
Abstract

 This paper presents a new type of scheduling
algorithm for servicing soft deadline aperiodic tasks in
adaptable fixed-priority real-time systems. The major
goals of our proposed task scheduling are not only to
guarantee all the deadlines of periodic tasks and to
obtain fast response time for aperiodic tasks, but also
to retain considerable scheduling predictability. To
achieve these goals, we have adopted a new aperiodic
task scheduling principle in which a normal fixed-
priority assignment strategy and the information on a
preassignment table built off-line are properly mingled
somewhat dynamically according to the aperiodic
tasks' arrivals at runtime. The paper also shows some
simulation results in terms of the average aperiodic
response time, verifying that the new algorithm offers
significant performance improvements over other
conventional joint scheduling algorithms, especially
under a heavy transient overload.

1. Introduction

 Real-time systems are used to control the physical
processes that range in complexity from an automobile
fuel ignition device to a large military defense system.
Stankovic [16] pointed out that it is very important to
develop an aperiodic task scheduler which works well
under transient overload and gives a fast response time
for aperiodic tasks while guaranteeing the deadlines of
periodic tasks in unpredictable environments.
 Considerable research has been done in the area of
joint scheduling of periodic and soft aperiodic tasks in
fixed-priority systems [2],[5],[6],[7],[14],[15],[18].

* This work was supported in part by KOSEF under Grant

No. 95-0100-07-01-3.

Bandwidth preserving algorithms [5],[14],[15], which
create a periodic task for servicing aperiodic requests,
have substantially improved the response time of
aperiodic tasks compared to the conventional aperiodic
task scheduling algorithms such as background
processing and polling tasks. The bandwidth
preserving algorithms, however, make it hard to decide
an optimal bandwidth preservation capacity to cope
with the stochastic arrival behavior of aperiodic tasks.
Also it cannot maximally utilize the slacks for the
aperiodic tasks due to a fixed value of the bandwidth
preservation capacity.
 Lehoczky and Ramos-Thuel [6] developed the
slack-stealing algorithm by means of greedy methods,
which was proved to be optimal in the sense that it
simultaneously minimized the response time of all
aperiodic tasks, provided that they were served in
FIFO order. The slack-stealing algorithm does not
create a periodic server for aperiodic task service.
Rather it creates a passive task, referred to as the slack
stealer, which when prompted for service attempts to
make time for servicing aperiodic tasks by stealing all
the processing time it can from the periodic tasks
without causing their deadlines to be missed. This
algorithm however, has two significant drawbacks.
Firstly, it requires a relatively large amount of
calculations because of its recursive checking through
all the priority levels at each scheduling point.
Consequently, its direct implementations may not be
practical. Secondly, it cannot fully utilize all the
available slacks for the largest amount of aperiodic
processing because it counts on the ceiling values of
periodic processing requirements.
 Recently Tia, Liu and Shankar [18] improved the
slack-stealing approach for soft aperiodic processing
by means of non-greedy methods. They pointed out
the greedy approach in [6] is not optimal when the

Scheduling Soft Aperiodic Tasks in Adaptable Fixed-Priority Systems*

 Jongwon Lee
J
, Sungyoung Lee

JJ
, Hyungill Kim

JJ
,

J Software Research Lab.

Korea Telecom, Seoul, Korea
email: jwlee@coral.kotel.co.kr

J J
Department of Computer Engineering
Kyunghee University, Seoul, Korea

email: {slee, hikim@nms.kyunghee.ac.kr}

class of algorithms is enlarged to include non-greedy
algorithms. Subsequent extensions of the slack-
stealing algorithm have been introduced by Davis,
Tindell, and Burns [2]. They generalized [6] to a
broad class of scheduling problems and demonstrated
approximations to the full slack-stealing algorithm that
are less computationally complex but still show
reasonably good performance.
 Meanwhile, Thuel and Lehoczky [12], [17]
extended the slack-stealing algorithm for jointly
scheduling hard deadline periodic tasks and hard
deadline aperiodic tasks using fixed-priority methods.
Works on the on-line scheduling of hard aperiodic
tasks in the dynamic priority method have been
reported by Chetto and Chetto [1], Schwan and Zhou
[13]. Their works assume that all periodic tasks are
scheduled according to the Earliest Deadline
algorithm. In particular, Schwan's algorithm does not
give any preferential treatment to the periodic tasks,
unlike common approaches to soft aperiodic tasks in
fixed-priority preemptive systems. Although they
developed a few elegant dynamic scheduling methods
for tasks with well-defined timing constraints, they
reserved for the future work on other types of on-line
scheduling algorithms which relax the hardness of
deadlines.
 In this paper, we are introducing the Critical Task
Indicating (CTI) algorithm, a new approach to the
joint scheduling of periodic and soft aperiodic tasks in
an adaptable fixed-priority uniprocessor real-time
system, which allows temporary changes to the given
periodic priority order at runtime; and we show that
this method can offer reasonable improvements over
the other conventional joint scheduling algorithms
especially under heavy transient overload. The major
goals of our proposed task scheduling are not only to
guarantee all the deadlines of periodic tasks and to get
the response time for soft aperiodic tasks as small as
possible, but also to provide a good scheduling
predictability. To achieve these goals, we have adopted
a periodic task scheduling principle in which a normal
fixed-priority assignment strategy [8],[9],[10] and the
information on a preassignment table built off-line are
properly mixed somewhat dynamically according to
the aperiodic tasks' arrivals at runtime. The role of the
preassignment table, called the CTI table, is to indicate
the critical periodic tasks (if any) at each scheduling
point that must be assigned and executed immediately
to meet their deadlines at runtime.
 The key to the matter is the creation of the required
CTI tables in advance. To work out the problem, we
have carefully developed a different kind of fixed-
priority preassignment strategy, called the

deadlinewise preassignment, for which a periodic task
set defers each task's execution start time toward the
deadline at its maximum according to the given fixed-
priority. The idea comes from the fact that the value of
the value functions of a set of periodic tasks (generally
they are step functions) is constant up to their
deadlines [4]. Consequently, the slacks which were
made by artificially deferring the execution time of
periodic tasks toward their deadlines can be utilized by
the aperiodic tasks if they arrive at those time zones.
Otherwise, those slacks can be used for the periodic
tasks just as per normal fixed-priority scheduling. The
resulting information table which can fully be used as a
CTI table in the joint scheduling looks very much like
a transposed form of the normal fixed-priority
preassignment table.
 The major merits of the CTI algorithm are: 1) it
does not require heavy computations to check if there
are slacks for aperiodic tasks, since it refers only to the
preassignment table at each scheduling point at
runtime, 2) it gives faster aperiodic responses than the
other conventional joint schedulings in fixed-priority
systems because of its dynamic property of selecting
periodic scheduling strategies depending on whether
aperiodic tasks are ready or not at runtime, 3) its
implementation is relatively easy because of its
simplicity, and 4) it provides a good scheduling
predictability because it uses the CTI tables containing
prescheduling information.
 The remainder of the paper is organized as follows.
Section 2 addresses some of the general concepts
which have an important effect on the development of
the whole scenario. It also provides the deadlinewise
preassignment concepts and their important properties.
Section 3 describes the main algorithm including an
example, its feasibility analysis, and some additional
topics on it. Section 4 shows the simulation results
compared to those of the other major aperiodic
scheduling algorithms. Section 5 provides a summary
and discusses some drawbacks and future plans.

2. The background of the CTI algorithm

 In this section we introduce a new periodic
scheduling method, called the fixed-priority
deadlinewise preassignment, and its major properties
to establish the minimal theoretical background for the
CTI algorithm in addition to briefly discussing some of
the basic environmental notions and assumptions.

2.1 Motivation

 There is a common important motivation to

developing a new aperiodic task scheduling algorithm
which can be easily implemented to service a mixture
of hard deadline periodic and soft deadline aperiodic
tasks in real-time system environments. Namely, the
system should guarantee all the deadlines of periodic
tasks and should obtain an average aperiodic response
time which is as small as possible. As mentioned
before, the slack-stealing algorithm gives a near-
optimal solution to this problem in a situation where
there are fixed-priority periodic tasks. We have,
however, found in the verifying procedure of the
algorithm that a new comparable algorithm could be
developed in as much as the fact that all the given
periodic tasks' instances can be shifted toward
deadlines at their maximum depending on their given
fixed-priority.
 This deadlinewise shifting at any scheduling time
interval increases the flexibility to service aperiodic
task more quickly whenever there are so many
aperiodic tasks requested at runtime that the CPU is
always busy. But the problem is how to ensure that the
scheduler effectively allocates periodic tasks when
there are a small number of aperiodic tasks which lead
the CPU to idle states so frequently. To deal with the
problem we have decided to partially use the fixed-
priority assignment methods which break up
temporarily the deadlinewise shifting of the given
periodic tasks at runtime.

2.2 Task Execution Model

 A periodic task denoted by τ , is an infinite
sequence of task instances requested at a fixed rate in a
real time system environment. The request rate is
defined to be its period, denoted by T. Each of the task
instances has the same magnitude of computation
requirements, denoted by C, and the deadline, denoted
by D, by which it must be completed. A periodic task
set, denoted by {τ1,τ2 ,...,τn}, is defined to be a set of
arbitrary positive number of such periodic tasks. Any
periodic task set has its hyperperiod which is the least
common multiple of all the periods of the tasks in it.
Note that every task in a task set is requested
simultaneously at the start point of the hyperperiod and
has the same deadline at the end point of it. An
aperiodic task, denoted by A, is a task having non-
periodic request intervals. A slack is an available time
interval, which has the length of a scheduling unit, for
an aperiodic task.

2.3 Assumptions

 To develop the CTI algorithm, we need some
assumptions which include:
 (A1) Deadline for a periodic task's instance is equal

to the next request of the task.
 (A2) Preemption over a periodic or an aperiodic task

is always possible.
(A3) All overhead for context switching is counted

into the corresponding periodic and aperiodic
task's computation requirements.

2.4 Fixed-Priority Deadlinewise Preassignment
Concepts

 A periodic task scheduling method is classified as a
fixed-priority deadlinewise preassignment if the tasks
are assigned one after another according to the given
fixed-priority in such a way that all the tasks are
preassigned toward deadlines at their maximum. The
priority preemptions in a deadlinewise preassignment
take place in a manner similar to the other
fixed-priority scheduling methods (e.g. rate monotonic
priority assignment) except that part or all of the
preempted task instance should be assigned prior to the
preempting task instance.
 Example 1. Suppose that a periodic task set with
two tasks, τ 1 and τ 2, having the computation
requirements, C1=1 and C2=2, and the periods, T1=3
and T2=5, respectively, is to be preassigned over a
single hyperperiod, H=15, using the rate monotonic
fixed-priority deadlinewise preassignment. The
preassigning process is depicted in Figure 1. At start
time, two task instances, τ11 and τ21, arrives and
assigned toward the deadlines, D11=3 and D21=5,
respectively. At time 6, the task instance τ13 preempts
τ22. Also, at time 12, another preemption is occurs.

C1 = 1, T1 = 3

C2 = 2, T2 = 5

Hyperperiod

τ1

τ2
3 6 9 12 150

0 5 10 15

Figure 1. An example of the preassigning process
using the deadlinewise preassignment.

 Next we establish some of the basic notions used to
analyze the feasibility of the deadlinewise
preassignment for a given periodic task set. For a set
of periodic tasks preassigned according to the
deadlinewise preassignment, we say that an underflow
occurs at t if a task is forced out of its given period
beginning at t as a result of the others' preemptions.

The concept of overflow is applicable to both the
on-line and the off-line fixed-priority schedulings, but
on the other hand that of underflow only to the off-line
fixed-priority schedulings. A deadlinewise critical
instant for a given periodic task preassigned according
to the deadlinewise preassignment is an instant at
which the execution of a request for that task will
begin, so that the largest time interval is required for its
completion. The periodic interval for a periodic task
having the shortest waiting time from the request to the
start of the execution contains its deadlinewise critical
instant. A deadlinewise critical zone for a given
periodic task preassigned according to the
deadlinewise preassignment is the time interval
between a deadlinewise critical instant and the
deadline for the corresponding request. The above two
definitions are hinted in the definitions of the normal
critical instant and critical time zone presented in [10].
The only difference between normal and deadlinewise
is that the latter count on the deadlines instead of the
requests. Any periodic task set with a fixed-priority
order is deadlinewisely preassignable if no underflow
occurs through all the deadlinewise critical zones for
all the tasks over a single hyperperiod.
 Example 2. Figure 1 shows two deadlinewise
critical instants, execution start points of τ22 and τ23,
at priority level 2 and consequently two deadlinewise
critical zones, [7,10] and [12,15], respectively.
Moreover, the periodic task set is deadlinewisely
preassignable because no underflow occurs through all
the deadlinewise critical zones. Note that every
execution start point of the task instances at the priority
level 1 is a deadlinewise critical instant.
 Let us consider one of the properties related to a
deadlinewise critical instant and the relationships
between normal and deadlinewise schedulability.
Theorem 1. For a given periodic task set with a fixed-
priority order, the deadlinewise critical instant for any
task occurs whenever the deadline of the task is
identical to that of all higher priority tasks.
 Proof. Similar to the proof of Theorem 1 in [10]
except that the preemption occurs on the basis of
deadlines instead of exact request times. Consequently,
the computation time zone for a task becomes the
largest when its deadline is identical to that of all
higher priority tasks. *
 Example 3. The normal critical zone at the lowest
priority level for the periodic task set given in Example
1 is the interval [0,3]. On the other hand, the
deadlinewise critical zone for the same task is the
interval [12,15].
 Theorem 2. A periodic task set {τ1, τ2,..., τn} with

a fixed-priority order is deadlinewisely preassignable
if, and only if, it is normally schedulable.
 Proof. By the definitions of deadlinewisely
preassignable and normally schedulable, it is necessary
and sufficient to show that for a task τk with its period
Tk, no underflow occurs through the deadlinewise
critical zone dcz(k) if, and only if, no overflow occurs
through the normal critical zone ncz(k), where 1≤k≤n.
Since the two periods on which dcz(k) and ncz(k) lay
respectively are equal to Tk, it only remains to show
that the length of dcz(k) is equal to that of ncz(k).
 Now, by Theorem 1 in [10] and Theorem 1 above,
the number of task requests through the period
containing ncz(k) is equal to that of deadlines through
the period containing dcz(k). Moreover, for each
request for τk and all its higher priority tasks through
the period containing ncz(k), there must exist a
corresponding deadline over the period containing
dcz(k), and vice versa.
 Finally, by the assumption of the theorem, the
computation requirements for each task that forms the
lengths of dcz(k) and ncz(k), are unique. Hence, the
length of dcz(k) is equal to that of ncz(k). *
 Lemma 1. For a given periodic task set with a
fixed-priority order, the deadlinewise preassignment is
feasible if, and only if, the fixed-priority assignment is
feasible.
 Proof. The proof is directly induced from the
above Theorem 2. *

3. The CTI Algorithm

 A result of the deadlinewise preassignment for a
given periodic task set is composed of scheduling
information, a sequence of the execution start points
and computation requirements of all task instances, on
each instance the execution is delayed at its maximum.
The information gives us the valuable knowledge that
a periodic task preassigned to a scheduling point will
miss its deadline under a real time scheduling situation
unless it is assigned and executed immediately at that
time. This means that the periodic task is critical
(critical task) at that time in a real time scheduling
situation. Moreover, the preassignment is the worst
schedulable case with respect to the periodic task set
under the condition that all the deadlines must be met.
In this point of view, a new aperiodic task scheduling
algorithm, called the CTI algorithm, for a mixed
scheduling of periodic and aperiodic tasks came to our
minds.

3.1 Algorithm Description

 Conceptually, the new algorithm is to assign a
mixture of periodic and aperiodic tasks based on a
hybrid scheduling method of the normal fixed-priority
assignment and the deadlinewise preassignment
information. The deadlinewise preassignment for a
periodic task set through a single hyperperiod produces
a scheduling table, called the CTI table, to be used in
the real time assignment. At runtime the table is
frequently referenced by the scheduler to see if there
are slacks available for aperiodic tasks.
 In practice, a CTI table may be a character string
for a small number of periodic tasks or may be an array
of integers in general, i.e., an ordered sequence of
periodic task's identifiers. For example, the CTI table
for the periodic task set given in Example 1 will be a
character string "001221021201221" with the length of
its single hyperperiod, where '0', '1', and '2' denote
identifiers of an empty slack, τ1, and τ2, respectively.
With this simple data structure, all the execution start
points and computation requirements of the periodic
tasks can be fully represented in addition to the empty
slacks for soft aperiodic tasks.
 The behavior of the hybrid algorithm is
dynamically determined at runtime depending on the
information in the CTI table and arrivals of aperiodic
tasks. For an arrival of an aperiodic task, the algorithm
checks to see if (C1) there are slacks available for the
aperiodic task in the CTI table at the current time, or
(C2) the current critical task unit (whole or part of
the task instance) already has been serviced. If one of
the two conditions is met, it services the aperiodic task
immediately. If not, it services the critical task. All of
our ideas are based on the CTI table, i.e., the
deadlinewise preassignment. On the other hand, if no
aperiodic task arrived and no critical task is indicated,
the algorithm works based on the fixed-priority
assignment rule that was taken by the deadlinewise
preassignment.
 This dynamic property of the algorithm behavior
provides that the maximum aperiodic capacity is
always preserved through a single hyperperiod,
although all the periodic deadlines are met strictly.
 Let us examine the hybrid algorithm more
systematically using a pseudocode written as in the
following Figure 2. At line 1, the data structures for the
algorithm including the CTI table, the timer, and the
hyperperiod are initialized for a given periodic task set.
Lines 2 to 9 form an infinite loop. The above two
conditions, (C1) or (C2), for an aperiodic task ready
(or arrived) are examined at line 3. If neither of them is
met, the critical task is serviced. Otherwise, an
aperiodic task which is ready (or newly arrived) is

serviced immediately at line 4. If no aperiodic task is
ready (or arrived) at line 4, the normal fixed-priority
assignment algorithm is applied to the periodic tasks
ready at that time at line 5. The pseudocode segment in
line 6 takes over the control of the processor to cope
with the CPU idle state whenever there is no aperiodic
and no periodic task ready at that time. Although the
pseudocode segment in line 7 should be ignored in a
practical situation, it is necessary in a simulation. At
line 8, the boundary for the hyperperiod is checked. If
a boundary overflow occurs, all the global parameters
such as the current pointer to the CTI table are
renewed. Finally, the control goes back to line 3.

 1 initialize data structures
 2 loop begin
 3 if (a critical periodic task unit not yet been
 serviced has occurred) then service it
 4 else if (aperiodic task(s) is ready or arrived) then
 service it
 5 else if (periodic task(s) is ready or arrived) then
 service it
 6 else process CPU idle state
 7 advance timer
 8 if ((timer_value MOD hyperperiod) is equal to
 zero) then reinitialize the global parameters
 9 end loop

Figure 2. A pseudocode of the CTI algorithm.

3.2 An Example

 Suppose that there is a periodic task set with three
tasks, τ1, τ2, and τ3, with T1=3, T2=5, T3=15, C1=1,
and C2=C3=2. We restrict our attention to the interval
[0,15] which is a single hyperperiod for the task set.
To obtain a CTI table for our task set, one can use the
deadlinewise preassignment method described in
subsection 2.4. In this example, the rate monotonic
fixed-priority order has been applied. The obtaining
procedure is fully depicted in Figure 3. Figure 3-A
shows the deadlinewise preassignment results for each
priority level. Figure 3-B shows the final result, the
CTI table.

[CTI table] - Figure 3-B

[D eadlinewise preassignment results fo r each priority level
based on the rate monotonic fixed priority order] - Figure 3-A

T1 =3
C1 =1

T2 =5
C2 =2

T3 =15
C3 =2

Figure 3. An example of creating a CTI table

 Next we will examine the behavior of our CTI
algorithm for the periodic task set given above and two
aperiodic tasks with computation requirements C=1
arriving at t=5 and t=8, respectively. Figure 4 shows
the mixed scheduling. The processor assigns periodic
tasks by using the normal rate monotonic algorithm
during [1,5] and [6,8] because there is no aperiodic
task ready (or arrived) and no critical periodic task unit
has not yet been serviced. The first aperiodic task A1
has arrived at t=5 and has been serviced immediately
because the current critical task unit, whole of the
instance τ 12, had already been serviced at t=3.
Similarly, the second aperiodic task A2 has arrived at
t=8 and been serviced immediately because the current
critical task unit, the whole of the instance τ13, had
already been serviced at t=6. During the remaining
interval [9,15], all the periodic tasks will be scheduled
in accordance with the information on the CTI table.
The reason is that there always exists through the
interval a critical periodic task unit which has not yet
been serviced.

3.3 The Slack Discriminant

 In the CTI algorithm, two consecutive conditions
(C1) and (C2) given in subsection 3.1 have been used
successively to test whether the current scheduling unit
on the CTI table is a slack for a soft aperiodic task or
not. To be more specific, the condition (C1) will be
evaluated first simply by looking up the CTI table unit
corresponding to the current value of the scheduling
timer. If the unit denotes a slack identifier (i.e., a
character '0' or an integer 0 depending on its data
structure), then the required test comes to an end.
However, if the unit denotes an identifier of a periodic
task, it may be a slack or not. For these cases, the
condition (C2) will be evaluated in sequence. This
second condition will easily be checked based on the

two kinds of special computation counters for each
periodic task: one for cumulating all the computation
processing completed and the other for cumulating all
the computation requirement on the CTI table until
the current scheduling time. Namely, the difference of
the two counters for the task currently indicated by the
CTI table makes it possible to check if the task has
already been serviced. To provide a clearer slack
identifying mechanism for soft aperiodic tasks, we
need to formalize these to a slack discriminant that can
be used for distinguishing a slack from the CTI table at
the current scheduling point. Suppose that all the
periodic tasks are sorted depending on those priorities
so that the mapping from the set of task numbers
(identifiers) to the set of positive integers Y = {1, 2, ...,
n} is one-to-one and onto Y where n denotes the
number of periodic tasks. The resulting slack
discriminant for CTI algorithm is

 ⎧ slack if CTI[t] = 0
 ⎪ or CP[CTI[t]] - CR[CTI[t]] > 0
 f(t) = ⎨
 ⎩ critical task otherwise

where t denotes current scheduling time, CTI denotes
CTI table(an array of integers, each element of which
represents a slack or a periodic task), CP[i] and CR[i]
(i represents an identifier of a periodic task)
respectively denote all the computation processing
done and all the computation requirement for each
periodic task until t.
 Based on the above slack discriminant, we have
prepared a version of specified CTI algorithm in C
language style for its practical use (see Figure 5.) The
time complexity of the algorithm is O(n). Note that

�

[CTI table]

T1 = 3
C1 = 1

T2 = 5
C2 = 2

T3 = 15
C3 = 2

Aperiodic Task
C = 1

t=5 t=8
 * The circles denote that the periodic tasks will be serviced in accordance
 the CTI table.

0 15

� � � � �� � �������

Figure 4. An example of the behavior of CTI
algorithm

the time complexity for constructing the CTI table off-
line varies depending on its fixed-priority assignment
method. For example, if one takes the rate monotonic
fixed-priority scheme, then the time complexity will be
O(nlog2n) [9]. For a detailed explanation of the
algorithm, the comment lines in the figure will help.

3.4 Feasibility Analysis

 The major virtue of the fixed-priority assignment
algorithms is its simplicity and ability to handle many
practical problems, stability under transient overload,
low scheduling overhead, and so on [3],[9],[10],[11].
In this subsection, we will analyze the feasibility of the
CTI algorithm to show that almost all of these qualities
supported by the fixed-priority algorithms could also
be retained for periodic tasks.
 Lemma 2. For a given periodic task set with a
fixed-priority order, the CTI algorithm is feasible if,
and only if, the normal fixed-priority algorithm is
feasible.
 Proof. By the definition of the CTI algorithm and
the assumption of the lemma, it is directly induced that
applying only the normal fixed-priority algorithm is
the best schedulable case and applying only the CTI
table (i.e. deadlinewise preassignment) is the worst
schedulable case with respect to a given periodic task
set. In this point of view, feasibility of the hybrid
algorithm for a given periodic task set adheres to the
worst schedulable case at least. Therefore, by the
above Lemma 1, we have proved the lemma. *
 Note that the above Lemma 2 gives us that the CTI
algorithm could be applicable for all the periodic task
set schedulable using a fixed-priority algorithm. And
hence, our algorithm also provides almost all of the
fixed-priority algorithm's nice features, especially its
high schedulable utilization for periodic tasks.
Moreover, it provides stability and predictability for
mixed scheduling.

3.5 Problem of Discrete Unit Time Scheduling

 The CTI algorithm developed and simulated in this
paper clearly depends on the unit time scheduling
policy that each unit of periodic computation must be
checked in the interval over which a periodic or an
aperiodic task is active. For the tasks with a small
number of computation units, it is not a big problem
because the checking process involves only referring
to the CTI table, and this takes extremely small
computational overhead. However, for tasks with a
relatively large number of computation units (e.g., 100
units) it may lead to a drastic degradation of the

efficiency of the algorithm.
 In this respect, we have reviewed some of the
solutions to this problem. The best candidate among
them is to slightly modify the algorithm as pertaining
the following three basic rules:
Rule 1. For a critical task at a scheduling point that

consists of two or more units of
computations, do not interrupt its service
procedure until all of its computation units
are consumed.

Rule 2. For an aperiodic task allowed to be serviced
at a scheduling point, calculate the sum of
the available units (i.e., slacks) to the next
critical task unit and allocate whole or part
of its computation units. Then it is not
necessary to check each unit of CTI table
over the interval.

Rule 3. For a periodic task which is not critical at a
scheduling point, service it until a new
aperiodic task's arrival or a critical task's
occurrence.

 Rule 3 may require a somewhat different interrupt
handling mechanism of the algorithm that deals with
arrivals of aperiodic tasks.

3.6 Hard Aperiodic Task Scheduling

 The purpose of this subsection is to provide a brief
concept of an extension to the CTI algorithm so that it
can manipulate hard deadline aperiodic tasks instead of
ones with soft deadlines. Although a number of
extension methods may be possible, the one using the
CTI table is the most plausible candidate because it
will definitely guarantee simplicity and good
performance by reusing the original CTI table as a
slack search domain.
 Since a hard aperiodic task has its own
deadline, an extension should provide an additional
function to decide the acceptance of the task on its
arrival. In other word, if the total number of slacks
available from the current or the reserved point (for
those already arrived and accepted before) to the
deadline of the hard aperiodic task is less than its total
computation requirements, then it must be rejected so
that the others including periodic tasks can use the

 #define N /* # of periodic tasks given to be scheduled */
 #define H /* hyperperiod(least common multiple of all periods) */
 int CTI[H-1]; /* CTI table */
 int CP[N]; /* all the periodic computation processing done until now */
 int CR[N]; /* all the periodic computation requirement until now */
 int t = 0; /* time counter */
 boolean CT_occurred; /* flag indicating critical task occurrence */

 build(CTI); /* build CTI table */
 for (i = 1; i <= N; i++) /* initialize periodic computation counters */
 CP[i] = CR[i] = 0;
 while (TRUE) { /* repeat forever */
 if As_arrived() /* if aperiodic tasks have arrived, */
 insert(new_As, A_queue); /* insert these into the aperiodic queue. */
 if Ps_arrived() { /* if periodic tasks have arrived, */
 insert(new_Ps, P_queue); /* insert these into the periodic queue. */
 adjust_element_order(P_queue); /* sort queue elements based on fixed-priority */
 }
 CT_occurred = TRUE; /* assume a critical task has occurred */
 if (CTI[t] <> 0) { /* if CTI table does not indicate a slack, */
 if ((CP[CTI[t]] - CR[CTI[t]]) > 0) /* if the periodic computation processing */
 /* done is greater than the requirement, */
 CT_occurred = FALSE; /* the indicated task had already been processed */
 CR[CTI[t]]++; /* cumulate periodic comp. requirement */
 }
 if CT_occurred { /* if a critical task has occurred, */
 P = remove_any(CTI[t], P_queue); /* get it from the queue (not on the front) */
 service(P); /* process it */
 CP[P.id]++; /* cumulate periodic comp. processing done */
 }
 else if (!empty(A_queue)) { /* else, if an aperiodic task is ready, */
 A = remove(A_queue); /* get it from the queue (on the front) */
 service(A); /* process it */
 }
 else if (!empty(P_queue)) { /* else, if a periodic task is ready, */
 P = remove(P_queue); /* get it from the queue (on the front) */
 service(P); /* process it */
 CP[P.id]++; /* cumulate periodic comp. processing done */
 }
 else cpu_idle(); /* otherwise, CPU is idle */
 t++; /* advance timer */
 if (t == H) { /* if a hyperperiod has finished, */
 t = 0; /* reset timer and */
 for (i = 1; i <= N; i++) /* reinitialize periodic comp. counters */
 CR[i] = CP[i] = 0;
 }
 }

Figure 5. CTI algorithm in C

slacks. To do this, the decision making mechanism has
to search slacks through the CTI table. Therefore,
another slack discriminant for hard aperiodic tasks that
discriminates slacks at each search point from the CTI
table is required.
 The new slack discriminant will be as follows:

 ⎧ slack if CTI[st] = 0
 ⎪ or CP[CTI[st]] - SCR[CTI[st]] > 0
g(st) = ⎨
 ⎩ critical task otherwise

It is based on the counter CP that was used in the first
slack discriminant in subsection 3.3 and a new
computation counter SCR representing all the
computation requirement searched. Also, it
substitutes a search timer st for the scheduling timer t.
 In addition, the problem of search space limitation
caused by the hyperperiod bound must be carefully
examined. Our proposed solution to this problem is to
search the CTI table similarly to a circular list. It is
only necessary to count the hyperperiodic distance
from the current scheduling point to the current
searching point. Another problem to be considered
here is the arrival queue handling of hard aperiodic
tasks. Thuel and Lehoczky [17] mentioned the problem
that the selection of a proper priority level for hard
aperiodic processing in their algorithm involves a
tradeoff, and they indicated adequate heuristics as an
optimal solution to this problem. From our viewpoint,
this is a kind of management of a hard aperiodic arrival
queue (prior to the acceptance decision making
process) since every hard aperiodic task should be
assigned a priority and queued depending on its degree
of importance. The queuing theory approach would be
desirable to handle the problem.

4. Simulation Results

 In this section, we have prepared some of the
aperiodic response time performances as the result of
simulations on the four different aperiodic task
scheduling algorithms including background
processing, sporadic server, slack-stealing, and our
CTI algorithm. Because of the similarity between the
bandwidth preserving algorithms, only the sporadic
server which is superior to others such as the
deferrable server and priority exchange has been
simulated as a representative.
 The task sets applied to the simulations consist of
10 different periodic tasks, each of which has
randomly generated period and computation

requirements. All aperiodic tasks have been generated
by using both an exponential distribution function for
their computation requirements and Poisson arrival
function for their arrivals at runtime. Aperiodic
workloads could be easily coordinated by modifying
the exponential scale parameter value and the arrival
rate in Poisson function.
 In order to provide a fairly subjective observation
ground for the simulation, we have constructed a
model of simulation in a very similar manner with that
shown in the slack-stealing algorithm. Consequently,
we have arranged three different periodic task sets with
40%, 70%, and 90% of CPU utilization ratios to
simulate various workloaded real-time scheduling.
These are summarized in Table 1. Note that the sizes
of sporadic servers have been fixed to 50% and 20% of
CPU utilizations respectively for the task sets with
40% and 70% of CPU utilization ratios because some
of the periodic deadlines would be missed if the server
sizes grew larger. In the following subsections, the
results of aperiodic response time performances for
each of the task sets is briefly analyzed and discussed.

4.1 Low Periodic Workload

 Figure 6 illustrates the simulation results on the
task set with 40% of periodic workload in terms of
average aperiodic response time. Aperiodic workload
is scaled from 0% to 60% of CPU utilizations. While
background processing has significantly delayed
average response time throughout all the aperiodic
workloads, the others have similarly comparable
response performances under relatively low aperiodic
workload. However, the performance of sporadic
server is remarkably downgraded due to its limited
server capacity whenever the aperiodic workload goes
over 40%. Moreover, our CTI algorithm outperforms
slightly the optimal algorithm over almost all the
aperiodic workloads, especially after 55%.

4.2 Medium Periodic Workload

 Figure 7 illustrates the simulation results on the
task set with 70% of periodic workload. Aperiodic
workload is scaled from 0% to 30% of CPU
utilizations. The simulation results go similarly with
that of the above case with 40% of the periodic
workload except that the slopes of curves steepen, i.e.,
performances decline surprisingly, according as the
total workload approaches 100%.

3L�P�KPJ >��Rz�HK ���

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35 40 45 50 55 60

Aperiodic Workload(%)

A
ve

ra
ge

 A
pe

ri
od

ic
 R

es
po

ns
e

 T
im

es Background

Sporadic

Slack-Stealing

CTI

Figure 6. Simulation results on the task set with 40%

of periodic workload.

3L�P�KPJ >��Rz�HK ���

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30

Aperiodic Workload (%)

A
ve

ra
ge

 A
pe

ri
od

ic
 R

es
po

ns
e

T
im

es Background

Sporadic

Slack-Stealing

CTI

Figure 7. Simulation results on the task set with 70%

of periodic workload.

4.3 High Periodic Workload

 One of the important factors determining average
aperiodic response time performance would be the
periodic workload compared to other cases.

3L�P�KPJ >��Rz�HK ���

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

A p eriod ic W orkload (%)

A
ve

ra
ge

 A
pe

ri
od

ic
 R

es
po

ns
e

T
im

es B ackg ro un d

S la ck-S te a lin g

C T I

Figure 8. Simulation results on the task set with 90%

of periodic workload.

 In general, the performance of almost all the
aperiodic scheduling algorithms goes down as the
periodic workload goes up, in spite of having the same
total workload. The fact is clear at a high total
workload. A simple comparison of Figure 7 with
Figure 8, presenting performances for the task set with
90% of periodic workload, shows it very well. Note
that the sporadic server has been omitted because of its
server capacity limit.

4.4 Overall Evaluation

 One of the most important results from the
simulations is that the CTI algorithm has outperformed
all of the other joint scheduling algorithms without
regard to the periodic workload ratios. Moreover, it

 With 40%
Periodic Workload

With 70%
Periodic Workload

With 90%
Periodic Workload

 Task ID Period Computation Period Computation Period Computation
 1 33 2 100 2 100 2
 2 105 7 280 8 280 14
 3 21 3 2100 30 2100 108
 4 60 4 440 29 440 29
 5 55 4 350 14 350 14
 6 70 1 210 8 210 30
 7 22 3 35 3 35 8
 8 315 10 70 4 70 11
 9 180 12 2200 46 2200 231
 10 540 23 300 9 300 12

Table 1. Sample periodic task sets used in the simulations

shows stable low average aperiodic response times
although the total workload ratio approaches to 100%.
The major reason is that the algorithm gives full
flexibility to service aperiodic tasks as promptly as
possible by delaying periodic tasks at their maximum.

5. Conclusions

 This paper has presented the CTI algorithm for the
joint scheduling of hard deadline periodic and soft
deadline aperiodic tasks. The new algorithm assigns
given tasks based on the hybrid scheduling method of
a fixed-priority assignment and its deadlinewise
preassignment. The deadlinewise preassignment for a
periodic task set through a single hyperperiod produces
a scheduling table, called CTI table, which is to be
frequently referenced by the scheduler at runtime to
check if there are slacks for aperiodic tasks. The major
benefits of the CTI algorithm lie in its computational
simplicity and predictability, since it uses the CTI table
containing prescheduling information on the given
periodic task set.
 The simulation of the algorithm shows a
performance as good as that of the slack-stealing
algorithm in most cases and even better in the case of
having a heavy transient overload. Moreover, the
algorithm is reasonably simple to implement compared
to the other joint scheduling algorithms and also
addresses the scheduling predictability in some sense
since it maintains the CTI table which has been built
off-line.
 However, the algorithm has some drawbacks in
implementation environments. One is that the fixed-
priority system on which the algorithm will work must
be adaptable for the fixed-priorities. In other words,
the system should allow temporary changes to the
tasks' priority order on which each task's assigning
order depends at runtime. This is due to the use of CTI
tables formed from the deadlinewise preassignments
that break up the original on-line fixed-priority
assignment rule. Another shortcoming comes from the
space complexity on the CTI tables for task sets with
large numbers of periodic tasks.
 Finally, our major ongoing and future works
consist of 1) developing a hard aperiodic task
scheduling algorithm using the properties of the CTI
table, 2) relaxing the deadline constraints that currently
limited us to the assumption (A1) given in subsection
2.3, and 3) taking advantage of the additional spare
capacity produced by real schedulings because real
tasks very rarely take their worst case execution times.

References

[1] H. Chetto and M. Chetto, "Some Results of the

Earliest Deadline Scheduling Algorithm", IEEE
Transactions on Software Engineering, vol. 15
(10), pp. 466-473, 1989.

[2] R. I. Davis, K. W. Tindell, and A. Burns,
"Scheduling Slack Time in Fixed Priority
Preemptive Systems", Proceedings of the IEEE
Real-Time System Symposium, pp. 222-231,
December 1993.

[3] M. Gonzalez Harbour, M. Klein, and J.P.
Lehoczkey, "Fixed-priority Scheduling of
Periodic Tasks with Varying Execution Priority",
Proceedings of the IEEE Real-Time System
Symposium, pp. 116-128, December 1991.

[4] E. D. Jensen, C. D. Locke, and H. Tokuda, "A
Time-Driven Scheduling Model for Real-Time
Operating Systems", Proceedings of the IEEE
Real-Time System Symposium, pp. 112-122,
December 1985.

[5] J.P. Lehoczky, L. Sha, and J.K. Strosnider,
"Enhanced Aperiodic Responsiveness in Hard
Real-Time Environments", Proceedings of the
IEEE Real-Time Systems Symposium, pp. 261-
270, San Jose, CA, December 1987.

[6] J.P. Lehoczky and S. Ramos-Thuel, "An Optimal
Algorithm for Scheduling Soft-Aperiodic Tasks
in Fixed-Priority Preemptive Systems",
Proceedings of the IEEE Real-Time Systems
Symposium, pp. 110-123, December 1992.

[7] J.P. Lehoczky and S. R. Thuel, Scheduling
Periodic and Aperiodic Tasks using the Slack
Stealing Algorithm (Chapter 8), Advanced Real-
Time Systems, (ed. S. Son) Prentice Hall,
Englewood Cliffs, NJ, 1994.

[8] J.P. Lehoczky, L. Sha, and Y. Ding, "The Rate
Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior",
Technical Report, Department of Statistics,
Carnegie Mellon University, Pittsburgh, PA,
1987.

[9] J.Y.-T. Leung and J. Whitehaed, "On the
Complexity of Fixed-Priority Scheduling of
Periodic Real-Time Tasks", Performance
Evaluation, 2:253-250, 1982.

[10] C.L. Liu and J.W. Layland, "Scheduling
Algorithms for Multi-Programming in a Hard
Real-Time Environments", Journal of the
Association for Computing Machinery 20(1):46-
61, January 1973.

[11] A.K. Mok, Fundamental Design Problems of
Distributed Systems for the Hard Real-Time

Environment, Ph.D. Thesis, M.I.T., 1983.
[12] S.Ramos-Thuel and J.P. Lehoczky, "On-Line

Scheduling of Hard Deadline Aperiodic Tasks in
Fixed-priority Systems", Proceedings of the IEEE
Real-Time System Symposium, pp. 160-171,
December 1993.

[13] K. Schwan and H. Zhou, "Dynamic Scheduling of
Hard Real-Time Tasks and Real-Time Threads",
IEEE Transactions on software engineering, vol.
18, No. 8, August 1992.

[14] B. Sprunt, J.P. Lehoczky, and L. Sha, "Scheduling
Sporadic and Aperiodic Events in a Hard Real-
Time System", Technical Report CMU/SEI-
890TR-11, April 1989.

[15] B. Sprunt, J.P. Lehoczky, and L. Sha, "Exploiting
Unused Periodic Time for Aperiodic Service
Using the Extended Priority Exchange
Algorithm", Proceedings of the IEEE Real-Time
System Symposium, pp. 251-258, December
1988.

[16] J.A. Stankovic and K. Ramamrithm, "What is
Predictability for Real-Time System?", in the
International Journal of Time-Critical Computing
Systems Vol. 2, No. 4, pp. 247-254, November
1990.

[17] S. R. Thuel and J.P. Lehoczky, "Algorithms for
Scheduling Hard-Aperiodic Tasks in Fixed-
priority Systems using Slack Stealing",
Proceedings of the IEEE Real-Time System
Symposium, pp. 22-33, December 1994.

[18] T.-S. Tia, J. W.-S. Liu, and M. Shankar,
"Algorithms and Optimality of Scheduling
Aperiodic Requests in Fixed-Priority Preemptive
Systems", Technical Report, University of
Illinois, 1994.

