
Abstract
Multimedia communication systems require not only
high-performance computer hardware and high-
speed networks, but also a buffer management
mechanism to process voluminous data efficiently.
Two buffer handling methods, push and pull, are
commonly used. In the push method, a server
controls the flow of data to a client, while in the
pull method, a client controls the flow of data from
a server. These two buffering schemes can be
applied to the data transfer between the packet
receiving buffer, which receives media data from a
network server, and media playback devices, which
play the received media data. However, the buffer
management mechanisms at client-side mainly
support only one of the push and the pull methods.
In other words, different types of playback devices
separately use either but not both of the buffer
methods. This leads to inefficient buffer memory
usage and to inflexible buffer management for the
various types of media playback devices.

To resolve these problems, in this paper we
propose an integrated push/pull buffer mechanism
able to manage both push and pull schemes in a
single buffer at client-side. The proposed scheme
can support various media playback devices using a
single buffer space, which in consequence saves
memory space compared to the case where a client
keeps two types of buffers. Moreover, it facilitates
the single buffer as a mechanism for absorbing
network jitter effectively and efficiently. The
proposed scheme has been implemented in an
existing multimedia communication system called
ISSA developed by the authors, and has showed
good performance compared to the conventional
buffering methods in multimedia communication
environments.

1. Introduction
A flexible buffer management mechanism is
required to process buffer I/O's efficiently, to
calculate an adequate buffer size according to the
application service and the media type, and to
control the buffer over/underflow effectively.

Two buffer handling methods, Server-push (or
just push) and Client-pull (or just pull), are
commonly used, depending on which side has
control over the data flow. In the push method, a
server controls the flow of data and periodically
transfers appropriate data to clients. Although the
push method is suitable for broadcast services, the
server must control the data transmission speed
(bit-rate) in order to avoid buffer over/underflow at
the clients' side. The pull method is a kind of
polling method where a client, having control over
the data flow, requests data to a server and the
server transfers the requested data to the client.

Although the client can control buffer
over/underflow, the pull method is suitable only for
unicast services, not for broadcast services [1,2,3].

The two methods can be applied to data
transfer not only between network server and
clients, but also between the packet receiving
buffer, which receives media data from the network
server, and media playback devices, which play the
received media data. However, most buffer
management mechanisms at the clients' side are
usually focused on network considerations such as
the buffer size control according to end-to-end
network situations, and mainly support only one of
the push and the pull methods. Consequently, they
have some limitations in supporting various media
playback devices. Even though some of them
support both methods, it is difficult to utilize a
variety of devices since they do not provide a
unified structure. In an integrated multimedia
communication system such as ISSA (Integrated
Streaming Services Architecture)[4], various media
playback devices cannot be supported if the packet
receiving buffer provide either of the push or pull
modes. A flexible buffering mechanism is also
needed to absorb end-to-end network jitter, in a
network environment like Internet with frequent
packet loss and unstable bandwidth.

In this paper, we propose an efficient and
flexible push/pull buffer management mechanism for
the client-side, which readily supports various media
playback devices by providing a unified interface
for both push and pull modes at the client's packet
receiving buffer, and easily absorbs end-to-end
network jitter. Using the proposed scheme, can
obviate the need to install an extra stub for buffer
passing appropriate to each media device;
furthermore, better efficiency in memory use can be
accomplished by also letting the buffering function
absorb network jitter, instead of buffering only.

This paper is organized as follows. After briefly
reviewing related work in Section 2, we sketch the
design architecture of the proposed buffer
management scheme in Section 3. The
implementation and experimental results of the
scheme are described in Section 4. We present our
conclusions in Section 5.

2. Related Work
Although much work has been done in the area of
client-side buffer management techniques, not much
research has been reported on push/pull mode buffer
management related to data passing to media
playback devices.

The JMF (Java Media Framework) of Sun
Microsystems[5] offers push/pull buffer management
methods through two interfaces, pushDataSource and
pullDataSource. It is, however, not easy to program

An Integrated Push/Pull Buffer Management Method
in Multimedia Communication Environments

Sungyoung Lee , Hyon Woo Seung , Tae Woong Jeon

Department of Computer Engineering, KyungHee University, Seoul, Korea
{sylee@oslab.kyunghee.ac.kr}

Department of Computer Science, Seoul Women's University, Seoul, Korea
{hwseung@swu.ac.kr}

Department of Computer Science, Korea University, Seoul, Korea
{jeon@kusccgx.korea.ac.kr}



multimedia applications using JMF since it is not
furnished with a unified interface for push/pull
methods.

Acharya et al. at Brown University have studied
ways to efficiently combine the push and pull
approaches[6]. This method is focused upon
supporting both push and pull methods among
network server and clients, where the pull method
is provided simply to make up for the weak points
of the push method. In that sense, it is different
from the scheme proposed in this paper which
provides a unified structure to support both methods
on the client-side.

The buffer management scheme proposed in
DAVIC (Digital Audio VIsual Council)[9] is quite
similar to the one proposed at Brown University[6].
However, the clients in the scheme not only request
data through the back-channel, but also notify the
server of the buffer states and gather the data
needed in advance.

Jack Lee at Hong Kong University has
proposed an efficient buffer management scheme in
which the optimal buffer size is calculated to
prevent server's buffer underflow and clients' buffer
overflow, in his study of a concurrent push
scheduling algorithm for push-based parallel video
servers[7]. Even though this scheme shows a good
performance by utilizing a parallel transmission
method, it requires higher buffer capacity. Again,
these two methods are different from the one we
propose.

3. Design of the Proposed Scheme
In this section, we explain the operational
architecture of the proposed scheme and the
structure of the internal buffers, and summarize the
buffer management algorithms.

3.1 The Design Model
Figure 1 illustrates the operational architecture of
the push/pull buffer management scheme. It shows
how the client-side push/pull scheme works with
various kinds of media playback devices. The
packets transmitted by the Packet Sender from the
server through push or pull method are received
and translated by the Packet Receiver of the client.
Then, the media stream data are sent to the
Receiving Buffer, and reproduced by the media
playback devices through either the push or pull
method initially set. To each of the media playback
devices, an appropriate data transmission method is
initially assigned. When the transmission session
begins, the data stream is transmitted to the
corresponding device, according to the method
previously set. The Receiving Buffer on the
client-side works regardless of the network media
transmission methods, since the Packet Receiver
receives data from the server through push or pull
mode and sends the data to the buffer.
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[Figure 1] Operational Architecture of Proposed
Scheme

The proposed scheme supports both push and
pull mode in a single buffer.

3.2 Algorithms
The proposed buffer management scheme consists of
7 algorithms; two for buffer initialization and
removal, another two buffering algorithms to absorb
network jitter, and three algorithms for the data I/O.

Figure 2 shows the pseudo-code for the
InitBuffer algorithm. It must first be determined
which buffer passing mode (push or pull) the media
device supports. Then, an appropriate buffer size is
calculated using the following formula:
buffer size = bitrate of given media * buffering
time * scale factor
where bitrate of given media is the playback speed
of the given media (bit/secs), buffering time is the
buffering time in seconds for the media, and scale
factor is used to calculate an actual buffer size.
The scale factor is used to get a "safe" buffer size
to prevent overflow of the receiving buffer, and is
usually greater than 1.0. If the factor is 1.0, the
actual buffer size is equal to the ideal buffer size.
After the buffer size is calculated, memory
allocation is executed for the buffer. Then, the
StartBuffering algorithm is performed.
InitBuffer Algorithm
Determine buffer passing mode for media device to use

*) buffer passing mode = push or pull
Calculate buffer size

*) buffer size = bitrate of the given media *
buffering time * scale factor

Allocate memory for buffer
Invoke StartBuffering algorithm

[Figure 2] InitBuffer Algorithm

The DeinitBuffer algorithm, shown in Figure 3,
is used to stop media playback and remove the
buffer. If buffering is in process (buffering mode is
start), the StopBuffering algorithm is invoked. Then,
waiting until all media stream data in buffer are
consumed, it frees memory for the buffer.
DeinitBuffer Algorithm
If buffering mode == start then

Invoke StopBuffering algorithm
Wait until all media stream data in buffer are consumed
Free memory for buffer

[Figure 3] DeinitBuffer Algorithm

The StartBuffering algorithm begins by changing
the buffering mode to start. Then, the current time
is saved to calculate the playback delay time. The
push/pull operations are locked until the total size
of data in the buffer exceeds the buffering size.
Then, StopBuffering is invoked[Figure 4]. The
buffering size is calculated using the following
formula: buffering size = bitrate of the given media
* buffering time
StartBuffering Algorithm
Change buffering mode to start
Save current time for calculation of playback delay time
Lock push/pull operations until buffer data size exceed
buffering size

*) buffer data size = total size of data in buffer
*) buffering size = bitrate of the given media*

buffering time
Invoke StopBuffering algorithm

[Figure 4] StartBuffering Algorithm

The StopBuffering algorithm, shown in Figure 5,
is invoked at the end of StartBuffering.



Stop Buffering Algorithm
Update playback delay time by adding additional

playback delay time
*) additional playback delay time =

current time-saved buffering start time
*) playback delay time = playback delay time +

additional playback delay time
Unlock push/pull operations
Change buffering mode to stop

[Figure 5] StopBuffering Algorithm

First, it calculates the additional playback delay
time by subtracting the saved buffering start time
from the current time, and updates the playback
delay time by adding the additional playback delay
time. Next, it unlocks push/pull operations by
setting up a timer event for the next push mode
operation if the current buffer passing mode is
push, or by waking up the sleeping pull mode
operation if the mode is pull. Finally, it changes
the buffering mode to stop.

The AddData algorithm is shown in Figure 6.
First, it checks whether buffer overflow has
occurred. If so, it drops new incoming data and
terminates the execution. If not, it copies new
incoming data into the buffer. Then, if the buffer
passing mode is push, it appends the info block
corresponding to the new incoming data to the info
block linked list.
AddData Algorithm
Lock buffer
Apply playback delay time to calculate expire time of

new incoming data
If (size of new incoming data + buffer data size >

buffer size) then
Buffer overflow occurred
Drop new incoming data
Unlock buffer
Terminate this algorithm

Copy new incoming data into Buffer
Adjust pointer to stream tail with position of new data
If (buffer passing mode == push) then Add an info

block corresponding to new incoming data.
Update buffered data size
Unlock buffer

[Figure 6] AddData Algorithm

Note: In terms of the QoS (Quality of Service),
it is not desirable for the algorithm to drop any
incoming data in case buffer overflow occurs. To
resolve this problem, we could introduce of a
scheme that saves the surplus data in a temporary
buffer and moves them to the real buffer later.
However, due to the overhead to manage the
temporary buffer, real-time processing of the media
data may not be guaranteed.

Figure 7 shows the pushData algorithm which
sends the data in buffer to the media playback
device in push mode.
pushData Algorithm
Lock buffer
If (buffer data size < size of data to push) then

Buffer underflow occurred
Invoke StartBuffering algorithm
Terminate this algorithm

Push data of stream head in buffer to media device
Remove info block corresponding to removed data
Change pointer to stream head in buffer
Set up next timer event for pushData algorithm
Unlock buffer

[Figure 7] pushData Algorithm

First, it checks whether buffer underflow has

occurred. If so, it restarts buffering and terminates
the execution. If not, it pushes the data to the
media device and removes the data from the buffer
by changing the pointer to stream head. Next, it
sets up a timer event for the next pushData
operation.

Figure 8 shows the pullData algorithm. First,
it checks whether buffer underflow has occurred. If
so, it restarts buffering and waits until buffering
stops. If not, it pulls the data to the media device
and removes the data from the buffer by changing
the pointer. Unlike pushData, pullData is invoked
from the media device interface without using a
timer event.
pullData Algorithm
Lock buffer
If (buffer data size < size of data to pull) then

Buffer underflow occurred
Invoke StartBuffering algorithm
Sleep until buffering stop

Pull data of stream head in buffer to media device
Change pointer to stream head in buffer
Unlock buffer

[Figure 8] pullData Algorithm

4. Performance Evaluation
In this section, we explain the implementation
process and experimental results of the proposed
scheme.

4.1 Implementation Environment
Our scheme has been implemented in an existing
multimedia communication system, called ISSA [4]
in which various streaming applications such as
VOD and AOD can be easily produced. ISSA
provides many functions concerned with content
management, transmission protocols and media
processing for various streaming application
programs. Among many components in the ISSA,
Media Manager plays an important role offering
various media processing functions such as media
file processing (MPEG, WAV, AU, etc.),
database-stored media stream processing, A/V Codec
for encoding/decoding media data to other formats,
and controlling A/V devices. It consists of Media
Source and Media Sink.

Since the Media Sink component plays the role
of receiving the media stream data from the client,
and sending them to the appropriate media playback
devices, the proposed buffer management scheme is
designed and implemented to be incorporated in
Media Sink. In order to test the performance of the
scheme, we built a simple server program sending
media stream data stored in files, and a client
program playing the data. Both programs are
written in C++. The server program works on MS
Windows-NT or Sun Solaris 2.X, and the client
program on MS Windows-NT. The data
transmission between the server and the client is
done using the RTP (Real-Time Transport
Protocol)[9] which was made for the real-time
media data transmission over a TCP/IP-based 10/100
Mbps Ethernet.

4.2 Experimental Results
In order to evaluate the performance and measure
the overhead of the proposed scheme implemented
in ISSA, we have performed three experiments. In
the first two experiments, real media playback
devices were used to test whether the data
transmission and buffering in the system works well
with both push and pull methods. In the last



experiment, we created virtual software media
playback devices to examine the performance
overhead of the scheme. Tables 1 and 2 show the
attributes of the media data used in the
experiments.

[Table 1] Attributes of Test media A used in
Experiments

Encoding Type MPEG-1 System Layer Stream
Bitrate 1,715,200 bps

Resolution 320x240

[Table 2] Attributes of Test media B used in
Experiments

Encoding Type Linear PCM Audio
Bitrate 1,411,200 bps

Sampling Rate 44,100 Hz
Number of Channels 2

Bits Per Sample 16

The network testbed used to test the remote
playback function when the server and the client
are on separate hosts.

4.2.1 Experiment 1
In the first experiment performed upon the testbed,
we tested whether the proposed buffer management
scheme operates correctly in pull mode. The scheme
in the client-side sends the test media data in the
receiving buffer, with the attributes in Table 2, to
the DirectShow media playback device in pull
mode. Table 3 shows the parameter values for
Experiment 1. For each of 3 and 5 second
Buffering Time (BT), we examined the operation of
the scheme in pull mode with two cases of the
Buffer Scale Factor(BSF), 1.1 and 1.3.

[Table 3] Buffer Parameter Values for Experiment 1
BT 3 seconds 5 seconds

Buffering
Size

1,715,200 bits / 8*3
= 643,200 bytes

1,715,200 bits / 8*5
= 1,072,000 bytes

BSF 1.1 1.3 1.1 1.3

Buffer Size
643,200*

1.1 =
707,520

bytes

643,200*
1.3 =

836,160
bytes

1,072,000*
1.1 =

1,393,600
bytes

1,072,000*
1.3 =

1,393,600
bytes

As shown in Figures 9 and 10, rebuffering
caused by network packet delay occurred once
during 1 minute of playing time in the case of
3-second Buffering Time, while no rebuffering
occurred and the Buffer Data Size continuously
decreased in the case of 5-second Buffering Time.
The transmission delay time can be very long for
high-bandwidth media streams like the MPEG-1
System Layer stream.
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[Figure 9] Experiment 1 (A): Pull, Remote
Playback, Buffer Scale Factor (1.1)

On the other hand, changing Buffer Scale
Factors had little influence on the operation of the
scheme. The reason was that the media processing
speed in the client side was so fast that the data in
the buffer could have been processed in time
without delay
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[Figure 10] Experiment 1 (B): Pull, Remote
Playback, Buffer Scale Factor (1.3)

4.2.2 Experiment 2
In the second experiment that was performed upon
the testbed as in the first experiment, we tested
whether the proposed buffer management scheme
operates correctly in push mode. The scheme in the
client-side sends the test media data in the
receiving buffer, with the attributes in Table 2, to
the PCM audio playback device in push mode.

Table 4 shows the parameter values for
Experiment 2. As in Experiment 1, for each of 3
and 5 second Buffering Time, we examined the
operation of the scheme in push mode with two
cases of the Buffer Scale Factor, 1.1 and 1.3. As
can be seen in Figures 11 and 12, rebuffering
occurred once in the case of 3-second Buffering
Time, while no rebuffering occurred in the case of
5-second Buffering Time. From the first and second
experiments, it can be said that the proposed
scheme can absorb the network jitter regardless of
the data passing mode of the buffer (push or pull),
providing flexible buffering functions to overcome
buffer over/underflow.

[Table 4] Buffer Parameter Values for Experiment 2
BT 3 seconds 5 seconds

Buffering
Size

1,411,200 bits/8*3
= 529,200 bytes

1,411,200 bits/8*5
= 882,000 bytes

BSF 1.1 1.3 1.1 1.3

Buffer Size
529,200*

1.1 =
582,120

bytes

529,200*
1.3 =

687,960
bytes

882,000*
1.1 =

970,200
bytes

882,000*
1.3 =

1,146,600
bytes
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[Figure 11] Experiment 2 (A): Pull, Remote
Playback, Buffer Scale Factor (1.1)
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[Figure 12] Experiment 2 (B): Pull, Remote
Playback, Buffer Scale Factor (1.3)

4.2.3 Experiment 3
It is not easy to measure the overhead of the
proposed buffer management scheme itself, due to
the overhead of the media playback devices.
Therefore, for accurate and reliable measurement of
the overhead of the proposed scheme, we
programmed two virtual media playback devices that
support push and pull data transmission methods.

In Experiment 3, in order to estimate the
performance overhead, the network packet
bandwidth at the receiving buffer and the data
transmission bandwidth at the virtual device were
measured. The test media used in the experiment
was MPEG data with attributes in Table 1, and
5-second Buffering Time and Buffer Scale Factor
1.3 were used.

Figure 12 shows the result of Experiment 3 (A)
in which the media data was remotely played back
using the pull-mode virtual device. In the
experiment, there was no big difference between the
Packet Bandwidth which is the receiving bandwidth
of the media data packet and the pull Bandwidth at
the media playback device. Since the pull
Bandwidth was almost the same as the bitrate per
second of the media data, we can say the overhead
of the proposed scheme is negligible. In the
experiment, the push Bandwidth was close to the
bitrate per second of the stream. Also, there was
little difference in bandwidth between pull and push
mode.

1500000

1550000

1600000

1650000

1700000

1750000

1800000

1850000

1900000

1950000

2000000

0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35 0:40 0:45 0:50 0:55 0:60
Time (Seconds)

B
a
n
d
w

id
th

 (
b
p
s
)

Packet Bandwidth

Pull Bandwidth

Initial Buffering Start

Initial Buffering Stop

[Figure 12] Experiment 3 (A): Pull, Remote
Playback
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[Figure 13] Experiment 3 (B): Pull, Local Playback

In Experiments 3 (B), the server and client
programs have been executed on a local host, not
in the remote playback mode on the network
testbed. The results, again, showed that our scheme
yielded negligible overhead regardless of the data
passing mode of the buffer (pull or push) as shown
in Figures 13.

5. Conclusion

In this paper, we have proposed an efficient
and flexible push/pull buffer management
mechanism for the client-side, which readily
supports various media playback devices by
providing a unified interface for both push and pull
mode at the client's packet receiving buffer, and
easily absorbs end-to-end network jitter. Moreover,
the proposed scheme can save memory space
compared to the case where a client keeps two
types of buffers. We have implemented the scheme
on the ISSA system and performed six experiments
whose results showed good performance with little
overhead.

We are planning to expand the proposed
scheme to a buffer management scheme which
works among a network server and clients, not just
between the client's packet receiving buffer and
media playback devices. Also, more study is needed
to handle buffer overflow more efficiently without
large overhead.
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