
Abstract  
 
     This paper presents a new type of scheduling 
algorithm for servicing soft deadline aperiodic tasks in 
adaptable fixed-priority real-time systems. The major 
goals of our proposed task scheduling are not only to 
guarantee all the deadlines of periodic tasks and to 
obtain  fast response time for aperiodic tasks, but also 
to retain considerable scheduling predictability. To 
achieve these goals, we have adopted a new aperiodic 
task scheduling principle in which a normal fixed-
priority assignment strategy and the information on a 
preassignment table built off-line are properly mingled 
somewhat dynamically according to the aperiodic 
tasks' arrivals at runtime. The paper also shows some 
simulation results in terms of the average aperiodic 
response time, verifying that the new algorithm offers 
significant performance improvements over other 
conventional joint scheduling algorithms, especially 
under a heavy transient overload. 
 
1. Introduction 
 
 Real-time systems are used to control the physical 
processes that range in complexity from an automobile 
fuel ignition device to a large military defense system. 
Stankovic [16] pointed out that it is very important to 
develop an aperiodic task scheduler which works well 
under transient overload and gives a fast response time 
for aperiodic tasks while guaranteeing the deadlines of 
periodic tasks in unpredictable environments.   
 Considerable research has been done in the area of 
joint scheduling of periodic and soft aperiodic tasks in 
fixed-priority systems [2],[5],[6],[7],[14],[15],[18]. 
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Bandwidth preserving algorithms [5],[14],[15], which 
create a periodic task for servicing aperiodic requests, 
have substantially improved the response time of 
aperiodic tasks compared to the conventional aperiodic 
task scheduling algorithms such as background 
processing and polling tasks. The bandwidth 
preserving algorithms, however, make it hard to decide 
an optimal bandwidth preservation capacity to cope 
with the stochastic arrival behavior of aperiodic tasks. 
Also it cannot maximally utilize the slacks for the 
aperiodic tasks due to a fixed value of the bandwidth 
preservation capacity.  
 Lehoczky and Ramos-Thuel [6] developed the 
slack-stealing algorithm by means of greedy methods, 
which was proved to be optimal in the sense that it 
simultaneously minimized the response time of all 
aperiodic tasks, provided that they were served in 
FIFO order. The slack-stealing algorithm does not 
create a periodic server for aperiodic task service. 
Rather it creates a passive task, referred to as the slack 
stealer, which when prompted for service attempts to 
make time for servicing aperiodic tasks by stealing all 
the processing time it can from the periodic tasks 
without causing their deadlines to be missed. This 
algorithm however, has two significant drawbacks. 
Firstly, it requires a relatively large amount of 
calculations because of its recursive checking through 
all the priority levels at each scheduling point. 
Consequently, its direct implementations may not be 
practical. Secondly, it cannot fully utilize all the 
available slacks for the largest amount of aperiodic 
processing because it counts on the ceiling values of 
periodic processing requirements. 
 Recently Tia, Liu and Shankar [18] improved the 
slack-stealing approach for soft aperiodic processing 
by means of non-greedy methods.  They pointed out 
the greedy approach in [6] is not optimal when the 
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class of algorithms is enlarged to include non-greedy 
algorithms.  Subsequent extensions of the slack-
stealing algorithm have been introduced by Davis, 
Tindell, and Burns [2].  They generalized [6] to a 
broad class of scheduling problems and demonstrated 
approximations to the full slack-stealing algorithm that 
are less computationally complex but still show 
reasonably good performance. 
 Meanwhile, Thuel and Lehoczky [12], [17] 
extended the slack-stealing algorithm for jointly 
scheduling hard deadline periodic tasks and hard 
deadline aperiodic tasks using fixed-priority methods.  
Works on the on-line scheduling of hard aperiodic 
tasks in the dynamic priority method have been 
reported by Chetto and Chetto [1], Schwan and Zhou 
[13]. Their works assume that all periodic tasks are 
scheduled according to the Earliest Deadline 
algorithm.  In particular, Schwan's algorithm does not 
give any preferential treatment to the periodic tasks, 
unlike common approaches to soft aperiodic tasks in 
fixed-priority preemptive systems.  Although they 
developed a few elegant dynamic scheduling methods 
for tasks with well-defined timing constraints, they 
reserved for the future work on other types of on-line 
scheduling algorithms which relax the hardness of 
deadlines. 
 In this paper, we are introducing the Critical Task 
Indicating (CTI) algorithm, a new approach to the 
joint scheduling of periodic and soft aperiodic tasks in 
an adaptable fixed-priority uniprocessor real-time 
system, which allows temporary changes to the given 
periodic priority order at runtime; and we show that 
this method can offer reasonable improvements over 
the other conventional joint scheduling algorithms 
especially under heavy transient overload.  The major 
goals of our proposed task scheduling are not only to 
guarantee all the deadlines of periodic tasks and to get 
the response time for soft aperiodic tasks as small as 
possible, but also to provide a good scheduling 
predictability. To achieve these goals, we have adopted 
a periodic task scheduling principle in which a normal 
fixed-priority assignment strategy [8],[9],[10] and the 
information on a preassignment table built off-line are 
properly mixed somewhat dynamically according to 
the aperiodic tasks' arrivals at runtime. The role of the 
preassignment table, called the CTI table, is to indicate 
the critical periodic tasks (if any) at each scheduling 
point that must be assigned and executed immediately 
to meet their deadlines at runtime.  
 The key to the matter is the creation of the required 
CTI tables in advance. To work out the problem, we 
have carefully developed a different kind of fixed-
priority preassignment strategy, called the 

deadlinewise preassignment, for which a periodic task 
set defers each task's execution start time toward the 
deadline at its maximum according to the given fixed-
priority.  The idea comes from the fact that the value of 
the value functions of a set of periodic tasks (generally 
they are step functions) is constant up to their 
deadlines [4].  Consequently, the slacks which were 
made by artificially deferring the execution time of 
periodic tasks toward their deadlines can be utilized by 
the aperiodic tasks if they arrive at those time zones. 
Otherwise, those slacks can be used for the periodic 
tasks just as per normal fixed-priority scheduling.  The 
resulting information table which can fully be used as a 
CTI table in the joint scheduling looks very much like 
a transposed form of the normal fixed-priority 
preassignment table. 
  The major merits of the CTI algorithm are: 1) it 
does not require heavy computations to check if there 
are slacks for aperiodic tasks, since it refers only to the 
preassignment table at each scheduling point at 
runtime, 2) it gives faster aperiodic responses than the 
other conventional joint schedulings in fixed-priority 
systems because of its dynamic property of selecting 
periodic scheduling strategies depending on whether 
aperiodic tasks are ready or not at runtime, 3) its 
implementation is relatively easy because of its 
simplicity, and 4) it provides a good scheduling 
predictability because it uses the CTI tables containing 
prescheduling information. 
 The remainder of the paper is organized as follows.  
Section 2 addresses some of the general concepts 
which have an important effect on the development of 
the whole scenario. It also provides the deadlinewise 
preassignment concepts and their important properties. 
Section 3 describes the main algorithm including an 
example, its feasibility analysis, and some additional 
topics on it. Section 4 shows the simulation results 
compared to those of the other major aperiodic 
scheduling algorithms.  Section 5 provides a summary 
and discusses some drawbacks and future plans. 
 
2. The background of the CTI algorithm 
 
 In this section we introduce a new periodic 
scheduling method, called the fixed-priority 
deadlinewise preassignment, and its major properties 
to establish the minimal theoretical background for the 
CTI algorithm in addition to briefly discussing some of 
the basic environmental notions and assumptions. 
 
2.1 Motivation  
 
 There is a common important motivation to 



 

 

developing a new aperiodic task scheduling algorithm 
which can be easily implemented to service a mixture 
of hard deadline periodic and soft deadline aperiodic 
tasks in real-time system environments.  Namely, the 
system should guarantee all the deadlines of periodic 
tasks and should obtain an average aperiodic response 
time which is as small as possible. As mentioned 
before, the slack-stealing algorithm gives a near-
optimal solution to this problem in a situation where 
there are fixed-priority periodic tasks. We have, 
however, found in the verifying procedure of the 
algorithm that a new comparable algorithm could be 
developed in as much as the fact that all the given 
periodic tasks' instances can be shifted toward 
deadlines at their maximum depending on their given 
fixed-priority. 
 This deadlinewise shifting at any scheduling time 
interval increases the flexibility to service aperiodic 
task more quickly whenever there are so many 
aperiodic tasks requested at runtime that the CPU is 
always busy.  But the problem is how to ensure that the 
scheduler effectively allocates periodic tasks when 
there are a small number of aperiodic tasks which lead 
the CPU to idle states so frequently.  To deal with the 
problem we have decided to partially use the fixed-
priority assignment methods which break up 
temporarily the deadlinewise shifting of the given 
periodic tasks at runtime. 
 
2.2 Task Execution Model 
 
 A periodic task denoted by τ , is an infinite 
sequence of task instances requested at a fixed rate in a 
real time system environment. The request rate is 
defined to be its period, denoted by T. Each of the task 
instances has the same magnitude of computation 
requirements, denoted by C, and the deadline, denoted 
by D, by which it must be completed. A periodic task 
set, denoted by {τ1,τ2 ,...,τn}, is defined to be a set of 
arbitrary positive number of such periodic tasks. Any 
periodic task set has its hyperperiod which is the least 
common multiple of all the periods of the tasks in it. 
Note that every task in a task set is requested 
simultaneously at the start point of the hyperperiod and 
has the same deadline at the end point of it. An 
aperiodic task, denoted by A, is a task having non-
periodic request intervals. A slack is an available time 
interval, which has the length of a scheduling unit, for 
an aperiodic task. 
 
2.3 Assumptions 
 

   To develop the CTI algorithm, we need some 
assumptions which include: 
 (A1) Deadline for a periodic task's instance is equal 

to the next request of the task. 
 (A2) Preemption over a periodic or an aperiodic task 

is always possible. 
(A3) All overhead for context switching is counted 

into the corresponding periodic  and aperiodic 
task's computation requirements. 

 
2.4 Fixed-Priority Deadlinewise Preassignment 
Concepts 
 
 A periodic task scheduling method is classified as a 
fixed-priority deadlinewise preassignment if the tasks 
are assigned one after another according to the given 
fixed-priority in such a way that all the tasks are 
preassigned toward deadlines at their maximum.  The 
priority preemptions in a deadlinewise preassignment 
take place in a manner similar to the other 
fixed-priority scheduling methods (e.g. rate monotonic 
priority assignment) except that part or all of the 
preempted task instance should be assigned prior to the 
preempting task instance. 
 Example 1. Suppose that a periodic task set with 
two tasks, τ 1 and τ 2, having the computation 
requirements, C1=1 and C2=2, and the periods, T1=3 
and T2=5, respectively, is to be preassigned over a 
single hyperperiod, H=15, using the rate monotonic 
fixed-priority deadlinewise preassignment. The 
preassigning process is depicted in Figure 1. At start 
time, two task instances,  τ11 and τ21, arrives and 
assigned toward the deadlines, D11=3 and D21=5, 
respectively. At time 6, the task instance τ13 preempts 
τ22. Also, at time 12, another preemption is occurs. 
 

C1 = 1, T1 = 3

C2 = 2, T2 = 5

Hyperperiod

τ1

τ2
3 6 9 12 150

0 5 10 15
 

Figure 1. An example of the preassigning process 
using the deadlinewise preassignment. 

  
 Next we establish some of the basic notions used to 
analyze the feasibility of the deadlinewise 
preassignment for a given periodic task set.  For a set 
of periodic tasks preassigned according to the 
deadlinewise preassignment, we say that an underflow 
occurs at t if a task is forced out of its given period 
beginning at t as a result of the others' preemptions.  



 

 

The concept of overflow is applicable to both the 
on-line and the off-line fixed-priority schedulings, but 
on the other hand that of underflow only to the off-line 
fixed-priority schedulings.  A deadlinewise critical 
instant for a given periodic task preassigned according 
to the deadlinewise preassignment is an instant at 
which the execution of a request for that task will 
begin, so that the largest time interval is required for its 
completion.  The periodic interval for a periodic task 
having the shortest waiting time from the request to the 
start of the execution contains its deadlinewise critical 
instant.  A deadlinewise critical zone for a given 
periodic task preassigned according to the 
deadlinewise preassignment is the time interval 
between a deadlinewise critical instant and the 
deadline for the corresponding request.  The above two 
definitions are hinted in the definitions of the normal 
critical instant and critical time zone presented in [10]. 
The only difference between normal and deadlinewise 
is that the latter count on the deadlines instead of the 
requests. Any periodic task set with a fixed-priority 
order is deadlinewisely preassignable if no underflow 
occurs through all the deadlinewise critical zones for 
all the tasks over a single hyperperiod. 
 Example 2. Figure 1 shows two deadlinewise 
critical instants, execution start points of  τ22 and  τ23, 
at priority level 2 and consequently two deadlinewise 
critical zones, [7,10] and [12,15], respectively. 
Moreover, the periodic task set is deadlinewisely 
preassignable because no underflow occurs through all 
the deadlinewise critical zones. Note that every 
execution start point of the task instances at the priority 
level 1 is a deadlinewise critical instant. 
 Let us consider one of the properties related to a 
deadlinewise critical instant and the relationships 
between normal and deadlinewise schedulability. 
Theorem 1. For a given periodic task set with a fixed-
priority order, the deadlinewise critical instant for any 
task occurs whenever the deadline of the task is 
identical to that of all higher priority tasks. 
 Proof. Similar to the proof of Theorem 1 in [10] 
except that the preemption occurs on the basis of 
deadlines instead of exact request times. Consequently, 
the computation time zone for a task becomes the 
largest when its deadline is identical to that of all 
higher priority tasks.         * 
 Example 3. The normal critical zone at the lowest 
priority level for the periodic task set given in Example 
1 is the interval [0,3]. On the other hand, the 
deadlinewise critical zone for the same task is the 
interval [12,15]. 
 Theorem 2. A periodic task set {τ1, τ2,..., τn} with 

a fixed-priority order is deadlinewisely preassignable 
if, and only if, it is normally schedulable. 
 Proof. By the definitions of deadlinewisely 
preassignable and normally schedulable, it is necessary 
and sufficient to show that for a task τk with its period 
Tk, no underflow occurs through the deadlinewise 
critical zone dcz(k) if, and only if, no overflow occurs 
through the normal critical zone ncz(k), where 1≤k≤n.  
Since the two periods on which dcz(k) and ncz(k) lay 
respectively are equal to Tk, it only remains to show 
that the length of dcz(k) is equal to that of ncz(k). 
 Now, by Theorem 1 in [10] and Theorem 1 above, 
the number of task requests through the period 
containing ncz(k) is equal to that of deadlines through 
the period containing dcz(k).  Moreover, for each 
request for τk and all its higher priority tasks through 
the period containing ncz(k), there must exist a 
corresponding deadline over the period containing 
dcz(k), and vice versa. 
 Finally, by the assumption of the theorem, the 
computation requirements for each task that forms the 
lengths of dcz(k) and ncz(k), are unique.  Hence, the 
length of dcz(k) is equal to that of ncz(k).     *  
 Lemma 1. For a given periodic task set with a 
fixed-priority order, the deadlinewise preassignment is 
feasible if, and only if, the fixed-priority assignment is 
feasible. 
 Proof. The proof is directly induced from the 
above Theorem 2.           * 
 
3. The CTI Algorithm 
 
 A result of the deadlinewise preassignment for a 
given periodic task set is composed of scheduling 
information, a sequence of the execution start points 
and computation requirements of all task instances, on 
each instance the execution is delayed at its maximum. 
The information gives us the valuable knowledge that 
a periodic task preassigned to a scheduling point will 
miss its deadline under a real time scheduling situation 
unless it is assigned and executed immediately at that 
time. This means that the periodic task is critical  
(critical task) at that time in a real time scheduling 
situation. Moreover, the preassignment is the worst 
schedulable case with respect to the periodic task set 
under the condition that all the deadlines must be met.  
In this point of view, a new aperiodic task scheduling 
algorithm, called the CTI algorithm, for a mixed 
scheduling of periodic and aperiodic tasks came to our 
minds.  
 
3.1 Algorithm Description 



 

 

 
 Conceptually, the new algorithm is to assign a 
mixture of periodic and aperiodic tasks based on a 
hybrid scheduling method of the normal fixed-priority 
assignment and the deadlinewise preassignment 
information. The deadlinewise preassignment for a 
periodic task set through a single hyperperiod produces 
a scheduling table, called the CTI table, to be used in 
the real time assignment. At runtime the table is 
frequently referenced by the scheduler to see if there 
are slacks available for aperiodic tasks.  
 In practice, a CTI table may be a character string 
for a small number of periodic tasks or may be an array 
of integers in general, i.e., an ordered sequence of 
periodic task's identifiers. For example, the CTI table 
for the periodic task set given in Example 1 will be a 
character string "001221021201221" with the length of 
its single hyperperiod, where '0', '1', and '2' denote 
identifiers of an empty slack, τ1, and τ2, respectively. 
With this simple data structure, all the execution start 
points and computation requirements of the periodic 
tasks can be fully represented in addition to the empty 
slacks for soft aperiodic tasks. 
 The behavior of the hybrid algorithm is 
dynamically determined at runtime depending on the 
information in the CTI table and arrivals of aperiodic 
tasks. For an arrival of an aperiodic task, the algorithm 
checks to see if (C1) there are slacks available for the 
aperiodic task in the CTI table at the current time, or 
(C2) the current critical task unit (whole or part of 
the task instance) already has been serviced. If one of 
the two conditions is met, it services the aperiodic task 
immediately. If not, it services the critical task. All of 
our ideas are based on the CTI table, i.e., the 
deadlinewise preassignment. On the other hand, if no 
aperiodic task arrived and no critical task is indicated, 
the algorithm works based on the fixed-priority 
assignment rule that was taken by the deadlinewise 
preassignment. 
 This dynamic property of the algorithm behavior 
provides that the maximum aperiodic capacity is 
always preserved through a single hyperperiod, 
although all the periodic deadlines are met strictly. 
 Let us examine the hybrid algorithm more 
systematically using a pseudocode written as in the 
following Figure 2. At line 1, the data structures for the 
algorithm including the CTI table, the timer, and the 
hyperperiod are initialized for a given periodic task set. 
Lines 2 to 9 form an infinite loop. The above two 
conditions, (C1) or (C2), for an aperiodic task ready 
(or arrived) are examined at line 3. If neither of them is 
met, the critical task is serviced. Otherwise, an 
aperiodic task which is ready (or newly arrived) is 

serviced immediately at line 4. If no aperiodic task is 
ready (or arrived) at line 4, the normal fixed-priority 
assignment algorithm is applied to the periodic tasks 
ready at that time at line 5. The pseudocode segment in 
line 6 takes over the control of the processor to cope 
with the CPU idle state whenever there is no aperiodic 
and no periodic task ready at that time. Although the 
pseudocode segment in line 7 should be ignored in a 
practical situation, it is necessary in a simulation. At 
line 8, the boundary for the hyperperiod is checked. If 
a boundary overflow occurs, all the global parameters 
such as the current pointer to the CTI table are 
renewed. Finally, the control goes back to line 3. 
 
 1  initialize data structures   
 2  loop begin 
 3       if (a critical periodic task unit not yet been  
   serviced has occurred)    then service it   
 4       else if (aperiodic task(s) is ready or arrived) then  
    service it 
 5       else if (periodic task(s) is ready or arrived) then  
     service it 
 6       else process CPU idle state 
 7       advance timer 
 8       if ((timer_value MOD hyperperiod) is equal to  
  zero)  then reinitialize the global parameters  
 9 end loop 

Figure 2. A pseudocode of the CTI algorithm. 
 
3.2 An Example 
 
     Suppose that there is a periodic task set with three 
tasks, τ1, τ2, and τ3, with T1=3, T2=5, T3=15, C1=1, 
and C2=C3=2. We restrict our attention to the interval 
[0,15] which is a single hyperperiod for the task set. 
To obtain a CTI table for our task set, one can use the 
deadlinewise preassignment method described in 
subsection 2.4. In this example, the rate monotonic 
fixed-priority order has been applied.  The obtaining 
procedure is fully depicted in Figure 3.  Figure 3-A 
shows the deadlinewise preassignment results for each 
priority level.  Figure 3-B shows the final result, the 
CTI table. 
 



 

 

[CTI table] - Figure 3-B

[D eadlinewise preassignment results fo r each priority level
based on the rate monotonic fixed priority order] - Figure 3-A

T1 =3
C1 =1

T2 =5
C2 =2

T3 =15
C3 =2

 
Figure 3. An example of creating a CTI table 

 
 Next we will examine the behavior of our CTI 
algorithm for the periodic task set given above and two 
aperiodic tasks with computation requirements C=1 
arriving at t=5 and t=8, respectively. Figure 4 shows 
the mixed scheduling. The processor assigns periodic 
tasks by using the normal rate monotonic algorithm 
during [1,5] and [6,8] because there is no aperiodic 
task ready (or arrived) and no critical periodic task unit 
has not yet been serviced. The first aperiodic task A1 
has arrived at t=5 and has been serviced immediately 
because the current critical task unit, whole of the 
instance τ 12, had already been serviced at t=3. 
Similarly, the second aperiodic task A2 has arrived at 
t=8 and been serviced immediately because the current 
critical task unit, the whole of the instance τ13, had 
already been serviced at t=6. During the remaining 
interval [9,15], all the periodic tasks will be scheduled 
in accordance with the information on the CTI table. 
The reason is that there always exists through the 
interval a critical periodic task unit which has not yet 
been serviced.  
 
3.3 The Slack Discriminant 
 
 In the CTI algorithm, two consecutive conditions 
(C1) and (C2) given in subsection 3.1 have been used 
successively to test whether the current scheduling unit 
on the CTI table is a slack for a soft aperiodic task or 
not. To be more specific, the condition (C1) will be 
evaluated first simply by looking up the CTI table unit 
corresponding to the current value of the scheduling 
timer. If the unit denotes a slack identifier (i.e., a 
character '0' or an integer 0 depending on its data 
structure), then the required test comes to an end. 
However, if the unit denotes an identifier of a periodic 
task, it may be a slack or not. For these cases, the 
condition (C2) will be evaluated in sequence. This 
second condition will easily be checked based on the 

two kinds of special computation counters for each 
periodic task: one for cumulating all the computation 
processing completed and the other for cumulating all 
the computation requirement on the CTI table until 
the current scheduling time. Namely, the difference of 
the two counters for the task currently indicated by the 
CTI table makes it possible to check if the task has 
already been serviced.  To provide a clearer slack 
identifying mechanism for soft aperiodic tasks, we 
need to formalize these to a slack discriminant that can 
be used for distinguishing a slack from the CTI table at 
the current scheduling point. Suppose that all the 
periodic tasks are sorted depending on those priorities 
so that the mapping from the set of task numbers 
(identifiers) to the set of positive integers Y = {1, 2, ..., 
n} is one-to-one and onto Y where n denotes the 
number of periodic tasks. The resulting slack 
discriminant for CTI algorithm is  
 
      ⎧ slack  if  CTI[t] = 0  
    ⎪                  or CP[CTI[t]] - CR[CTI[t]] > 0 
 f(t) =  ⎨ 
      ⎩ critical task   otherwise 
 
where t denotes current scheduling time, CTI denotes 
CTI table(an array of integers, each element of which 
represents a slack or a periodic task), CP[i] and CR[i] 
(i represents an identifier of a periodic task) 
respectively denote all the computation processing 
done and all the computation requirement for each 
periodic task until t.  
 Based on the above slack discriminant, we have 
prepared a version of specified CTI algorithm in C 
language style for its practical use (see Figure 5.)  The 
time complexity of the algorithm is O(n).  Note that 

�

[CTI table]

T1 = 3
C1 = 1

T2 = 5
C2 = 2

T3 = 15
C3 = 2

Aperiodic Task
C = 1

t=5 t=8
 * The circles denote that the periodic tasks will be serviced in accordance
   the CTI table.

0 15

� � � � �� � �������

Figure 4. An example of the behavior of CTI 
algorithm  



 

 

the time complexity for constructing the CTI table off-
line varies depending on its fixed-priority assignment 
method.  For example, if one takes the rate monotonic 
fixed-priority scheme, then the time complexity will be 
O(nlog2n) [9].  For a detailed explanation of the 
algorithm, the comment lines in the figure will help. 
 
3.4 Feasibility Analysis 
 
     The major virtue of the fixed-priority assignment 
algorithms is its simplicity and ability to handle many 
practical problems, stability under transient overload, 
low scheduling overhead, and so on [3],[9],[10],[11]. 
In this subsection, we will analyze the feasibility of the 
CTI algorithm to show that almost all of these qualities 
supported by the fixed-priority algorithms could also 
be retained for periodic tasks. 
 Lemma 2. For a given periodic task set with a 
fixed-priority order, the CTI algorithm is feasible if, 
and only if,  the normal fixed-priority algorithm is 
feasible. 
 Proof. By the definition of the CTI algorithm and 
the assumption of the lemma, it is directly induced that 
applying only the normal fixed-priority algorithm is 
the best schedulable case and applying only the CTI 
table (i.e. deadlinewise preassignment) is the worst 
schedulable case with respect to a given periodic task 
set. In this point of view, feasibility of the hybrid 
algorithm for a given periodic task set adheres to the 
worst schedulable case at least. Therefore, by the 
above Lemma 1, we have proved the lemma.            * 
      Note that the above Lemma 2 gives us that the CTI 
algorithm could be applicable for all the periodic task 
set schedulable using a fixed-priority algorithm. And 
hence, our algorithm also provides almost all of the 
fixed-priority algorithm's nice features, especially its 
high schedulable utilization for periodic tasks. 
Moreover, it provides stability and predictability for 
mixed scheduling. 
 
3.5 Problem of Discrete Unit Time Scheduling 
 
 The CTI algorithm developed and simulated in this 
paper clearly depends on the unit time scheduling 
policy that each unit of periodic computation must be 
checked in the interval over which a periodic or an 
aperiodic task is active.  For the tasks with a small 
number of computation units, it is not a big problem 
because the checking process involves only referring 
to the CTI table, and this takes extremely small 
computational overhead.  However, for tasks with a 
relatively large number of computation units (e.g., 100 
units) it may lead to a drastic degradation of the 

efficiency of the algorithm. 
 In this respect, we have reviewed some of the 
solutions to this problem.  The best candidate among 
them is to slightly modify the algorithm as pertaining 
the following three basic rules: 
Rule 1.  For a critical task at a scheduling point that 

consists of two or more units of 
computations, do not interrupt its service 
procedure until all of its computation units 
are consumed. 

Rule 2.   For an aperiodic task allowed to be serviced 
at a scheduling point, calculate the sum of 
the available units (i.e., slacks) to the next 
critical task unit and allocate whole or part 
of its computation units.  Then it is not 
necessary to check each unit of CTI table 
over the interval. 

Rule 3.   For a periodic task which is not critical at a 
scheduling point, service it until a new 
aperiodic task's arrival or a critical task's 
occurrence. 

 Rule 3 may require a somewhat different interrupt 
handling mechanism of the algorithm that deals with 
arrivals of aperiodic tasks. 
 
3.6 Hard Aperiodic Task Scheduling 
 
 The purpose of this subsection is to provide a brief 
concept of an extension to the CTI algorithm so that it 
can manipulate hard deadline aperiodic tasks instead of 
ones with soft deadlines.  Although a number of 
extension methods may be possible, the one using the 
CTI table is the most plausible candidate because it 
will definitely  guarantee simplicity and good 
performance by reusing the original CTI table as a 
slack search domain. 
 Since a hard aperiodic task has its own 
deadline, an extension should provide an additional 
function to decide the acceptance of the task on its 
arrival.  In other word, if the total number of slacks 
available from the current or the reserved point (for 
those already arrived and accepted before)  to the 
deadline of the hard aperiodic task is less than its total 
computation requirements, then it must be rejected so  
that the others including periodic tasks can use the  



 

 

  
 

 
  #define N      /* # of periodic tasks given to be scheduled */ 
  #define H       /* hyperperiod(least common multiple of all periods) */ 
  int CTI[H-1];      /* CTI table */ 
  int CP[N];      /* all the periodic computation processing done until now */  
  int CR[N];      /* all the periodic computation requirement until now */ 
  int t = 0;       /* time counter */ 
  boolean CT_occurred;   /* flag indicating critical task occurrence */ 
 
  build(CTI);            /* build CTI table */ 
  for (i = 1; i <= N; i++)         /* initialize periodic computation counters */ 
     CP[i] = CR[i] = 0;                  
  while (TRUE) {           /* repeat forever */ 
     if As_arrived()              /* if aperiodic tasks have arrived, */ 
        insert(new_As, A_queue);           /* insert these into the aperiodic queue. */ 
    if Ps_arrived() {          /* if periodic tasks have arrived, */ 
    insert(new_Ps, P_queue);      /* insert these into the periodic queue. */ 
    adjust_element_order(P_queue);    /* sort queue elements based on fixed-priority */ 
   } 
   CT_occurred = TRUE;        /* assume a critical task has occurred */ 
   if (CTI[t] <> 0) {          /* if CTI table does not indicate a slack, */ 
    if ((CP[CTI[t]] - CR[CTI[t]]) > 0)    /* if the periodic computation processing */ 
                                      /* done is greater than the requirement, */ 
     CT_occurred = FALSE;      /* the indicated task had already been processed */ 
    CR[CTI[t]]++;         /* cumulate periodic comp. requirement */ 
   } 
   if CT_occurred {          /* if a critical task has occurred, */ 
    P = remove_any(CTI[t], P_queue);    /* get it from the queue (not on the front) */ 
    service(P);          /* process it */ 
    CP[P.id]++;          /* cumulate periodic comp. processing done */ 
   } 
   else if (!empty(A_queue)) {       /* else, if an aperiodic task is ready, */ 
    A = remove(A_queue);       /* get it from the queue (on the front) */ 
    service(A);          /* process it */ 
   } 
   else if (!empty(P_queue)) {       /* else, if a periodic task is ready, */ 
    P = remove(P_queue);       /* get it from the queue (on the front) */ 
    service(P);          /* process it */ 
    CP[P.id]++;          /* cumulate periodic comp. processing done */ 
   } 
   else cpu_idle();          /* otherwise, CPU is idle */ 
   t++;             /* advance timer */ 
     if (t == H) {           /* if a hyperperiod has finished, */ 
        t = 0;                            /* reset timer and */ 
        for (i = 1; i <= N; i++)                   /* reinitialize periodic comp. counters */ 
        CR[i] = CP[i] = 0;     
    }                          
   } 

 

Figure 5. CTI algorithm in C 



 

 

slacks.  To do this, the decision making mechanism has 
to search slacks through the CTI table. Therefore, 
another slack discriminant for hard aperiodic tasks that 
discriminates slacks at each search point from the CTI 
table is required. 
 The new slack discriminant will be as follows: 
 
    ⎧  slack  if CTI[st] = 0   
   ⎪     or  CP[CTI[st]] - SCR[CTI[st]] > 0 
g(st) =  ⎨  
     ⎩  critical task   otherwise 
 
It is based on the counter CP that was used in the first 
slack discriminant in subsection 3.3 and a new 
computation counter SCR representing all the 
computation requirement searched. Also, it 
substitutes a search timer st for the scheduling timer t. 
 In addition, the problem of search space limitation 
caused by the hyperperiod bound must be carefully 
examined.  Our proposed solution to this problem is to 
search the CTI table similarly to a circular list.  It is 
only necessary to count the hyperperiodic distance 
from the current scheduling point to the current 
searching point.  Another problem to be considered 
here is the arrival queue handling of hard aperiodic 
tasks. Thuel and Lehoczky [17] mentioned the problem 
that the selection of a proper priority level for hard 
aperiodic processing in their algorithm involves a 
tradeoff, and they indicated adequate heuristics as an 
optimal solution to this problem.  From our viewpoint, 
this is a kind of management of a hard aperiodic arrival 
queue (prior to the acceptance decision making 
process) since every hard aperiodic task should be 
assigned a priority and queued depending on its degree 
of importance.  The queuing theory approach would be 
desirable to handle the problem. 
 
4. Simulation Results 
 
 In this section, we have prepared some of the 
aperiodic response time performances as the result of 
simulations on the four different aperiodic task 
scheduling algorithms including background 
processing, sporadic server, slack-stealing, and our 
CTI algorithm. Because of the similarity between the 
bandwidth preserving algorithms, only the sporadic 
server which is superior to others such as the 
deferrable server and priority exchange has been 
simulated as a representative. 
 The task sets applied to the simulations consist of 
10 different periodic tasks, each of which has 
randomly generated period and computation 

requirements. All aperiodic tasks have been generated 
by using both an exponential distribution function for 
their computation requirements and Poisson arrival 
function for their arrivals at runtime. Aperiodic 
workloads could be easily coordinated by modifying 
the exponential scale parameter value and the arrival 
rate in Poisson function. 
 In order to provide a fairly subjective observation 
ground for the simulation, we have constructed a 
model of simulation in a very similar manner with that 
shown in the slack-stealing algorithm.  Consequently, 
we have arranged three different periodic task sets with 
40%, 70%, and 90% of CPU utilization ratios to 
simulate various workloaded real-time scheduling. 
These are summarized in Table 1. Note that the sizes 
of sporadic servers have been fixed to 50% and 20% of 
CPU utilizations respectively for the task sets with 
40% and 70% of CPU utilization ratios because some 
of the periodic deadlines would be missed if the server 
sizes grew larger. In the following subsections, the 
results of aperiodic response time performances for 
each of the task sets is briefly analyzed and discussed. 
 
4.1 Low Periodic Workload 
  
 Figure 6 illustrates the simulation results on the 
task set with 40% of periodic workload in terms of 
average aperiodic response time. Aperiodic workload 
is scaled from 0% to 60% of CPU utilizations. While 
background processing has significantly delayed 
average response time throughout all the aperiodic 
workloads, the others have similarly comparable 
response performances under relatively low aperiodic 
workload. However, the performance of sporadic 
server is remarkably downgraded due to its limited 
server capacity whenever the aperiodic workload goes 
over 40%. Moreover, our CTI algorithm outperforms 
slightly the optimal algorithm over almost all the 
aperiodic workloads, especially after 55%. 
 
4.2 Medium Periodic Workload 
 
 Figure 7 illustrates the simulation results on the 
task set with 70% of periodic workload. Aperiodic 
workload is scaled from 0% to 30% of CPU 
utilizations. The simulation results go similarly with 
that of the above case with 40% of the periodic 
workload except that the slopes of curves steepen, i.e., 
performances decline surprisingly, according as the 
total workload  approaches 100%. 
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Figure 6. Simulation results on the task set with 40% 

of periodic workload. 
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Figure 7. Simulation results on the task set with 70% 

of periodic workload. 
 

 
4.3 High Periodic Workload 

 
 One of the important factors determining average 
aperiodic response time performance would be the 
periodic workload compared to other cases.  
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Figure 8. Simulation results on the task set with 90% 

of periodic workload. 
 
 In general, the performance of almost all the 
aperiodic scheduling algorithms goes down as the 
periodic workload goes up, in spite of having the same 
total workload. The fact is clear at a high total 
workload. A simple comparison of Figure 7 with 
Figure 8, presenting performances for the task set with 
90% of periodic workload, shows it very well. Note 
that the sporadic server has been omitted because of its 
server capacity limit.  
 
4.4 Overall Evaluation 
 
 One of the most important results from the 
simulations is that the CTI algorithm has outperformed 
all of the other joint scheduling algorithms without 
regard to the periodic workload ratios. Moreover, it 

 With 40% 
Periodic Workload 

With 70% 
Periodic Workload 

With 90% 
Periodic Workload 

 Task ID Period  Computation Period  Computation Period  Computation
    1      33       2     100       2     100       2 
    2     105       7     280       8     280      14 
    3      21       3    2100      30    2100     108 
    4      60       4     440      29     440      29 
    5      55       4     350      14     350      14 
    6      70       1     210       8     210      30 
    7      22       3      35       3      35       8 
    8     315      10      70       4      70      11 
    9     180      12    2200      46    2200     231 
   10     540      23     300       9     300      12 

Table 1. Sample periodic task sets used in the simulations  
 



 

 

shows stable low average aperiodic response times 
although the total workload ratio approaches to 100%. 
The major reason is that the algorithm gives full 
flexibility to service aperiodic tasks as promptly as 
possible by delaying periodic tasks at their maximum. 
 
5. Conclusions 
 
 This paper has presented the CTI algorithm for the 
joint scheduling of hard deadline periodic and soft 
deadline aperiodic tasks. The new algorithm assigns 
given tasks based on the hybrid scheduling method of 
a fixed-priority assignment and its deadlinewise 
preassignment. The deadlinewise preassignment for a 
periodic task set through a single hyperperiod produces 
a scheduling table, called CTI table, which is to be 
frequently referenced by the scheduler at runtime to 
check if there are slacks for aperiodic tasks.  The major 
benefits of the CTI algorithm lie in its computational 
simplicity and predictability, since it uses the CTI table 
containing prescheduling information on the given 
periodic task set. 
 The simulation of the algorithm shows a 
performance as good as that of the slack-stealing 
algorithm in most cases and even better in the case of 
having a heavy transient overload.  Moreover, the 
algorithm is reasonably simple to implement compared 
to the other joint scheduling algorithms and also 
addresses the scheduling predictability in some sense 
since it maintains the CTI table which has been built 
off-line. 
 However, the algorithm has some drawbacks in  
implementation environments. One is that the fixed-
priority system on which the algorithm will work must 
be adaptable for the fixed-priorities. In other words, 
the system should allow temporary changes to the 
tasks' priority order on which each task's assigning 
order depends at runtime.  This is due to the use of CTI 
tables formed from the deadlinewise preassignments 
that break up the original on-line fixed-priority 
assignment rule.  Another shortcoming comes from the 
space complexity on the CTI tables for task sets with 
large numbers of periodic tasks. 
 Finally, our major ongoing and future works 
consist of 1) developing a hard aperiodic task 
scheduling algorithm using the properties of the CTI 
table, 2) relaxing the deadline constraints that currently 
limited us to the assumption (A1) given in subsection 
2.3, and 3) taking advantage of the additional spare 
capacity produced by real schedulings because real 
tasks very rarely take their worst case execution times. 
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