptive joint scheduling
of hard deadline periodic and hard deadline aperiodic
tasks on a uniprocessor real-time system. The scheduling
has extended the Critical Task Indicating (CTI) algorithm
[4] of which simulation study shows a considerable
performance improvement over the other soft aperiodic
task schedulings, especially under a heavy transient
overload. Since a hard deadline aperiodic task has its own
deadline, the proposed algorithm has a decision making
mechanism that performs the on-line acceptance/rejection
test upon its arrival. For simplicity and good
performance, the algorithm reuses the original CTI table
being used in the CTI algorithm as a slack search domain.
Moreover, by searching the CTI table similarly to a
circular list, it has removed the problem of search space
limitation caused by the hyperperiod bound.

1. Introduction

 Real-time systems are used to control the physical
processes that range in complexity from an automobile fuel
ignition device to a large military defense system.
Stankovic [16] addressed that it is very important to
develop an aperiodic task scheduler which works well over
the transient overload and serves a fast response time for
aperiodic tasks while guaranteeing the deadlines of
periodic tasks in the unpredictable environment.
 Over the last decade, the problem of jointly scheduling
hard deadline periodic tasks and soft deadline aperiodic

tasks using fixed-priority methods [5],[14],[15] has been
investigated by many researchers in the real-time systems
community. Recently, Lehoczky and Ramos-Theul [6]
have developed a slack stealing algorithm which has
proved to be optimal in the sense that it simultaneously
minimizes the response time of all aperiodic tasks,
provided they are served in FIFO order. The slack stealing
algorithm does not create a periodic server for aperiodic
task service. Rather it creates a passive task, referred to as
the slack stealer, which when prompted for service
attempts to make time for servicing aperiodic tasks by
stealing all the processing time it can from the periodic
tasks without causing their deadlines to be missed. This
algorithm, however, has some drawbacks. Firstly, it
requires a relatively large amount of calculation.
Consequently, a direct implementation may not be
practical. Secondly, it can not fully utilize all the available
slacks for the largest amount of aperiodic processing due
to the ceiling value of periodic processing requirements.
 The slack stealing approach was generalized by Davis
et. al. [2] to a wide class of scheduling problems. Also it
has been improved by Tia et. al. [18] by means of a non-
greedy approach while the slack stealing algorithm as
defined in [6] is a greedy method. In [18], they showed
that the total slack available during certain specific
intervals can be larger than that available to the slack
stealing algorithm if certain lower priority tasks are
serviced before the available slack is used. They also
pointed out that the greedy approach in [6] is not optimal
when the class of algorithms is enlarged to include non-
greedy algorithms.
 A different type of approach to the algorithm, called the

Scheduling of Hard Aperiodic Tasks
in Hybrid Static/Dynamic Priority Systems

Jongwon LeeJ, Sungyoung LeeJJ, Hyungill KimJJ

Software Research Lab.J

Korea Telecom, Seoul, Korea
Department of Computer EngineeringJJ

Kyunghee University, Seoul, Korea

Critical Task Indicating (CTI) algorithm, jointly
scheduling hard deadline periodic and soft deadline
aperiodic tasks was introduced by Lee, Kim, and Lee [4]
(the authors). Goals of the algorithm are not only to
guarantee the deadline of all periodic tasks and to get the
response time for soft aperiodic tasks as small as possible,
but also to achieve a considerable scheduling
predictability. In order to achieve these goals, the authors
adopted a hybrid manner of fixed-priority and dynamic-
priority methods. By the fixed-priority methods, the spirit
of a predictability can be achieved, and by the dynamic-
priority methods using a deadlinewise preassignment
reference table, the objective of the fast response time for
the soft aperiodic tasks can be retained.
 The deadlinewise preassignment for a periodic task set
in a single hyperperiod produces a scheduling table, so
called the critical task indicator (CTI table), which will be
referenced by the scheduler to see if there are slacks
available for aperiodic tasks at run time. The role of a CTI
table is to indicate a critical task (if any) at each scheduling
point that must be assigned and executed immediately to
meet its deadline.
 The key to the matter of the CTI algorithm converges to
the creations of the required CTI tables in a priori. To
work this out, the authors carefully developed a different
kind of fixed-priority preassignment strategy, deadlinewise
preassignment, for which a periodic task set defers each
task's execution start time toward the deadline at its
maximum. This idea comes from the fact that the value
functions of a set of hard periodic tasks are generally step
functions. Thus, the values of the functions are constant
upto their deadlines [3] which means the execution time of
tasks can be deferred till their deadlines if necessary.
Consequently, the slacks which were made by artificially
deferring the execution time can be utilized by the
aperiodic tasks if they arrive at those time zones.
Otherwise, the slacks can be used for the periodic tasks by
the normal fixed-priority scheduling.
 The result of the deadlinewise preassignment for a
given periodic task set has scheduling information
including the sequence of starting points of execution and
the computation requirement of all task instances, on each
instance whose execution is delayed at its maximum. This

information gives us the valuable knowledge that a
periodic task preassigned to a scheduling point would miss
its deadline under a real time scheduling situation unless it
is assigned and executed immediately at that time. This
means that the periodic task is a critical task at that time in
a real time scheduling circumstance. The CTI algorithm,
consequently, is reasonably simple to implement and offers
an improvement to aperiodic response time over the slack
stealing algorithm, especially under the transient overload.
 Meanwhile, considerable research has been done in the
area of the joint scheduling of hard deadline periodic tasks
and hard deadline aperiodic tasks with respect to either
fixed-priority or dynamic priority systems. Recently,
Thuel and Lehoczky [7],[11],[17] have developed an
extension of the slack stealing algorithm [6], which
provides the largest amount of processing capacity for
aperiodic tasks subject to guaranteeing the deadlines of the
periodic tasks, in fixed-priority systems. The algorithm
tests acceptance for hard aperiodic tasks for guaranteeing
tasks at any priority level while it assumes that the periodic
deadlines must all be met.
 Work on the on-line scheduling of hard aperiodic tasks
in dynamic priority methods has been reported by Chetto
and Chetto[1], and Schwan and Zhou [12]. Their work
assumes that all periodic tasks are scheduled according to
the Earliest Deadline algorithm [10]. Especially a point to
note is that Schwan and Zhou's algorithm does not give
any preferential treatment to the periodic tasks, unlike
common approaches to soft aperiodic tasks in fixed-
priority preemptive systems. Every task is subject to an
acceptance-rejection test upon arrival. The algorithm,
however, may lead to an undesirable implementation
overhead if the real-time workload is mainly periodic.
 In this paper, we present an extended CTI algorithm for
the jointly scheduling the hard deadline periodic tasks and
hard deadline aperiodic tasks based on the CTI table. The
tasks are scheduled in a way of mixed scheduling of a
static and dynamic priority algorithm. The proposed
algorithm is not only to guarantee all the deadlines of
periodic tasks, but also performs an on-line acceptance test
upon arrival of aperiodic tasks. The algorithm offers a less
computational complexity than those of the other on-line
schedulings of hard deadline aperiodic tasks in fixed-

priority systems. Moreover, the algorithm demonstrates a
remarkable scheduling predictability since it maintains the
CTI table which has scheduling information and has been
built off-line.
 The remainder of this paper is organized as follows.
The next section introduces the background of the CTI
algorithm including general terms, notations, assumptions,
and description of how to build a CTI table. Section 3
describes the CTI algorithm including a feasibility
analysis. Section 4 discusses the extension of the CTI
algorithm to maintain the accept-reject test for hard
aperiodic tasks. Section 5 addresses some open issues and
problems on the CTI approach. Finally, section 6
concludes the paper.

2. The background of the CTI Algorithm

 In this section, we briefly review the background of the
CTI algorithm including the basic notions, notations, and
its major properties.

2.1 Task Execution Model

 A periodic task, denoted by τ, is an infinite sequence
of task instances requested at a fixed rate in a real time
system environment. The request rate is defined to be its
period, denoted by T. Each of the task instances has the
same magnitude of computation requirements, denoted by
C, and the deadline, denoted by D, by which it must be
completed. A periodic task set, denoted by {τ1,τ2 ,...,τn},
is defined to be a set of arbitrary positive number of such
periodic tasks. Any periodic task set has its hyperperiod
which is the least common multiple of all the periods of the
tasks in it. Note that every task in a task set is requested
simultaneously at the start point of the hyperperiod and has
the same deadline at the end point of it. An aperiodic task,
denoted by A, is a task having non-periodic request
intervals. A slack is an available time interval, which has
the length of a scheduling unit, for an aperiodic task.

2.2 Assumptions

 To develop the CTI scheduling algorithm, we need

some assumptions which include:

 (A1) Deadline for a periodic task's instance is equal to
the next request of the task.
 (A2) Preemption over a periodic or an aperiodic task is
always possible.
 (A3) All overhead for context switching is counted into
the corresponding periodic and aperiodic task's
computation requirements.

2.3 Fixed-Priority Deadlinewise Preassignment
 Concepts

 A periodic task scheduling method is classified to a
fixed-priority deadlinewise preassignment if the tasks are
assigned one after another according to the given
fixed-priority in such a way that all the tasks are
preassigned toward deadlines at their maximum. The
priority preemptions in a deadlinewise preassignment take
place in a similar manner of the other fixed-priority
scheduling methods (e.g. rate monotonic priority
assignment) except that the part or all of the preempted task
instance should be assigned prior to the preempting task
instance.

 Example 1. Suppose that a periodic task set with two
tasks, τ 1 and τ 2, having the computation requirements,
C1=1 and C2=2, and the periods, T1=3 and T2=5,
respectively, is to be preassigned over a single hyperperiod,
H=15, using the rate monotonic fixed-priority deadlinewise
preassignment. The preassigning process is depicted in
Figure 1. At start time, two task instances, τ11 and τ21, are
arrived and assigned toward the deadlines, D11=3 and
D21=5, respectively. At time 6, the task instance τ 13
preempts τ22. Also, at time 12, another preemption has
occurred.

C1 = 1, T1 = 3

C2 = 2, T2 = 5

Hyperperiod

τ1

τ2
3 6 9 12 150

0 5 10 15

Figure 1. An example of the preassigning process using
 the deadlinewise preassignment.

 Next we establish some of the basic notions used to
analyze the feasibility of the deadlinewise preassignment
for a given periodic task set. For a set of periodic tasks
preassigned according to the deadlinewise preassignment,
we say that an underflow occurs at t if a task is forced out
of its given period beginning at t as a result of the others'
preemptions. The concept of overflow is applicable to both
the on-line and the off-line fixed-priority schedulings, but
on the other hand that of underflow only to the off-line
fixed-priority schedulings. A deadlinewise critical instant
for a given periodic task preassigned according to the
deadlinewise preassignment is an instant at which the
execution of a request for that task will begin, so that the
largest time interval is required to its completion. The
period of a periodic task having the shortest waiting time
from the request to the start of the execution contain its
deadlinewise critical instant. A deadlinewise critical zone
for a given periodic task preassigned according to the
deadlinewise preassignment is the time interval between a
deadlinewise critical instant and the deadline for the
corresponding request. The above two definitions are
hinted at the definitions of the normal critical instant and
critical time zone presented in [10]. The only difference
between normal and deadlinewise is that the latter count on
the deadlines instead of the requests. Any periodic task set
with a fixed-priority order is deadlinewisely preassignable
if no underflow occurs through all the deadlinewise critical
zones for all the tasks over a single hyperperiod.

 Example 2. Figure 1 shows two deadlinewise critical
instants, execution start points of τ22 and τ23 , at priority
level 2 and consequently two deadlinewise critical zones,
[7,10] and [12,15], respectively. Moreover, the periodic

task set is deadlinewisely preassignable because no
underflow occurs through all the deadlinewise critical
zones. Note that every execution start point of the task
instances at the priority level 1 is a deadlinewise critical
instant.

 Let us consider one of the properties related to a
deadlinewise critical instant and the relationships between
normal and deadlinewise schedulability. The proofs of the
Theorems and Lemmas are shown in [4].

 Theorem 1. For a given periodic task set with a
fixed-priority order, the deadlinewise critical instant for
any task occurs whenever the deadline of the task is
identical to that of all higher priority tasks.

 Example 3. The normal critical zone at the lowest
priority level for the periodic task set given in Example 1 is
the interval [0,3]. On the other hand, the deadlinewise
critical zone for the same task is the interval [12,15].

 Theorem 2. A periodic task set {τ1,τ2 ,...,τn} with a
fixed-priority order is deadlinewisely preassignable if, and
only if, it is normally schedulable.

 Lemma 1. For a given periodic task set with a
fixed-priority order, the deadlinewise preassignment is
feasible if , and only if, the fixed-priority assignment is
feasible.

3. The CTI Algorithm

 A result of the deadlinewise preassignment for a given
periodic task set is composed of scheduling information, a
sequence of the execution start points and computation
requirements of all task instances, on each instance the
execution is delayed at its maximum. The information
gives us the valuable knowledge that a periodic task
preassigned to a scheduling point would miss its deadline
under a real time scheduling situation unless it is assigned
and executed immediately at that time. This means that the
periodic task is critical (critical task) at that time in a real
time scheduling situation. Moreover, the preassignment is

the worst schedulable case with respect to the periodic task
set under the condition that all the deadlines must be met.
In this point of view, a new aperiodic task scheduling
algorithm, called the CTI algorithm, for a mixed
scheduling of periodic and aperiodic tasks came to mind.

3.1 Algorithm Description

 Conceptually, the new algorithm is to assign a mixture
of periodic and aperiodic tasks based on a hybrid
scheduling method of the normal fixed-priority assignment
and the deadlinewise preassignment information. The
deadlinewise preassignment for a periodic task set through
a single hyperperiod produces a scheduling table, called
the CTI table, to be used in the real time assignment. At
runtime the table is frequently referenced by the scheduler
to see if there are slacks available for aperiodic tasks.
 In practice, a CTI table may be a character string for a
small number of periodic tasks or may be an array of
integers in general, i.e., an ordered sequence of periodic
task's identifiers. For example, the CTI table for the
periodic task set given in Example 1 will be a character
string "001221021201221" with the length of its single
hyperperiod, where '0', '1', and '2' denote identifiers of an
empty slack, τ1, and τ2, respectively. With this simple data
structure, all the execution start points and computation
requirements of the periodic tasks can be fully represented
in addition to the empty slacks for soft aperiodic tasks.
 The behavior of the hybrid algorithm is dynamically
determined at runtime depending on the information in the

CTI table and arrivals of aperiodic tasks. For an arrival of
an aperiodic task, the algorithm checks to see if (C1) there
are slacks available for the aperiodic task in the CTI table
at the current time, or (C2) the current critical task unit
(whole or part of the task instance) already has been
serviced. If one of the two conditions is met, it services the
aperiodic task immediately. If not, it services the critical
task. All of the works are done based on the CTI table, i.e.,
the deadlinewise preassignment. On the other hand, if no
aperiodic task arrived and no critical task is indicated, the
algorithm works based on the fixed-priority assignment
rule of which the fixed-priority order was taken by the
deadlinewise preassignment.
 This dynamic property of the algorithm behavior
provides that the maximum aperiodic capacity is always
preserved through a single hyperperiod, although all the
periodic deadlines are met strictly.
 Let us examine the hybrid algorithm more
systematically using a pseudocode written as in the
following Figure 2. At line 1, the data structures for the
algorithm including the CTI table, the timer, and the
hyperperiod are initialized for a given periodic task set.
Lines 2 to 9 form an infinite loop. The above two
conditions, (C1) or (C2), for an aperiodic task ready (or
arrived) are examined at line 3. If neither of them is met,
the critical task is serviced. Otherwise, an aperiodic task
which is ready (or newly arrived) is serviced immediately
at line 4. If no aperiodic task is ready (or arrived) at line 4,
the normal fixed-priority assignment algorithm is applied
to the periodic tasks ready at that time at line 5. The
pseudocode segment in line 6 takes over the control to the
processor to cope with the CPU idle state whenever there

Figure 2. A pseudocode of the CTI algorithm

 1 initialize data structures
 2 loop begin
 3 if (a critical periodic task unit not yet been serviced has occurred) then service it
 4 else if (an aperiodic task(s) is ready or arrived) then service it
 5 else if (a periodic task(s) is ready or arrived) then service it
 6 else process CPU idle state
 7 advance timer
 8 if ((timer_value MOD hyperperiod) is equal to zero)
 then reinitialize the global parameters
 9 end loop

is no aperiodic and no periodic task ready at that time.
Although the pseudocode segment in line 7 should be
ignored in a practical situation, it is necessary in a
simulation. At line 8, the boundary for the hyperperiod is
checked. If a boundary overflow occurs, all the global
parameters such as the current pointer to the CTI table are
renewed. Finally, the control goes back to line 3.

3.2 An Example

 Suppose that there is a periodic task set with three
tasks, τ1, τ2, and τ3, with T1=3, T2=5, T3=15, C1=1, and
C2=C3=2. We restrict our attention to the interval [0,15]
which is a single hyperperiod for the task set. To obtain a
CTI table for our task set, one can use the deadlinewise
preassignment method described in subsection 2.3. In this
example, the rate monotonic fixed-priority order has been
applied. The obtaining procedure is fully depicted in
Figure 3. Figure 3-A shows the deadlinewise
preassignment results for each priority level. Figure 3-B
shows the final result, the CTI table.

[CTI table] - Figure 3-B

[Deadlinewise preassignment results for each priority level
based on the rate monotonic fixed-priority order] - Figure 3-A

T1 =3
C1 =1

T2 =5
C2 =2

T3 =15
C3 =2

Figure 3. An example of creating a CTI table

 Next we will examine the behavior of our CTI
algorithm for the periodic task set given above and two
aperiodic tasks with computation requirements C=1
arriving at t=5 and t=8, respectively. Figure 4 shows the
mixed scheduling. The processor assigns periodic tasks by
using the normal rate monotonic algorithm during [1,5]
and [6,8] because there is no aperiodic task ready (or
arrived) and no critical periodic task unit occurred. The

first aperiodic task A1 has arrived at t=5 and serviced
immediately because the current critical task unit, whole of
the instance τ 12, had already been serviced at t=3.
Similarly, the second aperiodic task A2 has arrived at t=8
and been serviced immediately because the current critical
task unit, the whole of the instance τ13, had already been
serviced at t=6. During the remaining interval [9,15], all
the periodic tasks will be scheduled in accordance with the
information on the CTI table. The reason is that there
always exists through the interval a critical periodic task
unit which has not yet been serviced.

[CTI table]

T1 = 3
C1 = 1

T2 = 5
C2 = 2

T3 = 15
C3 = 2

Aperiodic Task
C = 1

t=5 t=8
 * The circles denote that the periodic tasks will be serviced in accordance
 with the CTI table.

0 15

Figure 4. An example of the behavior of CTI algorithm

3.3 Feasibility Analysis

 The major virtue of the fixed-priority assignment
algorithms comprises of its simplicity and ability to handle
many practical problems, stability under transient
overload, low scheduling overhead, and so on [8],[9],[10].
In this subsection, we will analyze the feasibility of the
CTI algorithm to show that almost all of these qualities
supported by the fixed-priority algorithms could also be
retained for periodic tasks.

 Lemma 2. For a given periodic task set with a
fixed-priority order, the CTI algorithm is feasible if, and
only if, the normal fixed-priority algorithm is feasible.

 Note that the above Lemma 2 gives us that the CTI
algorithm could be applicable for all the periodic task set

schedulable using a fixed-priority algorithm. And hence,
our algorithm also provides almost all of the fixed-priority
algorithms' nice features, especially its high schedulable
utilization for periodic tasks. Moreover, it provides
stability and predictability for mixed scheduling.

4. The Accept-Reject Decision Algorithm

 The purpose of this section is to extend the CTI
algorithm to manipulate hard deadline aperiodic tasks
instead of ones with soft deadlines. Although a number of
extension methods may be possible, the one using the CTI
table is the most plausible candidate. In the following, we
assume that all hard aperiodic tasks are known to their
execution times and deadlines when they have arrived to
the system.

4.1 The Slack Discriminants

 In the CTI algorithm, two consecutive conditions (C1)
and (C2) given in subsection 3.1 are used successively to
test whether the current scheduling unit on the CTI table is
a slack for a soft aperiodic task or not. To be more specific,
the condition (C1) will be evaluated first, simply by
looking up the CTI table unit corresponding to the current
value of the scheduling timer. If the unit denotes a slack
identifier (i.e., a character '0' or an integer 0 depending on
its data structure), then the required test comes to an end.
However, if the unit denotes an identifier of a periodic
task, it may be a slack or not. For these cases, the condition
(C2) will be evaluated in sequence. This second condition
will easily be checked based on the two kinds of special
computation counters for each periodic task: one for
cumulating all the computation processing completed and
the other for cumulating all the computation requirement
on the CTI table until current scheduling time. Namely,
the difference between the two counters for the task
currently indicated by the CTI table makes it possible to
check if the task has already been serviced. To extend the
above conditions to support a slack search mechanism for
hard aperiodic tasks, first we need to formalize these to a
slack discriminant that can be used for distinguishing a

slack from the CTI table at the current scheduling point.
Suppose that all the periodic tasks are sorted depending on
those priorities so that the mapping from the set of task
numbers (identifiers) to the set of positive integers Y = {1,
2, ..., n} is one-to-one and onto Y where n denotes the
number of periodic tasks. The resulting first slack
discriminant for CTI algorithm is

where t denotes current scheduling time, CTI denotes CTI
table (an array of integers, each element of which
represents a slack or a periodic task), CP[i] and CR[i] (i
represents an identifier of a periodic task) respectively
denote all the computation processing done and all the
computation requirement for each periodic task until t.
 Since a hard aperiodic task has its own deadline, a new
version of the CTI algorithm should provide an additional
function to decide the acceptance of the task on its arrival.
In other word, if the total number of slacks available from
the current or the reserved (for the arrived and accepted
before) point to the deadline of the hard aperiodic task is
less than its total computation requirements, then it must be
rejected so that the others including periodic tasks can use
the slacks. To do this, the decision making procedure has
to search slacks through the CTI table. Therefore, another
slack discriminant that discriminates slacks at each search
point from the CTI table is required.
 The second slack discriminant is as follows:

 ⎧ slack if CTI[st] = 0 or
 ⎟ CP[CTI[st]] - SCR[CTI[st]] > 0
 g(st) = ⎨
 ⎩ critical task otherwise

It is based on the counter CP that was used in the first
slack discriminant and a new computation counter SCR
representing all the computation requirement searched.
Also, it substitutes a search timer st for the scheduling
timer t.

4.2 The Extended Algorithm

 ⎧ slack if CTI[t] = 0 or
 ⎢ CP[CTI[t]] - CR[CTI[t]] > 0
 f(t) = ⎨
 ⎩ critical task otherwise

 To develop an accept-reject decision making
mechanism for hard aperiodic tasks, the original CTI
algorithm dealing with soft aperiodic tasks should be
specified in detail. For that purpose, we have prepared the
original CTI algorithm and its extension written in C
programming language style (see Figure 5 and 6). It
mainly uses the data structures supporting the first and
second slack discriminants given above. The rectangled
areas (1), (2), and (3) in Figure 5 have been extended to
the areas (1'), (2'), and (3') respectively in Figure 6. The
routine (2') contains the slack search and accept-reject
decision making components. Note that the integer counter
HD has been introduced to handle the problem of search
space limitation caused by the hyperperiod bound. For a
detailed explanation, the comment lines in the figures will
help.

4.3 Some Comments

 The extended CTI algorithm leaves some aspects to be
enhanced. One is its recovery procedure from a rejection of
a hard aperiodic task. Currently, it restores the very
previous state (returning back to the point at which the
search began) after a rejection by backwarding the search
steps done that caused the waste of CPU time twice. It is a
minor problem and can be fixed simply by using additional
temporary counters. Another to be considered is the arrival
queue handling of hard aperiodic tasks. The extended CTI
algorithm assumes that the hard periodic arrival queue is
only in FIFO order. Thuel and Lehoczky [17] mentioned
the problem that the selection of a proper priority level for
hard aperiodic processing in their algorithm involves a
tradeoff and indicated adequate heuristics as an optimal
solution to this problem. At our viewpoint, it is a kind of
hard aperiodic arrival queue (prior to the acceptance
decision making process) handling problems, since every
hard aperiodic task should be assigned a priority and
queued depending on its degree of importance. The
queueing theory approach would be desirable to handle the
problem.

5. Discussion

 In this section, we discuss some open issues and
problems on the CTI approach.

5.1 Major Differences with the Conventional Reverse

Schedulings

 Under the strong assumption (A1) given in the
subsection 2.2, a deadlinewise preassignment for a
periodic task set according to their fixed-priority basis can
also be obtained by rotating the normal fixed-priority
preassignment in a 180° on the axis of the beginning or the
ending point of the hyperperiod. Because of this
transposed property for a special case, the CTI approach
may be considered as the same reverse schedule introduced
by Chetto and Chetto[1], and Shih and Liu [13]. Some of
the properties such as laying out the schedule in reverse
time order to determine the maximum delay in executing
periodic tasks without causing their deadlines to be missed
has already been shown in [1] and [13].

 We, however, would like to point out the major
differences between the pervious works and our approach
in terms of application scope (constraint) and pursuing
goal. In the light of application scope, our approach can
fully be used to relax the constraint of Chetto and Chetto's
scheduling method. While the reverse schedule of EDL
(Earliest Deadline as Late as possible) proposed by the
authors of [1] is restricted to the fact that the deadlines

 #define N /* # of periodic tasks given to be scheduled */
 #define H /* hyperperiod(least common multiple of all periods) */
 int CTI[H-1]; /* CTI table */
 int CP[N]; /* all the periodic computation processing done until now */
 int CR[N]; /* all the periodic computation requirement until now */
 int t = 0; /* time counter */
 boolean CT_occurred; /* flag indicating critical task occurrence */

 build(CTI); /* build CTI table */
 for (i = 1; i <= N; i++) /* initialize periodic computation counters */
 CP[i] = CR[i] = 0; …(1)
 while (TRUE) { /* repeat forever */
 if As_arrived() /* if aperiodic tasks have arrived, */
 insert(new_As, A_queue); …(2) /* insert these into the aperiodic queue. */
 if Ps_arrived() { /* if periodic tasks have arrived, */
 insert(new_Ps, P_queue); /* insert these into the periodic queue. */
 adjust_element_order(P_queue); /* sort queue elements based on fixed-priority */
 }
 CT_occurred = TRUE; /* assume a critical task has occurred */
 if (CTI[t] <> 0) { /* if CTI table does not indicate a slack, */
 if ((CP[CTI[t]] - CR[CTI[t]]) > 0) /* if the periodic computation processing */
 /* done is greater than the requirement, */
 CT_occurred = FALSE; /* the indicated task had already been processed */
 CR[CTI[t]]++; /* cumulate periodic comp. requirement */
 }
 if CT_occurred { /* if a critical task has occurred, */
 P = remove_any(CTI[t], P_queue); /* get it from the queue (not on the front) */
 service(P); /* process it */
 CP[P.id]++; /* cumulate periodic comp. processing done */
 }
 else if (!empty(A_queue)) { /* else, if an aperiodic task is ready, */
 A = remove(A_queue); /* get it from the queue (on the front) */
 service(A); /* process it */
 }
 else if (!empty(P_queue)) { /* else, if a periodic task is ready, */
 P = remove(P_queue); /* get it from the queue (on the front) */
 service(P); /* process it */
 CP[P.id]++; /* cumulate periodic comp. processing done */
 }
 else cpu_idle(); /* otherwise, CPU is idle */
 t++; /* advance timer */
 if (t == H) { /* if a hyperperiod has finished, */
 t = 0; /* reset timer and */
 for (i = 1; i <= N; i++) …(3) /* reinitialize periodic comp. counters */
 CR[i] = CP[i] = 0;
 }
 }

Figure 5. Critical Task Indicating Algorithm in C (Soft Aperiodic Version)

 int SCR[N]; /* all the periodic computation requirement searched */
 int S; /* # of slacks searched */
 int HD = 0; /* distance between t and st in the unit of hyperperiod */
 int st = 0; /* search timer */

 for (i=1; i <= N; i++) …(1') /* initialize periodic comp. counters */
 CR[i] = CP[i] = SCR[i] = 0;

 while (As_exist()) { /* while there exist aperiodic tasks arrived...*/
 if ((HD == 0) && (st < t)) st = t; /* if t and st lies on the same hyperperiod...*/
 if (HD < 0) { /* if t outdistances st in one or more hyperperiod...*/
 HD = 0; /* reinit. the hyperperiodic distance value */
 for (i = 1; i <= N; i++) SCR[i] = 0; /* reinit. all the periodic comp. requirement...*/
 st = t; /* move search start point to the current... */
 }
 S = 0; /* initialize searched slack counter */
 X = st + new_A.D; /* set up search deadline */
 while ((st < X) && (S < new_A.C)) { /* while (st < deadline) and (total slacks */
 /* found < new aperiodic comp. requirement)*/
 if (CTI[st%H] == 0) S++; /* if CTI table indicates a slack, cumulate it */
 else { /* otherwise, i.e., if CTI table indicates a task, */
 if (SCR[CTI[st%H]] < CR[CTI[st%H]]) /* backed up the comp. counter to... */
 SCR[CTI[st%H]] = CR[CTI[st%H]];
 if ((CP[CTI[st%H]] - SCR[CTI[st%H]])> 0) /* if the periodic task had already been */
 S++; …(2') /* serviced, it is a slack */
 SCR[CTI[st%H]]++; /* increase searched comp. requirement */
 }
 st++; /* increase search timer */
 if ((st%H) == 0) HD++; /* if st gets to a hyperperiod bound, ... */
 }
 if (S == new_A.C) { /* if the required slacks found, */
 insert(new_A, A_queue); /* accept the aperiodic task */
 st = st % H; /* set up new start point for next search */
 }
 else { /* otherwise, */
 reject(new_A); /* reject the aperiodic task requested */
 for (i = 0; i < new_A.D; i++) { /* restore the previous state */
 if ((st%H) == 0) HD--;
 st--;
 if (CTI[st%H] != 0) SCR[CTI[st%H]--;
 }
 }
 }

 if (t == H) { /* if t gets to a hyperperiod bound, */
 t = 0; /* reinitialize it and */
 if (HD > 0) /* if the hyperperiodic distance is positive */
 for (i=1; i <= N; i++) /* take out comp. requirement from the */
 SCR[i] -= CR[i]; …(3') /* corresp. searched comp. requirement */
 HD--; /* decrease hyperperiodic distance */
 for (i=1; i <= N; i++) /* reinit. periodic comp. counters */
 CR[i] = CP[i] = 0;
 }

Figure 6. CTI Accept-Reject Decision Algorithm in C

of periodic tasks must be same as the periods of periodic
tasks, an extension of our approach will remove the
limitation in a way to build a CTI table using deadlinewise
preassignment according to the EDF (Earliest Deadline
First) priority order. By using this deadlinewise
preassignment, our CTI approach does not need to reverse
the scheduling domain, so that the deadlines of the periodic
tasks are not necessarily to be same as the periods of those
periodic tasks. Further, Chetto and Chetto have introduced
the EDL scheme as an acceptance test mechanism for hard
aperiodic tasks while we have suggested the CTI approach
as a mechanism for mainly reducing computational
complexity in calculating the slacks.

5.2 Priority Inversion

 In the course of the scheduling by using the CTI
algorithm, we may be faced with the priority inversion
problem. When there is no aperiodic task request, the
periodic tasks are scheduled according to their fixed-
priorities, i.e., by the normal fixed-priority scheduling
scheme. But when there are aperiodic requests, the
original fixed-priority assignment order of the periodic
tasks may be inverted. This priority inversion phenomenon
seems to hurt the merits of the fixed-priority scheduling
method. We, however, have to carefully examine the
tradeoffs between the advantages of the fixed-priority
scheme and the expenses of the heavy computational
complexity to find slacks in the joint scheduling. Since the
cost of calculating the available slacks for aperiodic tasks
in the fixed-priority system is very expensive, we must
consider an alternative scheduling mechanism which may
violate the fixed-priority order, but is remarkably simple in
calculating the slacks. For example, while the complexity
of computing all the slack values in the static slack stealing
algorithm is O(n2), that of the soft aperiodic CTI algorithm
is O(1) because of its use of the one or two step slack
discriminant. In this respect, we have adopted the CTI
algorithm which gains huge benefits from using simple
slack calculation method at the expenses of the merit of
fixed-priority scheduling. It also meets the goals of joint
scheduling which are not only to guarantee all the
deadlines of periodic tasks and to obtain the fast response
time for aperiodic tasks, but also to get the
implementation simplicity and the scheduling predictability.

5.3 Discrete Unit Time Scheduling

 The CTI algorithm clearly depends on the unit time
scheduling policy that causing each unit of periodic
computation must be checked in the interval over which a
periodic or an aperiodic task is active. For the tasks with a
small number of computation units, it is not a big problem
because the checking process is involved only on referring
to the CTI table that taking extremely small computational
overheads. However, for the tasks with relatively large
number of computation units it may lead to a drastic
degradation of the efficiency of the algorithm.
 The best solution is to slightly modify the algorithm as
pertaining the following three basic rules:

 Rule 1. For a critical task at a scheduling point that
consists of two or more units of computations, do not
interrupt its service procedure until all of its computation
units are consumed out.

 Rule 2. For an aperiodic task allowed to be serviced at
a scheduling point, calculate sum of the available units
(i.e., slacks) to the next critical task unit and allocate whole
or part of its computation units. Then it is not necessary to
check each unit of CTI table over the interval.

 Rule 3. For a periodic task which is not critical at a
scheduling point, service it until a new aperiodic task's
arrival or a critical task's occurrence.

 Rule 3 may require a somewhat different interrupt
handling mechanism of the algorithm that deals with
arrivals of aperiodic tasks.
5.4 Other Issues

 Since tasks rarely take worst case execution times, a
pre-allocation of processor utilization based on these
execution times may result in an undesirable waste of
processing time. Some of the previous approaches
[2],[6],[15] have taken advantage of the additional spare
capacity, so called gain time, produced by pre-allocated
tasks to improve average system performance. While
Lehoczky and Ramos-Thuel [6] presented an easy way of
reclaiming gain time for their static slack stealing

algorithm, Davis et. al. [2] mentioned three major methods
of identifying gain time to provide a less pessimistic worst
case execution time for a task in addition to reclaiming
gain time to their dynamic slack stealing algorithm.
 Unfortunately, the currently running version of the CTI
algorithm does not provide the ability to reclaim gain times
of tasks because of its time-driven scheduling property
(i.e., discrete unit time scheduling policy). However, an
extension of the algorithm that may successfully reflect the
three basic rules suggested in subsection 5.3 can easily be
modified to efficiently reclaim gain time. An expected
reclaiming mechanism would be simple enough to just add
gain time to the total sum of the available slacks found at a
scheduling point in a similar manner of the static slack
stealing reclaimer.
 On the other hand, the proposed algorithm somewhat
suffers from misindicating of a non-critical task as a
critical one which may lead to the result that the algorithm
can not find the available slacks at the scheduling point
unless otherwise. Let us consider two periodic task T1 and
T2, with T1 having the higher priority. Suppose there is no
aperiodic request initially. The first instant of T1 finishes
executing. An aperiodic task comes. Now, according to
the CTI table, T2 may now be critical because the
deadlinewise preassignment scheduled is constructed with
T2 first, followed by T1. But T1 has already finished
executing, and the CTI algorithm may not detect this. So
instead of pushing T2 back and schedule the aperiodic
request, the scheduler schedules T2 instead, thinking that it
is critical when in fact it is not critical because T1 has
finished and there may be more time later to execute T2.
 This phenomenon indicates the proposed algorithm may
not be optimal. This is, however, obviously not an usual
case. Furthermore, our simulation study showed the
misindicating problem never affect to the overall
performance significantly. Rather, in many cases, we
found that the CTI algorithm can probabilistically find
more slacks for aperiodic tasks compared to the static
slack stealing algorithm. An exact example and simulation
study on this matter will be shown on another work that is
now under preparing by the authors.

6. Summary

 This paper discusses the problem of jointly scheduling
hard deadline periodic and hard deadline aperiodic tasks in
hybrid static/dynamic priority systems. The paper
develops a hard aperiodic tasks' acceptance test algorithm
based on the CTI algorithm. The deadlinewise
preassignment for a periodic task set in a single
hyperperiod produces a scheduling table, called CTI table,
which is frequently referenced by the scheduler whether
there are slacks for hard aperiodic tasks. The CTI
algorithm shows a good performance as much as the slack
stealing algorithm in most cases and even better than the
case of a transient overload.
 The proposed algorithm using the CTI table,
consequently, keeps the benefits of the CTI algorithm as
well as performs well to test acceptance-rejection for hard
aperiodic tasks at run time. Moreover, it offers remarkable
scheduling predictability since the algorithm refers the CTI
table which has considerable approximated scheduling
information and has been built off-line.

References

[1] H. Chetto and M. Chetto, "Some Results of the Earliest

Deadline Scheduling Algorithm", IEEE Transactions
on Software Engineering, vol. 15 (10), pp. 466-473,
1989.

[2] R. I. Davis, K. W. Tindell, and A. Burns, "Scheduling
Slack Time in Fixed Priority Preemptive Systems",
Proceedings of the IEEE Real-Time System
Symposium, pp. 222-231, December 1993.

[3] E. D. Jensen, C. D. Locke, and H. Tokuda, "A
Time-Driven Scheduling Model for Real-Time
Operating Systems", Proceedings of the IEEE
Real-Time System Symposium, pp. 112-122,
December 1985.

[4] J. Lee, H. Kim, and S. Lee, "Scheduling Soft-Aperiodic
Tasks in Adaptable Fixed-Priority Systems", Submitted
for publication.

[5] J.P. Lehoczky, L. Sha, and J.K. Strosnider, "Enhanced
Aperiodic Responsiveness in Hard Real-Time
Environments", Proceedings of the IEEE Real-Time
Systems Symposium, pp. 261-270, San Jose, CA,

December 1987.
[6] J.P. Lehoczky and S. Ramos-Thuel, "An Optimal

Algorithm for Scheduling Soft-Aperiodic Tasks in
Fixed-Priority Preemptive Systems", Proceedings of
the IEEE Real-Time Systems Symposium, pp. 110-123,
December 1992.

[7] J.P. Lehoczky and S.R.Thuel, Scheduling Periodic and
Aperiodic Tasks using the Slack Stealing Algorithm
(Chapter 8), Advances in Real-Time Systems, (ed. S.
Son) Prentice Hall, Englewood Cliffs, NJ, 1994.

[8] J.P. Lehoczky, L. Sha, and Y. Ding, "The Rate
Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior",
Technical Report, Department of Statistics, Carnegie
Mellon University, Pittsburgh, PA, 1987.

[9] J.Y.-T. Leung and J. Whitehaed, "On the Complexity
of Fixed-Priority Scheduling of Periodic Real-Time
Tasks", Performance Evaluation, 2:253-250, 1982.

[10] C.L. Liu and J.W. Layland, "Scheduling Algorithms
for Multi-Programming in a Hard Real-Time
Environments", Journal of the Association for
Computing Machinery 20(1):46-61, January 1973.

[11] S. Ramos-Thuel and J.P. Lehoczky, "On-Line
Scheduling of Hard Deadline Aperiodic Tasks in
Fixed-priority Systems", Proceedings of the IEEE
Real-Time System Symposium, pp. 160-171,
December 1993.

[12] K. Schwan and H. Zhou, "Dynamic Scheduling of
Hard Real-Time Tasks and Real-Time Threads", IEEE
Transactions on software engineering, vol. 18, No. 8,
August 1992.

[13] W.-K. Shih and J.W.S. Liu, "On-line Scheduling of
Imprecise Computations to Minimize Error",
Proceedings of the IEEE Real-Time System
Symposium, pp. 280-290, December 1992.

[14] B. Sprunt, J.P. Lehoczky, and L. Sha, "Scheduling
Sporadic and Aperiodic Events in a Hard Real-Time
System", Technical Report CMU/SEI-890TR-11, April
1989.

[15] B. Sprunt, J.P. Lehoczky, and L. Sha, "Exploiting
Unused Periodic Time for Aperiodic Service Using the
Extended Priority Exchange Algorithm", Proceedings
of the IEEE Real-Time System Symposium, pp.

251-258, December 1988.
[16] J.A. Stankovic and K. Ramamrithm, "What is

Predictability for Real-Time System?", The
International Journal of Time-Critical Computing
Systems Vol. 2, No. 4, pp. 247-254, November 1990.

[17] S.R. Thuel and J.P. Lehoczky, "Algorithms for
Scheduling Hard-Aperiodic Tasks in Fixed-priority
Systems using Slack Stealing", Proceedings of the
IEEE Real-Time System Symposium, pp. 22-33,
December 1994.

[18] T.-S. Tia, J.W.-S. Liu, and M. Shankar, "Algorithms
and Optimality of Scheduling Aperiodic Requests in
Fixed-Priority Preemptive Systems", Technical Report,
University of Illinois, 1994.

