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Abstract 
In many real time applications, security is an 
important requirement, since the system maintains 
sensitive information to be shared by multiple users 
with different security levels. A secure real-time 
database system must satisfy not only logical data 
consistency but also the timing constraints and 
security requirements associated with transactions. 
Even though an optimistic concurrency control 
method outperforms locking based methods in firm 
real-time database systems, in which late 
transactions are immediately discarded, existing 
secure real-time concurrency control methods are 
mostly based on locking. In this paper, we propose 
a new optimistic concurrency control protocol for 
secure real-time database systems. We also 
compare the performance characteristics of our 
protocol with locking based methods while varying 
workloads. The results show that optimistic 
concurrency control performs well over a wide 
range of system loading and resource availability 
conditions. 

 
 
1. Introduction 
Depending on the application, database systems need to 
satisfy some additional requirements over and above 
logical data consistency. In real-time applications such as 
control systems, transactions have explicit timing 
constraints that they should meet while maintaining data 
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consistency. In secure applications such as military 
applications, data and transactions are classified into 
different levels of security and the high security level 
information should be prevented from flowing into lower 
security levels. Because of these additional requirements, 
conventional concurrency control techniques cannot be 
used directly in such advanced database applications.  

In real-time database systems, the deadline of a 
transaction is combined with its time-critical priority and 
system resources are scheduled in favor of the high 
priority transaction so that deadline-missing transactions 
are minimized. If we use conventional concurrency control 
mechanisms in a real-time database, priority inversion 
problems can occur due to shared data access [1]. In secure 
databases, a low security level transaction can be aborted 
or delayed by a high security level transaction due to 
shared data access. Thus, by aborting low-security level 
transactions in the predetermined manner, high-security 
level information can be indirectly transferred to the lower 
security level, in what is called a covert channel [8]. 
   Recently, there is increasing need for supporting 
applications which have timing constraints while 
managing sensitive data in advanced database systems 
such as military command control systems and stock 
information systems. Thus, we need to integrate security 
requirements into real-time database systems. There has 
been considerable research and performance study on the 
concurrency control protocols for real-time databases and 
secure databases. But secure real-time concurrency control 
protocols are rarely presented. To our knowledge, SRT-
2PL (Secure Real-Time Two-Phase Locking) [13] and 
PSMVL (Priority-driven Secure Multi-Version Locking 
Protocol) [14] are the only examples able to solve both 
real-time and secure requirements together.  
   As we can tell by their names, these protocols are 
based on locking protocols.  Performance studies of 
concurrency control methods in real-time environments 
have shown that an optimistic approach can outperform 



locking based methods [5, 6]. A key reason for this result 
is that the optimistic method, due to its validation stage 
conflict resolution, ensures that eventually discarded 
transactions do not restart other transactions, unlike the 
locking approach in which soon-to-be-discarded 
transactions may restart other transactions. Even though an 
optimistic concurrency control method outperforms 
locking in firm real-time database systems, in which late 
transactions are immediately discarded, existing secure 
real-time concurrency control methods are mostly based 
on locking.  
   In this paper, we propose a new concurrency control 
protocol based on an optimistic method for secure real-
time database systems. The proposed protocol solves the 
conflicts between real-time constraints and security 
requirements by maintaining multiple data versions and 
ensures serializability by appropriately marking conflicting 
transactions and letting them continuously proceed with 
the correct data versions. Our protocol eliminates the 
priority inversion and covert channel problems. The 
schedules produced by our protocol also ensure 
serializability. We devise data structures and several rules 
that can maintain multiple data versions efficiently. We 
also compare the performance characteristics of our 
protocol with locking based methods from the viewpoint 
of deadline-missing transactions and the degree of wasted 
restarts under varying workload conditions. 
   The rest of the paper is organized as follows. In section 
2, some related work is reviewed. In section 3, we briefly 
describe a secure real-time database model and present our 
secure real-time protocol. In section 4, we discuss the 
logical correctness of the proposed protocol. The results of 
the simulation experiment are described by comparing it 
with locking based methods in section 5. Finally, we 
conclude our study in section 6. 
 
2. Related Research 
In the early stage, real-time concurrency control protocols 
and multi-level secure concurrency control protocols have 
been studied independently. The former has been 
researched on the basis of locking strategies or optimistic 
methods, including priority based scheduling approaches. 
In the case of using locking strategies, typical examples 
are Wait Promote, High Priority, and Conditional Restart 
algorithms [1]. These algorithms aim to schedule 
transactions without causing priority inversion problems. 
OPT-SACRIFICE, OPT-WAIT, and WAIT-50 [5] are 
several alternatives that exploit optimistic techniques in a 
real-time database environment. The optimistic protocols 
use priority information in the resolution of data conflicts, 
that is, they resolve data conflicts always in favor of higher 
priority transactions. In a transaction’s validation stage, if 
there are conflicting higher priority transactions, it should 
be restarted (sacrificed) or blocked (waited) until higher 
priority transactions commit. WAIT-50 is a hybrid 

algorithm that controls the amount of waiting based on 
transaction conflict states. 
   Multi-level secure concurrency control protocol, whose 
research is mainly based on the Bell-LaPadula [2] security 
model, aims to maintain noninterference among 
transactions with different security levels. In a secure 
database, problems occur when there are data conflicts 
between different security level transactions. If we allow a 
low security level transaction to be aborted or blocked by a 
high security level transaction during the resolution of data 
conflicts, a covert channel can be made. The secure 
concurrency control protocols have been researched 
mainly on the basis of using multiple data versions or a 
single version. In the case of using multiple data versions, 
when different security level transactions request same 
data item simultaneously, they use different versions to 
avoid interference [8]. A major concern of these protocols 
is how to select a correct version in order to ensure 
serializability and how to maintain multiple versions 
considering storage overhead. In the case of using a single 
version, a low level transaction should not be blocked or 
aborted by a high level transaction. The secure 2-phase 
locking protocol proposed by Son [16] tries to simulate 
execution of basic 2PL without the blocking of low level 
transactions by high level transactions. Blocking occurs 
when a low level transaction (say TL) asks for a write 
operation on a data item that is already read-locked by a 
high level transaction (say TH). The secure 2PL protocol 
allocates a virtual lock to TL and allows it to execute the 
write operation, without delay, on the local area. Once the 
lock is released by TH, the virtual lock is changed to a real 
lock, and an actual write operation is executed on the 
database. 
   Recently, some integrated protocols that satisfy real-
time constraints and security requirements together have 
been proposed. Mukkamaala and Son [13] have introduced 
SRT-2PL, which prevents covert channels by maintaining 
the property of noninterference among transactions with 
different security levels. Since a covert channel arises 
when a high level transaction aborts or delays a low level 
transaction, the SRT-2PL removes possible conflicts by 
separating transactions with an access class identical to the 
data object from higher access class transactions. This is 
accomplished by maintaining two copies (a primary copy 
and a secondary copy) of each data object. The primary 
copy of an object is accessed (read/write) by transactions 
at the same security level as the data object. The secondary 
copy is accessed (read) by transactions at a security level 
higher than the data object. The update of the primary 
copy is carried out on the secondary copy through the 
queue that contains each update of the primary copy in the 
same order of update. 
   Park et. al. [14] propose another secure real-time 
protocol based on a multi-version 2-phase locking protocol. 
It introduces a new concept of serializability, what is 



called F (First-read) serializability [15], which is more 
general than the definition of 1-copy serializability. F-
serial eliminates the limitation that transactions must read 
the most recent versions and provides the boundary of 
each version that a transaction can read when the 
transaction does not read the most recent version. Thus, it 
can provide a higher degree of concurrency than MV2PL 
(Multi-Version 2-Phase Locking) which is based on 1-
copy serial. The other works which need to be mentioned, 
are [4] and [10]. In [4], a novel dual approach is proposed 
that allows a real-time database system to simultaneously 
use different concurrency control mechanisms for 
guaranteeing security and for improving real-time 
performance. In [10], a new optimistic concurrency control 
algorithm is presented which can avoid unnecessary 
restarts by adjusting serialization order dynamically. 
 
3. Optimistic Secure Real-Time Concurrency 

Control 
Performance studies of concurrency control algorithms for 
conventional database systems have shown that locking 
protocols outperform optimistic techniques under most 
operating circumstances. However, in firm real-time 
database systems where late transactions are immediately 
discarded, an optimistic technique is considered as more 
advantageous from the viewpoint of real-time performance, 
i.e., meeting timing constraints instead of transaction’s 
response time [5, 6]. Figure 1 shows one example of such 
scheduling advantage. Let’s consider the following 
schedule of transactions, T1 and T2 that require 5 
execution time units and have deadlines, time unit 4 and 6 
respectively. In the case of lock-based protocols, T2 
cannot meet deadline (time 6) due to blocking of soon-to-
be-discarded transaction, T1. On the contrary, in optimistic 
protocol, T2 can meet the deadline and successfully 
commit since T2’s validation happens after T1’s abortion. 
With such advantages in mind, we propose a new secure 
real-time concurrency control protocol based on optimistic 
approach. 

  Figure 1. Transaction Scheduling 
 
   In our secure real-time database model, each 
transaction (and data) has its own security level and 
priority value assigned by considering the transaction’s 
deadline (we assume that the priority value is unique 
among transactions). A basic principle of our protocol is 

that if data conflict occurs in the transaction’s validation 
phase, conflict is resolved to meet real-time and security 
requirements. In order to meet the real-time requirement 
and avoid covert channels, lower priority transaction and 
high security level transactions should be restarted 
(aborted) or delayed (waited) during conflict resolution. 
Data conflict, which is considered in the forward 
validation, arises from the data set written by the 
validating transaction and the data set read by currently 
running transactions. When we solve real-time and 
security requirements in single scheme, the problem occurs 
in the case that validating transaction has low priority 
value and low security level and conflicting active 
transaction has high priority value and high security level 
(after now, we call this case as LL-HH conflict). If we 
abort a validating transaction for a real-time requirement, 
it can cause a security violation. Aborting active 
transactions violates the real-time requirement. This case 
happens when a low priority transaction, which has written 
on a data item already read (i.e., read-down) by high 
priority transactions, enters the validation phase. Our 
proposed protocol solves these conflicts between real-time 
and security requirements by using multiple versions of 
data objects.  
   In the proposed protocol, when a data conflict of such 
a type happens, we commit the validating transaction and 
also let the active transaction continue to progress by 
selecting correct versions of the data object in order to 
ensure serializable execution. In the transaction’s 
validation phase, if such a case happens, the conflicting 
active transactions are marked with a timestamp, 
MTS(Marked Time Stamp) at this validation point and 
inserted into an MTL (Marked Transaction List) with the 
transaction identifier and timestamp value. After a 
transaction is marked, a read operation of the marked 
transaction is executed on the correct data version by 
comparing this timestamp (MTS) with that of the data 
version. In what follows, we now turn to describe our 
protocol in more detail by presenting several rules and data 
structures. 
   In the proposed protocol, transaction read/write 
operations are performed according to the following rules. 
 
[Rule 1] A transaction’s validation is processed sequen-
tially (one at a time) and at this time a unique timestamp 
value is given. The timestamp value is the logical time 
value that indicates a logical order of transaction validation.  
 
[Rule 2] At first, every write operation is performed in the 
transaction’s local workspace. After the validation is 
successfully finished, the write operation is reflected in the 
database. At this time, a new data version is generated and 
the data WTS (Write Time Stamp) is recorded as the 
timestamp of the validation point. 
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Table 1. Sample History 
Time 

Trans. … 10 11 12 13 14 15 16 17 18 … 

T1 
T2 

r(x)  
r(x) 

 
w(y)

w(x)  
w(z)

r(y)  
V

r(z)
… 

V … 

         P(T1) > P(T2)                     P(Ti) : Ti’s priority  
L(T1) = L(x) > L(T2) = L(y) = L(z)     L(Ti) : Ti’s security level 
V : validation    L(x) : Security level of data x 

 
[Rule 3] In the transaction’s validation phase, if the LL-
HH case happens, active transactions are marked with the 
timestamp value of the validation point, we call it an MTS 
(Marked Time Stamp), and inserted into the MTL (Marked 
Transaction List) with MTS value and transaction 
identifier. 
 
[Rule 4] Read operations of marked transactions use the 
most recent version of data x where WTS(x) < MTS(T). 
 
[Rule 5] Read operations of unmarked transactions always 
use the most recent data versions. 
 
[Rule 6] At the time of transactions’ read-downs, which 
means read operations by transactions at a security level 
higher than the data objects, a transaction identifier is 
inserted into the RDTL (Read-Down Transaction List) of 
the corresponding data version. 
 
[Rule 7] When the marked transaction is committed or 
restarted (aborted), the corresponding node of that 
transaction in the MTL is deleted. 
 
[Rule 8] When the transaction is committed or restarted 
(aborted), the corresponding transaction identifier is 
deleted from the RDTL of the data version if it has 
performed read-down operations on that version. 
 
[Rule 9] In the case where the MTL changes (the case 
where a marked transaction is committed or restarted), all 
data versions but one where the WTS value is smaller than 
the smallest MTS value in the MTL are deleted. 
 
[Rule 10] If the RDTL of the data version is empty and it 
does not violate [Rule 9], the corresponding data versions 
are deleted.  
 

In our protocol, the execution of a transaction consists 
of three phases: read, validation, and write phase. The read 
phase process can be described by the following procedure. 
 
read_phase(Ta) 
{ 

foreach Di (i = 1, 2, ..., m) in RS(Ta) { 
if (Ta is marked) 

select the version of Di where WTS(Di) < 
MTS(Ta) 

 read that version 
else read the most recent version of Di 

       } 
foreach Dj (j = 1, 2, ..., n) in WS(Ta) 
    write Dj in local workspace 
 

} 
 
After the read phase, a transaction goes through the 
validation as in the forward validation procedure. If data 
conflicts occur during the validation, conflict resolution is 
executed as follows. 

 
conflict_resoution(Tv) 
{   // P(T): Priority of Transaction, T   

// L(T): Security Level of Transaction, T 
    case 1: P(Tv) > P(Ta) and L(Tv) = L(Ta) 
     abort(Ta);    commit(Tv); 
    case 2: P(Tv) > P(Ta) and L(Tv) < L(Ta) 
           abort(Ta);    commit(Tv); 
    case 3: P(Tv) < P(Ta) and L(Tv) = L(Ta) 

    abort(Tv); 
    case 4: P(Tv) < P(Ta) and L(Tv) < L(Ta) 

    mark(Ta);   commit(Tv); 
} 
 

Once the validation of a transaction is successful, the 
transaction’s updates are copied from the local workspace 
into the database in the write phase. At this time, a new 
version of the data object is generated with the WTS as the 
timestamp value of the validation point. 

In order to describe our protocol more clearly, we 
explain step-by-step operations according to the above 
procedures for the sample history in Table 1. Figure 2 
shows data structures used in the protocol and how it 
changes while executing transactions. In Figure 2, data 
structures enclosed by a solid line represent the initial state 
of data versions and MTL, and the update of data versions 
and MTL is represented by a dotted line. In the sample 
history of Table 1, until the validation of T2 begins, 
transactions’ read/write operations are performed without 
any interference. r(x) and r(y) of T1 read the most recent 
data version, x=30 and y=20 respectively. r(y) of T2 also 
reads y=20. At this moment, since r(y) of T1 is a read-
down operation, T1’s ID is inserted in the RDTL of data 
version (y=20). w(x), w(y), and w(z) of T1 and T2 are 



Figure 2. Data Structures 
 

executed on each transaction’s local workspaces.  
During the validation of T2 at time 16 in Table 1, LL-

HH conflict happens due to data y. Therefore, T1 is marked 
(See Figure 2 (a)) according to the above rules and after 
this, T2 is committed successfully reflecting w(y) and w(z) 
to the database (at this moment, new versions of data y and 
z are generated). At time 17, since T1 is marked by T2,  r(z) 
of T1 selects data version, z=4 (where WTS(z) < MTS(T1)) 
instead of using data version, z=10 which is the most 
recent version of z. After the successful validation of T1, T1 
is committed. In consequence of T1’s commitment, a new 
version of x is generated and the node of T1 in MTL is 
deleted. If the smallest MTS value in the MTL is changed, 
the version management procedure is executed according 
to [Rule 9]. For example, if T3 is deleted from MTL 
(deletion of T3 occurs when T3 is committed or aborted), 
the version management procedure deletes the first version 
of x (value=10, WTS=2) since x already has a version 
(value=30, WTS=7) whose WTS value is smaller than the 
smallest MTS value, 8 in MTL. 
 
4. The Correctness of the Protocol 

In this section, we prove the correctness of the 
proposed protocol. To prove logical correctness (i.e., 
serializability), we use the simple definitions of a history 
and a serialization graph. In order to show that our 
protocol satisfies real-time and security requirements, we 
briefly state the results less formally in [Lemma 3] and 
[Lemma 4].  
 
[Lemma 1] All committed transactions at a single security 
level are serializable. 
 

Proof : In the case where every transaction has the same 
security level, the execution of transactions is the same as 
in the existing real-time optimistic protocol of [5] since the 
LL-HH conflict does not occur. Thus, we know that all 
committed transactions are serializable as in [5]. The serial 
order of committed transactions is the same as the 
validation order of transactions. 
 
[Lemma 2] All committed transactions (independent of 
their security level) are serializable.  
 
Proof : By [Lemma 1], all committed transactions at a 
single level are serializable. Thus, we only need to prove 
that the committed transactions with different security 
levels are also serializable. Consider levels L and L′ where 
L > L′. Since transactions at each level are serialized (by 
[Lemma 1]), let T1 ->T2 ->... ->Tm-1 ->Tm be the 
serialization order at level L and t1 ->t2 ->... ->tn-1 ->tn be 
the order at level L′ of committed transactions. Suppose, 
by way of contradiction, that there is no serialization order 
among all these transactions. Then there is a cycle in the 
corresponding serialization graph so that one of the 
following two cases is possible (Let Ti  and Tk  be high 
security level transactions and  tj  and  tk  be low 
security level transactions): 
 
Case 1) Ti ->tj ->tk ->Ti : Since only read-down operations 
are allowed for higher level transactions on lower level 
data objects, Ti ->tj implies that there is a data object x (at 
level L′) that was read (read-down) by Ti and modified 
later by tj. In our protocol, this can happen in two ways, (I) 
Ti is committed before tj

  through a successful 
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validation and (II) Ti is committed after tj’s commitment. 
In the case of (II), Ti is marked during the validation of tj.  
Similarly, tk ->Ti implies that there is a data object y (at 
level L′) that was written by tk and later read by Ti. In the 
case of (I), since Ti’s timestamp (at the validation point) is 
smaller than tj’s timestamp and the timestamp of tj is 
smaller than that of tk (by tj ->tk), tk ->Ti can not happen. 
Also in the case of (II), Ti’s read operation uses only the 
data version whose WTS value is smaller than MTS(Ti) 
and the WTS value of the data version which is written by 
tk, is always larger than MTS(Ti) (since timestamp(tk) > 
timestamp(tj) and timestamp(tj) = MTS(Ti)). Thus, neither 
can tk ->Ti  happen in the case of (II). Therefore, the 
cyclic serialization graph of Ti ->tj ->tk ->Ti  cannot occur 
in our protocol. 
 
Case 2) ti ->Tj ->Tk ->ti : This case also can be similarly 
contradicted as in the above case. In the cyclic serialization 
graph, ti ->Tj implies that there is a data object x (at level 
L′) that was modified by ti and later was read by Tj. This 
means that ti is committed before Tj. Similarly, Tk ->ti 
implies that there is a data object y (at level L′) that was 
read by Tk and later modified by ti. Figure 3 shows the 
schedule of this case. In the cycle, Tj ->Tk implies that Tk  
reads a data object z that was modified by Tj. But, as in 
Figure 3, Tk is marked at the time of ti’s validation and 
after Tk reads only the data version whose WTS value is 
smaller than the timestamp of ti. Thus, Tj ->Tk cannot occur 
in our protocol. Therefore, the cyclic serialization graph of 
ti ->Tj ->Tk ->ti  also cannot happen. 

Figure 3. Example of the Schedule 
 

The same proof can be extended even when 
transactions from more than two levels are considered. 
Thus, all committed transactions by the proposed protocol 
are serializable. ■ 

 
[Lemma 3] In our protocol, low security level transactions 
are not delayed (Delay Secure) or aborted (Recovery 
Secure) by data conflicts with higher security level 
transactions. Data updates by higher security level 
transactions are not seen by lower security level 
transactions (Value Secure): (the necessary and sufficient 
conditions for a secure database). 
 
Proof : Since our protocol is based on an optimistic 
method, transaction’s delay, which is caused by blocking 

in locking protocol, does not occur. Also by [Rule 3] and 
[Rule 4], transaction abort (restart) by higher security level 
transactions does not occur. Neither does transaction write-
down occur because of the Bell-LaPadula security model. 
■ 
 
[Lemma 4] High priority transactions are neither aborted 
(restarted) nor delayed (blocked) by low-priority 
transactions due to data contention on low security level 
data objects. 
 
Proof : Same as the proof of [Lemma 3]. ■ 
 
5. Performance Evaluation 
In this section, we describe the structure and details of the 
simulation model and experimental environment that were 
used to evaluate the performance of our protocol. We also 
present performance results from our experimental 
comparisons with locking based protocols. 
 
5.1 Simulation Model 

 Figure 4. The Simulation Queueing Model 
 

Table 2. Simulation Parameters 
Parameters Value 

 Database Size 100 
 Slack Value 1.5∼4.5 
 Security Level 3 
 Transaction Size 5∼20 
 CPR Time 3.0 ms 
 Disk Time 25 ms 
 Buffer Hit 0.7 
 Transaction Arrival Rate 5∼30 tr./sec 

 
Figure 4 illustrates the simulation queueing model 

designed for the experiment. Each transaction, which 
consists of a sequence of page read and write operations, is 
generated from the transaction generator and then inserted 
into the CPU queue. In our simulation, transactions arrive 
in a Poisson stream, i.e. their inter-arrival times are 
exponentially distributed. We varied the mean transaction 
arrival rate in order to experiment with different (heavy or 
light) transaction workloads. When a transaction in the 
CPU queue is selected by its priority which is calculated 
from deadline information, it must go through the given 
concurrency control protocol to obtain a data access 
permission. If data access is granted, the transaction 

w(x) w(y)

r(x) w(z)

r(y) r(z)

ti, x, y : Low Security Level Tj ,Tk ,z : High Security Level

Marked by   ti
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Figure 5. Miss Ratio vs. Arrival Rate                    Figure 6. Miss Ratio vs. Arrival Rate 
(Write Probability = 0.5)                               (Write Probability = 0.1) 

        Figure 7. Miss Ratio vs. Transaction Size                   Figure 8. Miss Ratio vs. Slack Value 
 
proceeds to perform the data operations, which consist of 
disk access and CPU computations. If the data access 
request is denied, the transaction will be placed into a 
blocked queue. A transaction, which is to be aborted by the 
protocol, can be restarted or discarded if it cannot meet the 
deadline. Transactions that have already missed their 
deadlines are immediately discarded from CPU queue. 

Table 2 summarizes the key parameters that are used in 
the simulation. The database itself is modeled as a 
collection of data pages in disks. The slack value is used to 
calculate the deadline according to the following formula: 
deadline = arrival_time + slack * transaction_size * 
execution_time. This deadline information is also used to 
assign the priority of each transaction. We used the EDF 
(Earliest Deadline First) algorithm for the priority 
assignment of transactions, varying the slack value for the 
purpose of representing different real-time environments. 
The security_level of a transaction is randomly given at its 
generation and data objects are initially classified into 
different security_levels. The transaction_size represents 
the number of read/write operations in a transaction and it 
is also varied in our simulation. The use of a database 
buffer pool is simulated using probability. When a 
transaction attempts to read a data page, the system 
determines whether the page is in memory or disk using 
the probability, Buffer_Hit. The execution_time, which is 
used to calculate the deadline, is obtained as follows: 

execution_time = CPU_time + (1 - Buffer_Hit) * 
Disk_time.  
 
5.2 Experiments and Results  
For experiments intended to compare our optimistic 
protocol with locking protocols, we implemented 
PSMVL[14] which is a lock-based real-time secure 
protocol. Since it uses multiple versions of data in order to 
satisfy real-time and security requirements as we do, we 
can examine different behaviors between them. As 
mentioned in [10], it is difficult to compare the 
performance of an optimistic protocol with that of a 
locking protocol due to the significant difference in their 
implementation. In our simulation, we only consider the 
impact of data contention in two schemes while assuming 
that the processing overhead of each protocol is the same. 
The simulation program was written by CSIM library  on 
the Sun UltraSparc workstation. 

As for the primary performance metrics, we used Miss 
Ratio, which is calculated as follows: Miss Ratio = 100 * 
(# of discarded transactions / # of transactions arrived) 
and Restart Ratio, which measures the average ratio of 
transaction restarts. We measured these metrics while 
varying system workloads, transaction size, and deadline 
tightness (by using different slack values). Additionally, 
we measured other statistical information, including 
average transaction blocking time and unnecessary  
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Figure 9. Restart Ratio vs. Arrival Rate 
 
restart/blocking time caused by soon-to-be-discarded 
transactions.  

Figures 5 and 6 (in the graph SRT_OPT represent our 
protocol, Secure Real-Time Optimistic protocol) show the 
miss ratios of two concurrency control schemes under 
different degrees of data contention (write probability = 
0.1 and 0.5, respectively) while varying system workloads 
(by varying transaction arrival rate). As we can see from 
Figure 5, in the case where write probability = 0.1 (i.e., the 
operations in a transaction are mostly read) the 
performance of the two schemes is almost the same. The 
reason is that the two schemes behave similarly since there 
is not much data contention. However, in the case where 
data contention increases with high write probability and 
heavy workloads as in Figure 6, the performance 
difference becomes bigger. This is due to the fact that in 
the locking scheme many restarts (aborts) are made 
unnecessarily by soon-to-be-discarded transactions. The 
same reasoning can be applied in Figure 7. That is, if the 
transaction size increases, the possibility of data contention 
becomes larger. Figure 8 shows the miss ratio with 
different slack values (deadline tightness). From Figure 8, 
we can see that if the transaction has enough slack time, 
most transactions can meet the deadline in both schemes 
by restarting conflicting transactions. 

Figures 9 and 10 show the restart ratio with different 
arrival rate and slack values, respectively. The restart ratio 
represents the average restart percentage of each 
transaction during the simulation. Actually, this metric 
does not give a meaningful comparison between the two 
schemes because the data conflicts are resolved differently 
in the two schemes. That is, in an optimistic approach, 
conflict resolution is accomplished only by restarting 
(aborting) one of the conflicting transactions. On the other 
hand, the locking based method resolves conflicts by 
restarting or sometimes by blocking a transaction. 
However, we can see that the restart ratio decreases as the 
system workload becomes heavier in Figure 8. The reason 
is that the chance of restarting becomes low as a heavier 
workload yields more deadline missing transactions. 

Figure 10. Restart Ratio vs. Slack Value 
 
Figure 10 also shows similar reasoning. Enough slack time 
gives more chance of successful completion by restarting 
transactions more frequently. 
 
6. Conclusion 
In this paper, we have presented a new secure real-time 
concurrency control scheme based on an optimistic 
approach. Our protocol solves the conflict between real-
time constraints and security requirements by maintaining 
multiple data versions, and it ensures serializability by 
appropriately marking conflicting transactions and letting 
them continuously proceed with the correct data versions. 
To evaluate its performance characteristics, we compared 
it with the existing locking based method, PSMVL. Even 
though we did not consider the protocol overhead of each 
scheme in detail, we could compare the effect of data 
contention between two schemes. Our experiments show 
that an optimistic approach gives better performance than 
the locking scheme in the case of high data contention 
because the forward validation of an optimistic method can 
reduce unnecessary restarts to a higher degree than the 
locking method can. 
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