
Soo-Yeon Park, Sungyoung Lee, Byung-Soo Jeong
Department of Computer Engineering, Kyung Hee University, Seoul, Korea

sylee@oslab.kyunghee.ac.kr

Hyon Woo Seung
Department of Computer Science, Seoul Women's University, Seoul, Korea

hwseung@cs.swu.ac.kr

Concurrency control for real-time secure database systems must satisfy not only

logical data consistency but also timing constraints and security requirements associated

with transactions. These conflicting natures between timing constraints and security

requirements are often resolved by maintaining several versions (or secondary copies) on

the same data items. In this paper, we propose a new lock-based concurrency control

protocol, Secure Dynamic Copy Protocol, ensuring both conflicting requirements. Our

protocol aims for reducing the storage overhead of maintaining secondary copies and

minimizing the processing overhead of update history. The main idea of our protocol is

to keep a secondary copy only when it is needed to resolve the conflicting read/write

operations in real time secure database systems. For doing this, a secondary copy is

dynamically created and removed during a transaction's read/write operations. While

comparing the existing real-time security protocol, we have also examined the

performance characteristics of our protocol through simulation under different workloads.

The results show that our protocol consumed less storage and decreased the deadline

missing transactions.

While conventional database systems must consider data consistency, high
performance and quick response time, database systems for real-time applications require
not only logical data consistency but also timing constraints associated with
transactions[3][4]. Multi-level secure database systems are shared by concurrent
transactions with different clearance levels and manage data objects with different
classification levels[10]. Most of the multi-level secure database systems are based on

the Bell-LaPadula model[2], which imposes the following restrictions on all data
accesses:
1) Simple Security Property: Read access is allowed if the transaction's clearance is

identical to or higher than the data object's classification.
2) Restricted *- Property: Write access is allowed if the transaction's clearance is

identical to the accessed data object [6].
It is also required in such a system to remove covert channels. Although security

models prevents direct flow of information from a higher access class to a lower access
class, information in a high-priority transaction may flow into a low-priority transaction
through covert channels which are not designed in the system. Covert channels arise
when conflicts occur among concurrent transactions with different security levels. They
may be generated as the concurrent transactions share the same working areas (storage
channel), or by measuring the time used for the common resources (timing channel).
Multi-level secure database systems must be designed to avoid such covert channels, and
security protocols in the systems must guarantee low-level transactions are not delayed
or aborted by high-level transactions[9].

Mukkamala and Son's Secure Real-Time 2 Phase Locking (SRT-2PL)[1] is based on
the idea of preventing covert channels from arising by maintaining the property of
noninterference among transactions with different security levels. Two kinds of data
objects are used to provide noninterference in SRT-2PL. One is the primary copy which
is the target object for read and write operations of equivalent level transactions. The
other is the secondary copy which is for read operations of high level transactions. This
protocol, however, has a disadvantage of memory waste since it has to maintain copies
of all data objects, and it also causes some extra cost since it has to use and manage
an update queue to update data copies. Furthermore, the lack of predictability always
exists since there can be high-level transactions waiting for the contents in the update
queue to be updated on the secondary copy.

In order to overcome such problems, this paper proposes a dynamic copy protocol
which prevents covert channels from arising by maintaining noninterference, and
consumes less memory than the SRT-2PL by reducing the time to keep copies. The
proposed model, which is based on the Bell-LaPadula model, dynamically manages zero
or more copies for each data object and remarkably reduces the time for keeping copies
by generating them only if needed and deleting them otherwise. Since all the copies can
be accessed by maintaining them in a list, the unpredictability problem of high-level
transactions' read-down operations does not exist.

The paper is organized as follows. In Section 2, related works are reviewed. The
dynamic copy protocol is proposed in Section 3. In Section 4, the correctness issues are

discussed for the proposed algorithm. The performance evaluation is carried out by
comparing it with the SRT-2PL in Section 5. Finally, Section 6 summarizes the results
and future work.

The real-time concurrency control protocol and the multi-level security concurrency
control protocol have been studied independently. The former has been researched on
the basis of the locking strategies or optimistic methods, including priority based
scheduling approaches[3]. Typical examples are High Priority Algorithm, Conditional
Restart Algorithm, OPT-SACRIFICE, and OPT-20. The latter protocol, whose research is
mainly based on the locking or timestamping methods and single/multiple versioning
techniques, aims to maintain noninterference among transactions with different security
levels.

Recently, several research projects have reported on the concurrency control protocol
for the multi-level security real-time database systems. David[7] proposed the feedback
control mechanism which prevents information flow by restricting the capacity of covert
channels based on the information theory. This method inputs, in advance, a capacity
limit of the covert channel and an ideal deadline missing rate, and keeps adjusting the
two values according to the actual capacity and rate monitored during the system
execution, not only to meet the real-time requirements but also to avoid the covert
channels. It, however, guarantees only the limited capacity of covert channels but not
the deadline missing rate[7].

The basic principle behind the secure 2 Phase Locking (2PL) proposed by Son[8] is
to try to simulate execution of basic 2PL without blocking the lower access class
transactions by higher access class transactions. The blocking occurs when a transaction
with an access class identical to the data object (say TL) asks for a write operation, in
which case a transaction with an access class higher than the data object (say TH) holds
a lock on the shared data. The secure 2PL allocates a virtual lock to TL and allows it
to execute the write operation, without delay, on the local area. Once the lock is
released, the virtual lock is changed to a real lock, and an actual write operation is
executed. A deadlock may occur with the protocol, but it can be resolved using a set
of transactions, before (T) and after (T), that must be finished before and after some
transaction T, respectively. It requires, however, that serializability be guaranteed and
subordinate locks be maintained in order to prevent a virtual lock from being allocated
without control by a low-level transaction[8].

Mukkamala and Son[1] introduced SRT-2PL which prevents covert channels by

maintaining the property of noninterference among transactions with different security
levels. Since a covert channel arises when a high-level transaction aborts or delays a
low-level transaction, the SRT-2PL removes possible conflicts by separating transactions
with an access class identical to the data object from higher access class transactions.
The protocol works as shown in Figure 1. Each data object has a primary and a
secondary copy. The primary copy of an object is accessed (read/write) by transactions
at the same security level as the object. The secondary copy is accessed (read) by
transactions at a security level higher than the data object. Since the secondary copy is
only for read operations, it cannot be updated by itself. The update queue contains
updates that have been performed on the primary copy but have yet to be performed on
the secondary copy. The secondary copy is updated when it does not hold a read-lock.
This protocol, however, must maintain an update queue in addition to the two copies of
data objects. Furthermore, it lacks the predictability of high-level transactions since they
have to wait for contents in the queue to be updated on the secondary copy.

Primary
Copy

Secondary
Copy

High Level
Transaction

Equivalent
Level

Transaction Read

Write

Read

Update Queue

If Primary Copy is modified,
insert update into update queue

[Figure 1] SRT-2PL

The Dynamic Copy Protocol proposed in this paper is an extension of SRT-2PL,
and, therefore, works in a similar way to SRT-2PL. As in SRT-2PL, the secondary
copy is for read operations of high-level transactions, and the primary copy is for
read/write operations of equivalent level transactions. In this protocol, however, each
data object may have more than one secondary copy, and a secondary copy is generated
when a write operation is requested. A high-level transaction may read the primary copy
if there is no write-lock on the primary copy, while SRT-2PL forces the high-level
transaction to read the secondary copy even if the primary copy does not hold a lock.

Figure 2 illustrates how the Dynamic Copy Protocol works. The Object Manager is
responsible for the management of secondary copies, and the High Transaction
Read-Lock List (HRL) is maintained since high-level transactions may read the primary
copy. There is a flag which indicates the current state of the secondary copy.

High
Level

subject

copy1
source

Equivalent
Level

Subject

Object
Manager

Leveled Object

read

write

read
down

HRL(High Transaction Read-Lock List)

copy2

F/Tflag

[Figure 2] System Model for Dynamic Copy Protocol

The object manager creates a secondary copy when a transaction requests a write
operation and deletes the copy if it is not read-locked when the transaction is finished.
The copies are added to or deleted from a list, and a set of transaction identifiers, TIDs
is maintained for the transactions which hold read-locks on secondary copies. HRL is a
list of high-level transactions executing read operations on the primary copy. When a
transaction at the same security level as the data object requests a write-lock, the
read-locks on the HRL move onto the secondary copies so that the low-level
transactions may not be delayed. If the flag is true, the value of the recently generated
copy is the same as that of the primary copy, otherwise it is false. The object manager
generates a copy only when the flag is false. It is initialized as false and changed to
true after a copy is generated. After the write operation is finished, it is set to false
again.

The following are the assumptions made in this protocol:
A1) Each transaction needs to procure all the required locks before starting its

execution.
A2) Among transactions at the same security level as the data object, the basic 2PL is

applied.
A3) Only transactions at a security level higher than the data object are allowed to

move locks onto the secondary copy.

Covert channels can be prevented from arising by removing the possibilities of
interference among transactions with different security levels. The Dynamic Copy
Protocol guarantees noninterference among security levels by keeping high-level
transactions from aborting or delaying low-level transactions. As shown in Table 1,
operations of the protocol can be classified into 5 categories according to the requested
operation, conditions of the lock, flag, and HRL.

[Table 1] Operations of Dynamic Copy Protocol

Condition
Request Action

Lock Flag HRL

none × null ×

grant a lock on sourceR × null R or RD

R × not null R or RD

R F not null W
generate a copy and

grant a lock on source

R T not null W move lock held by
transactions in HRL to copy

W × null RD grant a lock on copy

R × null W execute transaction

on the priority basis

(block/abort)

W × null R

W × null W

* R : read(lock), W : write(lock), RD : read-down, ×: inapplicable

The rules according to which our protocol manages its locks and operations are as
follows:
[Rule 1] When a transaction T requests a read operation on a low-level data object x,

check if x is write-locked. If it is not, T is allowed to execute the read
operation on the primary copy of x. Otherwise, the read operation is executed
on the recently generated secondary copy.

[Rule 2] When a transaction T requests a write operation on a data object x, the object
manager references the flag and generates a secondary copy if false. Then, the
locks held by the transactions in the HRL are moved to the generated copy,
and a write-lock is granted to T on the basis of the basic 2PL.

[Rule 3] When a transaction T releases the write-lock on x, the object manager deletes
the copy only if there is no read-lock on it.

[Rule 4] When a high-level transaction T releases the read-lock on x, the object

manager checks if the transaction which generated the copy is finished and
deletes the copy if so.

Figures 3 and 4 show two cases of pseudo-codes which represent how the dynamic
copy protocol works according to the kinds of locks.

Case 1. Request Read-Lock
1 : if((x)< (TR))

// lock requester has higher level than holder
2 : if (x has write-lock)

execute read operation with copy and exit
3 : else { add TID to HRL

execute read operation with source }
4 : else // (x)= (TR)

execute read operation with source by 2PL

[Figure 3] Pseudo-code of Dynamic Copy Protocol On Read-Lock Request

Case 1) When a read-lock is requested (Figure 3),
if the lock requester has a higher level than the data object (line 1) and the data object
has a write-lock, then execute the read operation with the copy and exit (line 2). If the
data object has no write-lock, add the lock requester's TID to HRL and execute the
read operation with the source (line 3). If the lock requester is at the level of the data
object, execute the read operation with the source according to the basic 2PL (line 4).

Case 2. Request Write-Lock
1 : if (flag == TRUE) go to step 3
2 : else { create copy

flag = TRUE }
3 : subjects in HRL read copy
4 : release lock source
5 : execute write operation with source by 2PL
6 : flag = FALSE;

[Figure 4] Pseudo-code of Dynamic Copy Protocol On Write-Lock Request

Case 2) When a write-lock is requested (Figure 4),
if the flag is false, create a new copy, insert it to the copy list, and set the flag to
true (line 1). Then, move the locks held by the transactions in the HRL to the
generated copy (line 2 and 3), and the lock requester executes write operation with the
primary copy according to the basic 2PL (line 5). After the write operation, the flag is
reset to false (line 6).

Let's take an example of the sequence of transactions input to a scheduler as shown
in Figure 5 (the transactions arrived in the T1, T2, T3, T4 order). Small letters x and y
are data objects at an UNCLASSIFIED level, and X is a SECRET level data object. R,
r, w and C stand for Read-down, read, write, and Commit operations, respectively.

T1(UNCLASSIFIED): w[x] w[y]C
T2(SECRET) : R[y] C
T3(SECRET) : R[x]r[X]C
T4(SECRET) : w[X]R[y]C

[Figure 5] Example Scheduling

In SRT-2PL, a secondary copy is maintained for each data object x, y, and X until
all the transactions are committed and every update is appended to the update queue
and kept until it is reflected on the secondary copy. In the Dynamic Copy Protocol, the
overall time to keep the copies is shorter since a secondary copy is generated only
when a write operation is requested.

In SRT-2PL, the transaction T2 reads the secondary copy of y since its level is
higher than y. T4 also reads the secondary copy, but the operation must be delayed
until the copy is updated (T2 releases the read-lock), since it must read the value of y
updated by T1 in order to maintain the data consistency. Such a delay does not exist in
the Dynamic Copy Protocol since a write operation is executed after a copy is
generated and high-level transactions may read the primary copy.

The presence or absence of horizontal bars in Figures 6 and 7 show how secondary
copies are generated/deleted during executions of the transactions scheduled by SRT-2PL
and the Dynamic Copy Protocol, respectively. The slanted area in Figure 6 indicates
that the secondary copy has been updated.

x (UNCLASSIFIED)

y (UNCLASSIFIED)

X (SECRET)

2R(T ,y) 1w(T ,y) 4R(T ,y)1C(T) 3R(T ,x) 3r(T ,X) 3C(T) 4w(T ,X) 4C(T) 2C(T)

2Read-Lock released by T

w(T ,x)1

T1 T2 T3 T4

[Figure 6] Generation/Deletion of Copies when scheduled by SRT-2PL

w(T ,x)

x (UNCLASSIFIED)

y (UNCLASSIFIED)

X (SECRET)

1 2R(T ,y) 1w(T ,y) 4R(T ,y)1C(T) 3R(T ,x) 3r(T ,X) 3C(T) 4w(T ,X) 4C(T) 2C(T)

2Read-Lock released by T

T1 T2 T3 T4

[Figure 7] Generation/Deletion of Copies when scheduled by Dynamic Copy Protocol

In Figure 6, any read operation on x after C(T1) can be executed on the secondary
copy since x is updated at the time of C(T1) when w(T1,x) is committed. The primary
copy of y is updated by the operation w(T1,y), but the update is not reflected on the
secondary copy nor appended to the update queue due to R(T2,y). R(T4,y) is granted a
lock after T2 releases its read-lock. Accordingly, read-down operations by high-level
transactions may be unpredictable. In the case of the Dynamic Copy Protocol shown in
Figure 7, T4 reads-down the source regardless of the read-lock release by T2. Since the
source is not write-locked, T4 is granted a read-lock and executes its operation without
waiting. As soon as T2 releases its lock, the secondary copy is deleted.

In this section, we prove the correctness of the proposed protocol.

[Lemma 1] All transactions at a single security level are serializable.

Proof: Same as in [1]

[Lemma 2] All transactions committed by the Dynamic Copy Protocol are serializable.

Proof: In the Dynamic Copy Protocol, each transaction procures all the required locks
before starting its execution. Therefore, it is not possible for any two transactions to
have contradicting dependency relationships at different security levels.
Consider levels L and L' where L>L'. Since transactions at each level are serialized(by
Lemma 1), let T1 T2 ... Tm-1 Tm be the serialization order at level L and
t1 t2 ... tn-1 tn be the order at level L' of committed transactions.

Suppose by way of contradiction that there is no serialization order among all these
transactions. Then there is a cycle in the corresponding serialization graph so that one
of the following two cases is possible:

Case 1) Ti tj tk Ti : Since only read-down operations are allowed for higher
level transactions on lower level objects, Ti tj implies that there is a data object x
(at level L') that was read by Ti and modified later by tj. Similarly, tk Ti implies
that there is a data object y (at level L') that was written by tk and later read by Ti.
Since all locks were obtained at the beginning of its execution, it had obtained locks on
the secondary copies of x and y also at the beginning. Hence, Ti tj implies that tj

was committed after Ti started, and tk Ti implies that tk was committed prior to Ti's
start. From the above, we can conclude that tk was committed before tj. However, this
contradicts our assumption that tj tk.

Case 2) ti Tj Tk ti : ti Tj implies that there is a data object x (at level
L') that was modified by ti and later was read by Tj. Similarly, Tk ti implies that
there is a data object y (at level L') that was read by Tk and later modified by ti.
Using the same argument in case 1, it lead to a contradiction.
The same proof can be extended even when transactions from more than two levels are
considered. Thus, all committed transactions by the Dynamic Copy Protocol are
serializable.

Figure 8 illustrates the simulation model designed for the performance evaluation of
the Dynamic Copy Protocol and for the comparison of the protocol with the SRT-2PL.
The transaction generator generates transactions according to the given factors. The
transaction scheduler is responsible for scheduling the generated transactions and
managing the block queue and waiting queue. A transaction in the waiting queue is
transmitted to CPU and executed according to the given concurrent control protocol.
Under the simulation model, the performance of both SRT-2PL and Dynamic Copy
Protocol is evaluated by comparing the number of delayed or aborted transactions as
well as the length of update queues and the number of copies, according to the size of
the slack or transaction.

Database

Transaction Generator

Transaction Scheduler

Concurrency Control

CPU

block queue

waiting queue

[Figure 8] Simulation Model

The experiments were performed under the single-processor and memory-based
database environment in order to minimize other influences. The Earliest Deadline First
(EDF) algorithm was used for the priority assignment of transactions. The simulation
factors are given in Table 2.

[Table 2] Simulation Factors

In Figures 9 through 12, DCP stands for the Dynamic Copy Protocol. For DCP, the
length of the copy list was considered as the number of copies, and one (secondary
copy), added to the length of update queue, was used for SRT-2PL.

0

2

4

6

8

10

12

14

16

18

20 30 60 90 120

max of slack

of

 d
ea

dl
in

e
m

ee
t t

ra
ns

ac
tio

ns

DCP

SRT-2PL

[Figure 9] Slack vs. Number of Deadline Met Transactions

Factor Value
execution Time
(Read, Write) 3.0 ms
of data objects 10
security level 3

0

1

2

3

4

5

6

7

8

9

20 30 60 90 120

max of slack

m
ea

n
of

 c
op

ie
s

DCP

SRT-2PL

[Figure 10] Slack vs. Number of Copies

Figures 9 and 10 show how the number of deadline meeting transactions and average
number of copies change, as the slack, which is the time left to the deadline, varies.
The number of deadline meeting transactions increases as the slack becomes larger. The
reason why SRT-2PL has a smaller number of deadline meeting transactions than DCP
is because some transactions missed deadlines due to the delay of high-level
transactions. The number of copies also increases as the slack becomes larger, since less
transactions get aborted and more number of active transactions use copies. Many more
copies are generated in SRT-2PL since it keeps a secondary copy even if the primary
copy has no lock.

0

1
2

3

4

5
6

7

8

9
10

5 10 15 20 25

max of transaction size

of

 d
ea

dl
in

e
m

ee
t t

ra
ns

ac
tio

ns

DCP

SRT-2PL

[Figure 11] Transaction Size vs. Number of Deadline Met Transactions

0

0.5

1

1.5

2

2.5

3

3.5

5 10 15 20 25

max of transaction size

m
ea

n
of

 c
op

ie
s

DCP

SRT-2PL

[Figure 12] Transaction Size vs. Number of copies

Figures 11 and 12 show how the number of deadline meeting transactions and
average number of copies change as the number of operations in a transaction varies.
The larger the size of the transaction becomes, the more the number of deadline
meeting transactions decreases. The number of copies also decreases as the size of the
transaction becomes larger, since more transactions get aborted and less number of
active transactions use copies.

From the experimental results, DCP showed an average of 14% higher than
SRT-2PL in the number of deadline meeting transactions, and an average of 80% less
in memory usage. Such a remarkable difference in memory saving comes from the fact
that DCP generates copies only when needed and allows high-level transactions to read
the primary copy, if it is not write-locked, without generating secondary copies, while at
the same time SRT-2PL has a secondary copy for each data object and the size of the
update queue grows for every update.

In addition to maintaining data consistency, database systems for real-time
applications must satisfy timing constraints associated with transactions. Multi-level
secure database systems with real-time transaction processing requirements are called
multi-level secure real-time database systems (MLS/RT DBMS). Such a system is
required to meet deadlines to maintain data consistency, and to prevent covert channels.
It is, however, not easy to design a system which satisfies all the criteria since there
are trade-offs among them.

We proposed a novel dynamic copy concurrency control protocol that can meet the
real-time, security, and serializability conditions. The proposed protocol is similar to
SRT-2PL since both protocols have primary and secondary copies. However, it allows
high-level transactions to perform read operations on the primary copy and dynamically
generates and deletes secondary copies as needed. Consequently, it consumes less
memory space and makes the read-downs more efficient as well as more predictable. It
also prevents covert channels from arising by maintaining noninterference among
transactions with different security levels. Our experimental results showed that the
proposed protocol used much less memory and made more transactions met deadlines
than SRT-2PL. The proposed protocol has some defects. Many copies must be
maintained when many write operations are requested on a data object. We are currently
in the process of improving our protocol.

