

Optimistic Secure Real-Time Concurrency Control
Using Multiple Data Versions

Byeong-Soo Jeong Daeho Kim Sungyoung Lee

Dept. of Computer Engineering
Kyung Hee University

Seoul, Korea
{jeong, tonkey, sylee}@nms.kyunghee.ac.kr

Abstract
In many real time applications, security is an
important requirement, since the system maintains
sensitive information to be shared by multiple users
with different security levels. A secure real-time
database system must satisfy not only logical data
consistency but also the timing constraints and
security requirements associated with transactions.
Even though an optimistic concurrency control
method outperforms locking based methods in firm
real-time database systems, in which late
transactions are immediately discarded, existing
secure real-time concurrency control methods are
mostly based on locking. In this paper, we propose
a new optimistic concurrency control protocol for
secure real-time database systems. We also
compare the performance characteristics of our
protocol with locking based methods while varying
workloads. The results show that optimistic
concurrency control performs well over a wide
range of system loading and resource availability
conditions.

1. Introduction
Depending on the application, database systems need to
satisfy some additional requirements over and above
logical data consistency. In real-time applications such as
control systems, transactions have explicit timing
constraints that they should meet while maintaining data

* This work was supported by International collaborative Research
Program (TRP-9802-6) sponsored by Ministry of Information and
Communication of Korea

consistency. In secure applications such as military
applications, data and transactions are classified into
different levels of security and the high security level
information should be prevented from flowing into lower
security levels. Because of these additional requirements,
conventional concurrency control techniques cannot be
used directly in such advanced database applications.

In real-time database systems, the deadline of a
transaction is combined with its time-critical priority and
system resources are scheduled in favor of the high
priority transaction so that deadline-missing transactions
are minimized. If we use conventional concurrency control
mechanisms in a real-time database, priority inversion
problems can occur due to shared data access [1]. In secure
databases, a low security level transaction can be aborted
or delayed by a high security level transaction due to
shared data access. Thus, by aborting low-security level
transactions in the predetermined manner, high-security
level information can be indirectly transferred to the lower
security level, in what is called a covert channel [8].
 Recently, there is increasing need for supporting
applications which have timing constraints while
managing sensitive data in advanced database systems
such as military command control systems and stock
information systems. Thus, we need to integrate security
requirements into real-time database systems. There has
been considerable research and performance study on the
concurrency control protocols for real-time databases and
secure databases. But secure real-time concurrency control
protocols are rarely presented. To our knowledge, SRT-
2PL (Secure Real-Time Two-Phase Locking) [13] and
PSMVL (Priority-driven Secure Multi-Version Locking
Protocol) [14] are the only examples able to solve both
real-time and secure requirements together.
 As we can tell by their names, these protocols are
based on locking protocols. Performance studies of
concurrency control methods in real-time environments
have shown that an optimistic approach can outperform

locking based methods [5, 6]. A key reason for this result
is that the optimistic method, due to its validation stage
conflict resolution, ensures that eventually discarded
transactions do not restart other transactions, unlike the
locking approach in which soon-to-be-discarded
transactions may restart other transactions. Even though an
optimistic concurrency control method outperforms
locking in firm real-time database systems, in which late
transactions are immediately discarded, existing secure
real-time concurrency control methods are mostly based
on locking.
 In this paper, we propose a new concurrency control
protocol based on an optimistic method for secure real-
time database systems. The proposed protocol solves the
conflicts between real-time constraints and security
requirements by maintaining multiple data versions and
ensures serializability by appropriately marking conflicting
transactions and letting them continuously proceed with
the correct data versions. Our protocol eliminates the
priority inversion and covert channel problems. The
schedules produced by our protocol also ensure
serializability. We devise data structures and several rules
that can maintain multiple data versions efficiently. We
also compare the performance characteristics of our
protocol with locking based methods from the viewpoint
of deadline-missing transactions and the degree of wasted
restarts under varying workload conditions.
 The rest of the paper is organized as follows. In section
2, some related work is reviewed. In section 3, we briefly
describe a secure real-time database model and present our
secure real-time protocol. In section 4, we discuss the
logical correctness of the proposed protocol. The results of
the simulation experiment are described by comparing it
with locking based methods in section 5. Finally, we
conclude our study in section 6.

2. Related Research
In the early stage, real-time concurrency control protocols
and multi-level secure concurrency control protocols have
been studied independently. The former has been
researched on the basis of locking strategies or optimistic
methods, including priority based scheduling approaches.
In the case of using locking strategies, typical examples
are Wait Promote, High Priority, and Conditional Restart
algorithms [1]. These algorithms aim to schedule
transactions without causing priority inversion problems.
OPT-SACRIFICE, OPT-WAIT, and WAIT-50 [5] are
several alternatives that exploit optimistic techniques in a
real-time database environment. The optimistic protocols
use priority information in the resolution of data conflicts,
that is, they resolve data conflicts always in favor of higher
priority transactions. In a transaction’s validation stage, if
there are conflicting higher priority transactions, it should
be restarted (sacrificed) or blocked (waited) until higher
priority transactions commit. WAIT-50 is a hybrid

algorithm that controls the amount of waiting based on
transaction conflict states.
 Multi-level secure concurrency control protocol, whose
research is mainly based on the Bell-LaPadula [2] security
model, aims to maintain noninterference among
transactions with different security levels. In a secure
database, problems occur when there are data conflicts
between different security level transactions. If we allow a
low security level transaction to be aborted or blocked by a
high security level transaction during the resolution of data
conflicts, a covert channel can be made. The secure
concurrency control protocols have been researched
mainly on the basis of using multiple data versions or a
single version. In the case of using multiple data versions,
when different security level transactions request same
data item simultaneously, they use different versions to
avoid interference [8]. A major concern of these protocols
is how to select a correct version in order to ensure
serializability and how to maintain multiple versions
considering storage overhead. In the case of using a single
version, a low level transaction should not be blocked or
aborted by a high level transaction. The secure 2-phase
locking protocol proposed by Son [16] tries to simulate
execution of basic 2PL without the blocking of low level
transactions by high level transactions. Blocking occurs
when a low level transaction (say TL) asks for a write
operation on a data item that is already read-locked by a
high level transaction (say TH). The secure 2PL protocol
allocates a virtual lock to TL and allows it to execute the
write operation, without delay, on the local area. Once the
lock is released by TH, the virtual lock is changed to a real
lock, and an actual write operation is executed on the
database.
 Recently, some integrated protocols that satisfy real-
time constraints and security requirements together have
been proposed. Mukkamaala and Son [13] have introduced
SRT-2PL, which prevents covert channels by maintaining
the property of noninterference among transactions with
different security levels. Since a covert channel arises
when a high level transaction aborts or delays a low level
transaction, the SRT-2PL removes possible conflicts by
separating transactions with an access class identical to the
data object from higher access class transactions. This is
accomplished by maintaining two copies (a primary copy
and a secondary copy) of each data object. The primary
copy of an object is accessed (read/write) by transactions
at the same security level as the data object. The secondary
copy is accessed (read) by transactions at a security level
higher than the data object. The update of the primary
copy is carried out on the secondary copy through the
queue that contains each update of the primary copy in the
same order of update.
 Park et. al. [14] propose another secure real-time
protocol based on a multi-version 2-phase locking protocol.
It introduces a new concept of serializability, what is

called F (First-read) serializability [15], which is more
general than the definition of 1-copy serializability. F-
serial eliminates the limitation that transactions must read
the most recent versions and provides the boundary of
each version that a transaction can read when the
transaction does not read the most recent version. Thus, it
can provide a higher degree of concurrency than MV2PL
(Multi-Version 2-Phase Locking) which is based on 1-
copy serial. The other works which need to be mentioned,
are [4] and [10]. In [4], a novel dual approach is proposed
that allows a real-time database system to simultaneously
use different concurrency control mechanisms for
guaranteeing security and for improving real-time
performance. In [10], a new optimistic concurrency control
algorithm is presented which can avoid unnecessary
restarts by adjusting serialization order dynamically.

3. Optimistic Secure Real-Time Concurrency

Control
Performance studies of concurrency control algorithms for
conventional database systems have shown that locking
protocols outperform optimistic techniques under most
operating circumstances. However, in firm real-time
database systems where late transactions are immediately
discarded, an optimistic technique is considered as more
advantageous from the viewpoint of real-time performance,
i.e., meeting timing constraints instead of transaction’s
response time [5, 6]. Figure 1 shows one example of such
scheduling advantage. Let’s consider the following
schedule of transactions, T1 and T2 that require 5
execution time units and have deadlines, time unit 4 and 6
respectively. In the case of lock-based protocols, T2
cannot meet deadline (time 6) due to blocking of soon-to-
be-discarded transaction, T1. On the contrary, in optimistic
protocol, T2 can meet the deadline and successfully
commit since T2’s validation happens after T1’s abortion.
With such advantages in mind, we propose a new secure
real-time concurrency control protocol based on optimistic
approach.

 Figure 1. Transaction Scheduling

 In our secure real-time database model, each
transaction (and data) has its own security level and
priority value assigned by considering the transaction’s
deadline (we assume that the priority value is unique
among transactions). A basic principle of our protocol is

that if data conflict occurs in the transaction’s validation
phase, conflict is resolved to meet real-time and security
requirements. In order to meet the real-time requirement
and avoid covert channels, lower priority transaction and
high security level transactions should be restarted
(aborted) or delayed (waited) during conflict resolution.
Data conflict, which is considered in the forward
validation, arises from the data set written by the
validating transaction and the data set read by currently
running transactions. When we solve real-time and
security requirements in single scheme, the problem occurs
in the case that validating transaction has low priority
value and low security level and conflicting active
transaction has high priority value and high security level
(after now, we call this case as LL-HH conflict). If we
abort a validating transaction for a real-time requirement,
it can cause a security violation. Aborting active
transactions violates the real-time requirement. This case
happens when a low priority transaction, which has written
on a data item already read (i.e., read-down) by high
priority transactions, enters the validation phase. Our
proposed protocol solves these conflicts between real-time
and security requirements by using multiple versions of
data objects.
 In the proposed protocol, when a data conflict of such
a type happens, we commit the validating transaction and
also let the active transaction continue to progress by
selecting correct versions of the data object in order to
ensure serializable execution. In the transaction’s
validation phase, if such a case happens, the conflicting
active transactions are marked with a timestamp,
MTS(Marked Time Stamp) at this validation point and
inserted into an MTL (Marked Transaction List) with the
transaction identifier and timestamp value. After a
transaction is marked, a read operation of the marked
transaction is executed on the correct data version by
comparing this timestamp (MTS) with that of the data
version. In what follows, we now turn to describe our
protocol in more detail by presenting several rules and data
structures.
 In the proposed protocol, transaction read/write
operations are performed according to the following rules.

[Rule 1] A transaction’s validation is processed sequen-
tially (one at a time) and at this time a unique timestamp
value is given. The timestamp value is the logical time
value that indicates a logical order of transaction validation.

[Rule 2] At first, every write operation is performed in the
transaction’s local workspace. After the validation is
successfully finished, the write operation is reflected in the
database. At this time, a new data version is generated and
the data WTS (Write Time Stamp) is recorded as the
timestamp of the validation point.

1 2 3 4 5 6 7
T1 's deadline T2 's deadline

T1

T2

T1

T2
T1 discard (abort)

T1 discard (abort)

W(x)

R(x)

W(x)

R(x)
T2 discard (abort)Blocked

Successful Validation and Commit

(Locking Method)

(Optimistic Method)

Table 1. Sample History
Time

Trans. … 10 11 12 13 14 15 16 17 18 …

T1
T2

r(x)
r(x)

w(y)

w(x)
w(z)

r(y)
V

r(z)
…

V …

 P(T1) > P(T2) P(Ti) : Ti’s priority
L(T1) = L(x) > L(T2) = L(y) = L(z) L(Ti) : Ti’s security level
V : validation L(x) : Security level of data x

[Rule 3] In the transaction’s validation phase, if the LL-
HH case happens, active transactions are marked with the
timestamp value of the validation point, we call it an MTS
(Marked Time Stamp), and inserted into the MTL (Marked
Transaction List) with MTS value and transaction
identifier.

[Rule 4] Read operations of marked transactions use the
most recent version of data x where WTS(x) < MTS(T).

[Rule 5] Read operations of unmarked transactions always
use the most recent data versions.

[Rule 6] At the time of transactions’ read-downs, which
means read operations by transactions at a security level
higher than the data objects, a transaction identifier is
inserted into the RDTL (Read-Down Transaction List) of
the corresponding data version.

[Rule 7] When the marked transaction is committed or
restarted (aborted), the corresponding node of that
transaction in the MTL is deleted.

[Rule 8] When the transaction is committed or restarted
(aborted), the corresponding transaction identifier is
deleted from the RDTL of the data version if it has
performed read-down operations on that version.

[Rule 9] In the case where the MTL changes (the case
where a marked transaction is committed or restarted), all
data versions but one where the WTS value is smaller than
the smallest MTS value in the MTL are deleted.

[Rule 10] If the RDTL of the data version is empty and it
does not violate [Rule 9], the corresponding data versions
are deleted.

In our protocol, the execution of a transaction consists
of three phases: read, validation, and write phase. The read
phase process can be described by the following procedure.

read_phase(Ta)
{

foreach Di (i = 1, 2, ..., m) in RS(Ta) {
if (Ta is marked)

select the version of Di where WTS(Di) <
MTS(Ta)

 read that version
else read the most recent version of Di

 }
foreach Dj (j = 1, 2, ..., n) in WS(Ta)
 write Dj in local workspace

}

After the read phase, a transaction goes through the
validation as in the forward validation procedure. If data
conflicts occur during the validation, conflict resolution is
executed as follows.

conflict_resoution(Tv)
{ // P(T): Priority of Transaction, T

// L(T): Security Level of Transaction, T
 case 1: P(Tv) > P(Ta) and L(Tv) = L(Ta)
 abort(Ta); commit(Tv);
 case 2: P(Tv) > P(Ta) and L(Tv) < L(Ta)
 abort(Ta); commit(Tv);
 case 3: P(Tv) < P(Ta) and L(Tv) = L(Ta)

 abort(Tv);
 case 4: P(Tv) < P(Ta) and L(Tv) < L(Ta)

 mark(Ta); commit(Tv);
}

Once the validation of a transaction is successful, the
transaction’s updates are copied from the local workspace
into the database in the write phase. At this time, a new
version of the data object is generated with the WTS as the
timestamp value of the validation point.

In order to describe our protocol more clearly, we
explain step-by-step operations according to the above
procedures for the sample history in Table 1. Figure 2
shows data structures used in the protocol and how it
changes while executing transactions. In Figure 2, data
structures enclosed by a solid line represent the initial state
of data versions and MTL, and the update of data versions
and MTL is represented by a dotted line. In the sample
history of Table 1, until the validation of T2 begins,
transactions’ read/write operations are performed without
any interference. r(x) and r(y) of T1 read the most recent
data version, x=30 and y=20 respectively. r(y) of T2 also
reads y=20. At this moment, since r(y) of T1 is a read-
down operation, T1’s ID is inserted in the RDTL of data
version (y=20). w(x), w(y), and w(z) of T1 and T2 are

Figure 2. Data Structures

executed on each transaction’s local workspaces.
During the validation of T2 at time 16 in Table 1, LL-

HH conflict happens due to data y. Therefore, T1 is marked
(See Figure 2 (a)) according to the above rules and after
this, T2 is committed successfully reflecting w(y) and w(z)
to the database (at this moment, new versions of data y and
z are generated). At time 17, since T1 is marked by T2, r(z)
of T1 selects data version, z=4 (where WTS(z) < MTS(T1))
instead of using data version, z=10 which is the most
recent version of z. After the successful validation of T1, T1
is committed. In consequence of T1’s commitment, a new
version of x is generated and the node of T1 in MTL is
deleted. If the smallest MTS value in the MTL is changed,
the version management procedure is executed according
to [Rule 9]. For example, if T3 is deleted from MTL
(deletion of T3 occurs when T3 is committed or aborted),
the version management procedure deletes the first version
of x (value=10, WTS=2) since x already has a version
(value=30, WTS=7) whose WTS value is smaller than the
smallest MTS value, 8 in MTL.

4. The Correctness of the Protocol

In this section, we prove the correctness of the
proposed protocol. To prove logical correctness (i.e.,
serializability), we use the simple definitions of a history
and a serialization graph. In order to show that our
protocol satisfies real-time and security requirements, we
briefly state the results less formally in [Lemma 3] and
[Lemma 4].

[Lemma 1] All committed transactions at a single security
level are serializable.

Proof : In the case where every transaction has the same
security level, the execution of transactions is the same as
in the existing real-time optimistic protocol of [5] since the
LL-HH conflict does not occur. Thus, we know that all
committed transactions are serializable as in [5]. The serial
order of committed transactions is the same as the
validation order of transactions.

[Lemma 2] All committed transactions (independent of
their security level) are serializable.

Proof : By [Lemma 1], all committed transactions at a
single level are serializable. Thus, we only need to prove
that the committed transactions with different security
levels are also serializable. Consider levels L and L′ where
L > L′. Since transactions at each level are serialized (by
[Lemma 1]), let T1 ->T2 ->... ->Tm-1 ->Tm be the
serialization order at level L and t1 ->t2 ->... ->tn-1 ->tn be
the order at level L′ of committed transactions. Suppose,
by way of contradiction, that there is no serialization order
among all these transactions. Then there is a cycle in the
corresponding serialization graph so that one of the
following two cases is possible (Let Ti and Tk be high
security level transactions and tj and tk be low
security level transactions):

Case 1) Ti ->tj ->tk ->Ti : Since only read-down operations
are allowed for higher level transactions on lower level
data objects, Ti ->tj implies that there is a data object x (at
level L′) that was read (read-down) by Ti and modified
later by tj. In our protocol, this can happen in two ways, (I)
Ti is committed before tj

 through a successful

x

Item H eader in serted at tim e 18

M T S
in serted at tim e 16

and deleted at tim e 18

5T
T ID M T S N ex t-M TT ID M T S N ex t-M T

3T 1T
T ID M T S N ext-M T

T 4 T 5 T 1

in serted at tim e 15

(a) D ata stru ctu re o f M T L

Item
n a m e

secu rity
level

n ex t_v
p o in ter

D ata
va lu e W T S R D _T r

p oin ter
n ex t_ v
po in ter

2 10 2 30 7 20 18

y

Item H eader in serted at tim e 16

1 10 4 20 9 15 16

T 4

z

Item H eader
inserted at tim e 16

1 4 2 15 16

in serted at tim e 17
(b) D ata stru ctu re of D ata V ersion s

6 8 16

validation and (II) Ti is committed after tj’s commitment.
In the case of (II), Ti is marked during the validation of tj.
Similarly, tk ->Ti implies that there is a data object y (at
level L′) that was written by tk and later read by Ti. In the
case of (I), since Ti’s timestamp (at the validation point) is
smaller than tj’s timestamp and the timestamp of tj is
smaller than that of tk (by tj ->tk), tk ->Ti can not happen.
Also in the case of (II), Ti’s read operation uses only the
data version whose WTS value is smaller than MTS(Ti)
and the WTS value of the data version which is written by
tk, is always larger than MTS(Ti) (since timestamp(tk) >
timestamp(tj) and timestamp(tj) = MTS(Ti)). Thus, neither
can tk ->Ti happen in the case of (II). Therefore, the
cyclic serialization graph of Ti ->tj ->tk ->Ti cannot occur
in our protocol.

Case 2) ti ->Tj ->Tk ->ti : This case also can be similarly
contradicted as in the above case. In the cyclic serialization
graph, ti ->Tj implies that there is a data object x (at level
L′) that was modified by ti and later was read by Tj. This
means that ti is committed before Tj. Similarly, Tk ->ti
implies that there is a data object y (at level L′) that was
read by Tk and later modified by ti. Figure 3 shows the
schedule of this case. In the cycle, Tj ->Tk implies that Tk
reads a data object z that was modified by Tj. But, as in
Figure 3, Tk is marked at the time of ti’s validation and
after Tk reads only the data version whose WTS value is
smaller than the timestamp of ti. Thus, Tj ->Tk cannot occur
in our protocol. Therefore, the cyclic serialization graph of
ti ->Tj ->Tk ->ti also cannot happen.

Figure 3. Example of the Schedule

The same proof can be extended even when
transactions from more than two levels are considered.
Thus, all committed transactions by the proposed protocol
are serializable. ■

[Lemma 3] In our protocol, low security level transactions
are not delayed (Delay Secure) or aborted (Recovery
Secure) by data conflicts with higher security level
transactions. Data updates by higher security level
transactions are not seen by lower security level
transactions (Value Secure): (the necessary and sufficient
conditions for a secure database).

Proof : Since our protocol is based on an optimistic
method, transaction’s delay, which is caused by blocking

in locking protocol, does not occur. Also by [Rule 3] and
[Rule 4], transaction abort (restart) by higher security level
transactions does not occur. Neither does transaction write-
down occur because of the Bell-LaPadula security model.
■

[Lemma 4] High priority transactions are neither aborted
(restarted) nor delayed (blocked) by low-priority
transactions due to data contention on low security level
data objects.

Proof : Same as the proof of [Lemma 3]. ■

5. Performance Evaluation
In this section, we describe the structure and details of the
simulation model and experimental environment that were
used to evaluate the performance of our protocol. We also
present performance results from our experimental
comparisons with locking based protocols.

5.1 Simulation Model

 Figure 4. The Simulation Queueing Model

Table 2. Simulation Parameters
Parameters Value

 Database Size 100
 Slack Value 1.5∼4.5
 Security Level 3
 Transaction Size 5∼20
 CPR Time 3.0 ms
 Disk Time 25 ms
 Buffer Hit 0.7
 Transaction Arrival Rate 5∼30 tr./sec

Figure 4 illustrates the simulation queueing model

designed for the experiment. Each transaction, which
consists of a sequence of page read and write operations, is
generated from the transaction generator and then inserted
into the CPU queue. In our simulation, transactions arrive
in a Poisson stream, i.e. their inter-arrival times are
exponentially distributed. We varied the mean transaction
arrival rate in order to experiment with different (heavy or
light) transaction workloads. When a transaction in the
CPU queue is selected by its priority which is calculated
from deadline information, it must go through the given
concurrency control protocol to obtain a data access
permission. If data access is granted, the transaction

w(x) w(y)

r(x) w(z)

r(y) r(z)

ti, x, y : Low Security Level Tj ,Tk ,z : High Security Level

Marked by ti

Tj

Tk

 ti

Concurrency
Control

Buffer
ManagerCPU

Disk

Blocked
Queue

Transaction
Generator

committed DiscardedRestarted

Figure 5. Miss Ratio vs. Arrival Rate Figure 6. Miss Ratio vs. Arrival Rate
(Write Probability = 0.5) (Write Probability = 0.1)

 Figure 7. Miss Ratio vs. Transaction Size Figure 8. Miss Ratio vs. Slack Value

proceeds to perform the data operations, which consist of
disk access and CPU computations. If the data access
request is denied, the transaction will be placed into a
blocked queue. A transaction, which is to be aborted by the
protocol, can be restarted or discarded if it cannot meet the
deadline. Transactions that have already missed their
deadlines are immediately discarded from CPU queue.

Table 2 summarizes the key parameters that are used in
the simulation. The database itself is modeled as a
collection of data pages in disks. The slack value is used to
calculate the deadline according to the following formula:
deadline = arrival_time + slack * transaction_size *
execution_time. This deadline information is also used to
assign the priority of each transaction. We used the EDF
(Earliest Deadline First) algorithm for the priority
assignment of transactions, varying the slack value for the
purpose of representing different real-time environments.
The security_level of a transaction is randomly given at its
generation and data objects are initially classified into
different security_levels. The transaction_size represents
the number of read/write operations in a transaction and it
is also varied in our simulation. The use of a database
buffer pool is simulated using probability. When a
transaction attempts to read a data page, the system
determines whether the page is in memory or disk using
the probability, Buffer_Hit. The execution_time, which is
used to calculate the deadline, is obtained as follows:

execution_time = CPU_time + (1 - Buffer_Hit) *
Disk_time.

5.2 Experiments and Results
For experiments intended to compare our optimistic
protocol with locking protocols, we implemented
PSMVL[14] which is a lock-based real-time secure
protocol. Since it uses multiple versions of data in order to
satisfy real-time and security requirements as we do, we
can examine different behaviors between them. As
mentioned in [10], it is difficult to compare the
performance of an optimistic protocol with that of a
locking protocol due to the significant difference in their
implementation. In our simulation, we only consider the
impact of data contention in two schemes while assuming
that the processing overhead of each protocol is the same.
The simulation program was written by CSIM library on
the Sun UltraSparc workstation.

As for the primary performance metrics, we used Miss
Ratio, which is calculated as follows: Miss Ratio = 100 *
(# of discarded transactions / # of transactions arrived)
and Restart Ratio, which measures the average ratio of
transaction restarts. We measured these metrics while
varying system workloads, transaction size, and deadline
tightness (by using different slack values). Additionally,
we measured other statistical information, including
average transaction blocking time and unnecessary

Arrival rate vs. Miss ratio
(slack value = 3.0, Tr. size = 10, write prob. = 0.1)

10

20

30

40

50

60

70

5 10 15 20 25 30

Arrival rate (trransaction/sec)

M
is

s
 r
a
ti
o
 (

%
)

PSMVL

SRT_OPT

Arrival rate vs. Miss ratio
(slack value = 3.0, Tr. size = 10, write prob. = 0.5)

10

20

30

40

50

60

70

80

90

5 10 15 20 25 30

Arrival rate (transaction/sec)

M
is

s
 r
a
ti
o
 (

%
)

PSMVL

SRT_OPT

Trans. size vs. Miss ratio
(arrival rate = 10, slack value = 3.0, write prob. = 0.5)

0

10

20

30

40

50

60

70

80

90

5 7 9 11 13 15 17

transaction size

M
is

s
 r
a
ti
o
 (

%
)

PSMVL

SRT_OPT

Slack value vs. Miss ratio
(tr. size = 10, arrival rate = 10, write prob. = 0.5)

20

25

30

35

40

45

50

55

60

65

70

1.5 2 2.5 3 3.5 4 4.5

Slack value

M
is

s
 r
a
ti
o
 (

%
)

PSMVL

SRT_OPT

Figure 9. Restart Ratio vs. Arrival Rate

restart/blocking time caused by soon-to-be-discarded
transactions.

Figures 5 and 6 (in the graph SRT_OPT represent our
protocol, Secure Real-Time Optimistic protocol) show the
miss ratios of two concurrency control schemes under
different degrees of data contention (write probability =
0.1 and 0.5, respectively) while varying system workloads
(by varying transaction arrival rate). As we can see from
Figure 5, in the case where write probability = 0.1 (i.e., the
operations in a transaction are mostly read) the
performance of the two schemes is almost the same. The
reason is that the two schemes behave similarly since there
is not much data contention. However, in the case where
data contention increases with high write probability and
heavy workloads as in Figure 6, the performance
difference becomes bigger. This is due to the fact that in
the locking scheme many restarts (aborts) are made
unnecessarily by soon-to-be-discarded transactions. The
same reasoning can be applied in Figure 7. That is, if the
transaction size increases, the possibility of data contention
becomes larger. Figure 8 shows the miss ratio with
different slack values (deadline tightness). From Figure 8,
we can see that if the transaction has enough slack time,
most transactions can meet the deadline in both schemes
by restarting conflicting transactions.

Figures 9 and 10 show the restart ratio with different
arrival rate and slack values, respectively. The restart ratio
represents the average restart percentage of each
transaction during the simulation. Actually, this metric
does not give a meaningful comparison between the two
schemes because the data conflicts are resolved differently
in the two schemes. That is, in an optimistic approach,
conflict resolution is accomplished only by restarting
(aborting) one of the conflicting transactions. On the other
hand, the locking based method resolves conflicts by
restarting or sometimes by blocking a transaction.
However, we can see that the restart ratio decreases as the
system workload becomes heavier in Figure 8. The reason
is that the chance of restarting becomes low as a heavier
workload yields more deadline missing transactions.

Figure 10. Restart Ratio vs. Slack Value

Figure 10 also shows similar reasoning. Enough slack time
gives more chance of successful completion by restarting
transactions more frequently.

6. Conclusion
In this paper, we have presented a new secure real-time
concurrency control scheme based on an optimistic
approach. Our protocol solves the conflict between real-
time constraints and security requirements by maintaining
multiple data versions, and it ensures serializability by
appropriately marking conflicting transactions and letting
them continuously proceed with the correct data versions.
To evaluate its performance characteristics, we compared
it with the existing locking based method, PSMVL. Even
though we did not consider the protocol overhead of each
scheme in detail, we could compare the effect of data
contention between two schemes. Our experiments show
that an optimistic approach gives better performance than
the locking scheme in the case of high data contention
because the forward validation of an optimistic method can
reduce unnecessary restarts to a higher degree than the
locking method can.

7. Reference
[1] R. K. Abbott and H. Garcia-Molina , “Scheduling Real-

Time Transactions : A Performance Evaluation”, In ACM
Transactions on Database Systems, 17, pp513-560, 1992.

[2] D. E. Bell and L. J. LaPadula, “Secure Computer
Systems : Unified Exposition and Multics Interpretation”,
The Mitre Corp., 1976.

[3] Rasikan David, Sang H. Son and Ravi Mukkamala,
“Supporting Security Requirements in Multilevel Real-
Time Databases”, In IEEE Symposium on Security and
Privacy, Oakland, CA, pp 199-210, 1995.

[4] B. George and J. Haritsa, “Secure Transaction Processing
in Firm Real-Time Database System”, In Proceedings of
ACM SIGMOD, pp462-473, 1997.

[5] J. R. Haritsa, M. J. Carey, and M. Livny, “Dynamic Real-
Time Optimistic Concurrency Control”, In 11th IEEE

Slack value vs. Restart ratio
(tr. size = 10, arrival rate = 10, write prob. = 0.5)

0

5

10

15

20

25

30

35

40

45

1.5 2 2.5 3 3.5 4 4.5

Slack value

re
s
ta

rt
 r
a
ti
o
(%

)

PSMVL

SRT_OPT

Arrival rate vs. Restart ratio
(slack value = 3.0, Tr. size = 10, write prob. = 0.5)

0

5

10

15

20

25

30

5 10 15 20 25 30

Arrival rate

re
s
ta

rt
 r
a
ti
o
(%

)

PSMVL

SRT_OPT

Real-Time Systems Symposium, 1990.

[6] J. R. Haritsa, M. J. Carey, and M. Livny, “On Being
Optimistic about Real-Time”, In Proceedings of the 1990
ACM PODS Symposium, pp331-343, April 1990.

[7] Soek-Hee Hong, Myung-Ho Kim, Yoon-Joon Lee,
“Methods of Concurrency Control in Real-Time
Database”, In Korean Information Science Society Review,
Vol. 11, No. 1, pp 26-36, 1993.

[8] Thomas F. Keefe, W. T. Tsai, Jaideep Srivastava,
“Database Concurrency Control in Multilevel Secure
Database Management Systems”, In IEEE Transaction on
knowledge and Data Engineering, vol 5, no. 6, pp1039-
1055, 1993.

[9] Young-kuk Kim and Sang H. Son, “Predictability and
Consistency in Real-Time Database Systems”, Advances
in Real-Time Systems, S. H. Son (ed.), Prentice Hall, pp
509-531, 1995.

[10] J. Lee and S. H. Son, “Using Dynamic Adjustment of
Serialization Order for Real-Time Database Systems”, In
14th IEEE Real-Time Systems Symposium, pp66-75, 1993.

[11] J. Mcdermott and S. Jajodia, “Orange Locking Channel-
Free Database Concurrency Control via Locking”, In
IFIP WG 11.3 Workshop in Database Security, pp267-
284, 1992.

[12] Ira S. Moskowitz and Myong H. Kang, “Covert Channels
- Here to Stay?”, In Proceedings of COMPASS 94, pp235-
243, 1994.

[13] R. Mukkamala and S. H. Son, “A Secure Concurrency
Control Protocol for Real-Time Databases”, In Annual
IFIP WG 11.3 Conference of Database Security,
Rensselaerville, New York, Aug. pp 235-253, 1995.

[14] Chanjung Park, Seog Park, and Sang H. Son, “Priority-
driven Secure Multi-version Locking Protocol for Real-
Time Secure Database Systems”, In Proceedings of IFIP
11th Working Conference on Database Security, August
1997.

[15] Chanjung Park and Seog Park, “Alternative Correctness
Criteria for Multi-version Concurrency Control and a
Locking Protocol via Freezing”, In International
Database Engineering and Applications Symposium
(IDEA ’97), pp. 73-81, August 1997.

[16] S. H. Son and R. David, “Design and Analysis of a Secure
Two-Phase Locking Protocol,” In 18th International
Computer Software and Applications Conference
(COMPSAC’94), Taipei, Taiwan, pp 374-379, 1994.

[17] S. H. Son, R. David, and B. Thuraisingham, “An
Adaptive Policy for Improved Timeliness in Secure
Database Systems”, In Annual IFIP WG 11.3 Conference
of Database Security, pp223-233, 1995.

