
The Design and Implementation of an Object-Oriented
Process Control Loop Framework

Taewoong Jeon1, Sungwhan Roh1, Hyonwoo Seung2, and Sungyoung Lee3

1 Dept. Computer Science, Korea University

{jeon, shroh}@selab.korea.ac.kr
208 Seochang-Dong, Chochiwon, Choongnam, Korea, 339-700

2 Dept. Computer Science, Seoul Women's University, hwseung@swu.ac.kr

3 Dept. Computer Engineering, Kyunghee University, sylee@oslab.kyunghee.ac.kr

Abstract. Control loop is an essential part of the process control system that
must control physical processes in which it is difficult or impossible to compute
correct output value with input values alone. In this paper, we describe the
design and implementation of a highly reusable object-oriented control loop
framework to support the efficient development of real time process control
applications. The basic building block in our control loop framework is the
Point class. The Point class encapsulates process variables of a control loop
together with control algorithms so that it can be easily adapted and extended to
process control applications that have various structures and behaviors. The
core of this paper is the design pattern of event/time-triggered Point class that
can be used for flexible implementation of monitor and control functions
required of target processes through the interaction of point objects performing
continuous re-computation.

1. Introduction

The process control system produces the desired output from the input resources of a
process responding adequately to the constantly changing environment, or
continuously monitors and controls a process in order to maintain required relations
among the objects in the process. In such a system, it is difficult or impossible to
compute the correct output value with input values alone, and the time constraint is
usually accompanied. A control loop is an essential part of the process control
system.[1]

An object-oriented framework provides an architecture that can be commonly used
for the development of application programs that belong to a specific area or
functional group. The architecture includes classes that can be easily adapted and
extended. Accordingly, a complete application system can be easily built by
modifying some of the classes in a framework and appending additional functions to
the framework, then connecting them to the building blocks of the framework.[2]

On the other hand, much research has been done recently for the development of
real-time systems based on the object-oriented methodology. S. Faulk et al. in [3],

tried to make requirement specifications in the real-time software development
mathematically more rigid and easier to share, by putting object-orientation, graphic
representation and standardized approaches together. B. Selic et al., in [4], provided
more accurate and simple system modeling strategies by graphically representing the
real-time system architecture through object-oriented methodologies. The system
model, practicable at all the levels of abstraction, helps find out requirement or design
drawbacks at the early stage of development.

While the development of general real-time systems is treated in [3] and [4], this
paper focuses on the development of a process control framework with higher
reusability. That is, the purpose of this paper is to make development of a process
control system more efficient and easier by studying the methods to design common
parts of process control application programs as an object-oriented framework with
higher reusability and flexibility. In such a framework, the structure of a control loop
can not only be modified dynamically during the execution of an application, but it
can also be easily extended to a single control loop with many process variables or a
complicated control loop application with many single control loops. The core of this
paper is the design pattern of the Point class which flexibly supports the continuous
re-computation of process variables of a control loop. A control loop framework is
composed of frozen parts and hot spots. The frozen parts implement common
functions of various control loops and can be used without modification during an
application development. The hot spots represent the variability between control
loops. A control loop application can be completed by adapting and extending the hot
spots of the framework according to the system requirements, and then compounding
them to the frozen parts of the framework.

This paper is organized as follows. Section 2 analyzes the domain of the control
loop framework to be developed, explains the control loop model, and reviews
requirements to be considered in order to develop a highly reusable and flexible
framework. In Section 3, we propose a control loop framework designed to be easily
adapted and extended to process control application systems with various structures
and behaviors to meet the requirements presented in Section 2. In Section 4, an
example of implementing a control loop application using the proposed control loop
framework is explained. Section 5 reviews previous researches on the process control
software designed as an object-oriented framework. Section 6 presents our conclusion
and future work.

2. Domain Analysis of the Control Loop System

2.1 Control Loop Model

A process control system consists of a process and a control which controls and
monitors the process. The current status of the process can be represented by process
variables. There are four types of process variables: controlled variable, input
variable, manipulated variable and reference variable. A controlled variable represents
an actual measured value of an object to control. An input variable, not an object to

control, is a process variable which represents an input value needed to control the
process. Both variables are used as process variables monitored by the control. That
is, they are monitored variables of the process. A manipulated variable can be directly
modified by the control. A reference variable represents a setpoint, that is, a target
value of the controlled variable.[1]

Since the external environment of a process control system is indeterministic,
unstable and constantly fluctuating regardless of the process, it is difficult or
impossible to determine the correct output value with values of input and internal
state alone. Therefore, in order to meet or maintain the requirements of the process
outputs specified by the reference variables, the control computes the values of
manipulated variables based on the reference and monitored variables and sends them
to the process. The process, in turn, controls the monitored variables according to the
values of the manipulated variables entered from the control. Such a process control
system can be regarded as a control loop model.[Figure 1] A control loop model is
composed of two components, a
control and a process, and two
connectors which provide paths of
the asymmetric and cyclic flow of
data.

Fig. 1. The Control Loop Model

2.2 Requirements of the Control Loop Framework

Following are the requirements considered in this paper to enhance reusability and
flexibility of the control loop framework.

- By adapting and extending hot spots of the control loop framework, it should be
possible to easily build up a control loop application which implements interactions of
process variables and control algorithms required in a specific system. It should be
also possible to dynamically modify the configuration of the control loop during
execution of the application.

- It should be possible to extend to a complex process control application which
includes many control loops, not just one.

- The control loop application should be both time-triggered and event-triggered.
-Simulations of the control loop application should be possible, and once they are

done, the application should be easily migrated to the real process control
environment.

- If the user of the framework wants alarming or watching function, it should be
added with ease.

control process
actuator

sensor

manipulated variable

monitored variable

setpoint

3. Design of the Control Loop Framework

3.1 Point Class

The control loop controls the process through an actuator so that the state of the
process can be kept within the setpoint, and monitors the state of the control through a
sensor. The control loop system timely reacts to the value changes of the monitored
variables entered from the sensor and recomputes the values of the manipulated
variables. Then, it sends the result to the actuator to change the values of the
controlled variables of the process. The control loop framework proposed in this
paper is designed to have the Point class as its basic building block which
encapsulates process variables together with control algorithms in order to flexibly
constitute the interrelationship among the process variables.

A point can either be an input point or a computed point according to the way its
value is determined. While the value of an input point comes from an external data
source, a computed point gets its value from the other points inside the system. That
is, a computed point depends on input points or other computed points to determine
its value, and registers itself as a destination point(toPoints) to those points. If the
value of a point changes, it notifies all the registered toPoints of the change. A
toPoints, then, reads the values of all the source points(fromPoints) to recompute its
value using its own formula. Continuous re-computation is performed as the change
of point values is propagated
to all the toPoints connected
through the dependency chain.
Figure 2 shows the relation
between a point P and
fromPoints/toPoints. The point
P becomes toPoints1 from the
viewpoint of fromPoints1, and
fromPoints2 from the
viewpoint of toPoints2.

Fig. 2. Relation between the Point P and fromPoints/toPoints

Loose coupling among the objects must be maintained in order to easily adapt and
extend the process control framework to a process control application system that has
various structures and behaviors. The point objects can be loosely coupled by
representing control relationships among them using the Observer Pattern and the
Composite Pattern[5] in design.

Figure 3 shows the design pattern of the Point class and depicts the relationship
among the Point class and its subclasses, InputPoint and ComputedPoint class. The
ComputedPoint class responds to the value changes of the process variables in the
Point class whose destination point(toPoints) is the Computed Point. It plays the role
of observers. The ComputedPoint also creates a Composite pattern in which it has
other point objects as its components through the fromPoints reference. The

fromPoints1 toPoints2
Point (P)

= toPoints1
= fromPoints2

Trigger direction
Point object

InputPoint gets its value directly from the outside through the setValue member
function, while the ComputedPoint computes its value using the values of the other
points affecting it. Therefore, the fromPoints reference in Figure 2 can be either an
InputPoint object or a ComputedPoint object, but the toPoints reference can be a
ComputedPoint object only. In Figure 4, when a value is set to anInputPoint, its
notifyPoints member function is called, which, in turn, calls the update functions of
all the toPoints of the InputPoint. After the update function of the invoked
aComputedPoint1 re-computes its point value through the formula class(aFormula1),
it calls the update functions of its toPoints(aComputedPoint2). Since values of the
monitored variables entered from the sensor end up with starting the actuator through
the chain reaction of the point re-computations and update calls, an expected control
effect can be achieved.

Observer pattern

Composite pattern

Strategy pattern

InputPoint

v oid setValue(Number v alue)

Point
Number v alue
Vector toPoints

v oid setValue(Number v alue)
Number getValue()
v oid notif y Points()
v oid register(Point point)
v oid unregister(Point point)
v oid timeout()

public v oid setValue(Number v alue)
{ this.v alue = v alue;
}
public Number getValue()
{ return v alue;
}
protected v oid notif y Points()
{ f or(int i=0; i<toPoints.size(); i++)

 ((ComputedPoint)toPoints.elementAt(i)).update();
}
public v oid register(Point point)
{ toPoints.addElement(point);
}
public v oid unregister(Point point)
{ toPoints.remov eElement(point);
}
public v oid timeout()
{
}

public v oid setValue(Number v alue)
{ super.setValue(v alue);

notif y Points();
}

public v oid setF ormu la(Form ula f ormula)
{ t his .f ormula = f ormula;
}
public v oid addPoint(Point point)
{ f romPoints .addElement (point);

point. regist er(this);
}
public v oid delPoint(Point point)
{ f romPoints.remov eElement(point);

point. unregist er(this);
}
public v oid update()
{ s et Va lue(c ompute());

notif y Points();
}
public N umber compute()
{ return formula.c ompute(fromPo int s);
}

P IDFormu la
Number sn, enOld, en, mn
double kp, ki, kd;

v oid setParameter(f loat kp, f loat ki, f loat kd)
Number compute(Vector f romPoints)

TransformFormula

N umber c ompute (Vec tor from Po int s)

Ave rage Formul a

Number compute(Vector f romPoints)

Compu tedPoint
Formula f ormula
Vector f romPoints

void addPoin t(Point point)
void de lPo int(Point poin t)
v oid update()
Number compute()
v oid setFormula(Formula f ormula)

toPoints

fromPoints

Formula

Number compute(Vector f romPoints)

formula

Fig. 3. The Point Class

3.2 Formula Class

The manipulated variables, the monitored variables and the actuator can be regarded
as computed points. Their structures are the same, but the behaviors of their formula
functions are different. So, we applied the Strategy pattern[5] to encapsulate the
formula in a separate class in designing a computed point.

The computation algorithm of a computed point is determined by a Formula class
object which is dynamically replaceable according to the Strategy pattern. The
computed point class has a formula which is a reference to the Formula class object.
The Formula class provides a compute member function which is a common interface
to the various algorithms a computed point may have. Using the compute function, a

computed point invokes an algorithm defined in a subclass of the Formula class. If a
computed point object represents a manipulated variable using the PID control
algorithm, it references to the PID Formula. If a computed point object represents a
monitored variable that contains an average value of many sensors, it references to the
Average Formula class object. If a computed point object represents an actuator, it
references to the Transform Formula. The compute member function of the PID
Formula class contains PID control algorithm, and the setParameter member function
reads parameter values required for the PID control algorithm when the program
starts. By making the reconfiguration of parameters possible, the system can be easily
modified without rebuilding the program.

Fig. 4. Interactions of Point Objects Fig. 5. Interaction of the LazyPoint

3.3 Lazy Point Class

If a value of a certain computed point is used infrequently, it is a waste of time to re-
compute its value every time the values of points it is dependent on change. It is more
efficient to re-compute when the value is requested. In order to meet such a
requirement, a LazyPoint class[8] is incorporated in this paper as a subclass of the
ComputedPoint class. A LazyPoint re-computes its value only when it is used by
another point, while a ComputedPoint is re-computed whenever the values of
fromPoints change.

As shown in Figure 5, a LazyPoint simply records an update and delays the re-
computation of its value until it is requested, while a ComputedPoint re-computes its
value every time its update function is called, and notifies the registered points of the
change. Only when a record of an update exists, its value is re-computed, otherwise,
the stored point value is sent. So, time waste for the unnecessary point re-computation
can be avoided.

Main anInputPoint aComputed
Point1

aFormula1 aComputed
Point2

setFormula(aFormula1)

addPoint(anInputPoint)

addPoint(aComputedPoint1)

setValue

notifyPoints update

compute(fromPoints)

notifyPoints update

aFromPoints aLazyPoint aL azyPoint
Formula

aToPoints

update

notifyPoints update

getValue

compute

return(getVa lue())

3.4 Time Triggered Point Class

In the control loop system, not only the event triggered approach, in which the system
reacts to the state change of the process, but also the time triggered approach must be
utilized, so that the system can reach or maintain the setpoint value of the process
within a required time by monitoring the control state of the process at specific points
in time regardless of the state change of the process. A Timer class is defined in the
system to meet such requirement.

As explained above, the manipulated variable point of the control loop computes
its value based on the values of the setpoint and the monitored variable, and sends the
value to the actuator. If the value of the monitored variable does not reach the setpoint
value after a specific period of time, it might be necessary to raise an alarm condition.
To represent such a manipulated variable, the ManipulatedVariablePoint class which
needs a timer is provided as a subclass of the ComputedPoint class. General
manipulated variables which do not need alarming function are created from the
ComputedPoint class.

The TimeTriggeredSensor is periodically activated by the Timer, and the
EventTriggeredSensor is activated in case the value of the sensor changes. Both
sensors are created by inheriting from the InputPoint. The Point objects that need a
timer such as the time triggered sensors, manipulated variables with alarming
functions, or the Simulation Point objects register themselves and the duration of time
to the Timer. The Timer, at specific intervals of time, invokes the timeout member
function in the registered Point object and notifies the registered time has passed. The
manipulated variable whose registered time has passed checks if the monitored
variable has reached the setpoint, and raises an alarm condition if it has not.

3.5 Simulated Process

The SimulationPoint class represents a simulated process by simulating the
interaction between an actuator and a sensor. The effect caused by the actuator is sent
to the SimulationPoint object, which, in turn, transfers the simulated value based on
the effect to the sensor after a certain feedback delay time. Therefore, when an
application which is made out of a framework is to run under the actual operational
environment, the SimulationPoint is only to be replaced by the actual process. The
starting point of the SimulationPoint is the actuator, and the destination point is the
sensor. Once the actuator object invokes update function of the SimulationPoint
object, the SimulationPoint object computes a simulated value through the
SimulationFormula object it references to. When the Timer object of the
SimulationPoint invokes timeout function after the feedback delay time passes, the
simulated value is sent to the sensor.

3.6 Architecture of Entire Classes of the Control Loop Framework

Figure 6 shows the inheritance and composition relationship among the classes of the
control loop framework as a whole. Since the fundamental concept of the framework

design in this paper is the continuous re-computation of point values, the various
classes that consist of the control loop framework are inherited from the Point class.

InputPoint

((interf ace)) Thread

Lazy Point Sim ulat ionPoint ManipulatedVariablePoint

Tim eTrig ge red Se ns orPID F orm ulaTrans f orm Form ula Sim ulationF orm ula Av erageForm ula

T im er

Ev entTriggeredSensor

Sim ulationsensorR ealSensorProxy sensor

Sesnor

C om putedPoint

Form ula

In teger Float Boolean

P o intN um ber

Fig. 6. The Control Loop Framework

4. An Application using the Control Loop Framework

Using the control loop framework proposed in this paper, it is possible to design a
flexible control loop software component based on the control loop model in Figure 1.
To implement a control loop application, the control loop system developer using the
framework can build the classes his/her application requires by inheriting and
extending the Point class or its subclasses. This section explains a control loop
application implemented using the Java programming language.

Figure 7 shows a heat control loop model which controls room temperature. The
control is a heat control to maintain the desired room temperature as a setpoint, and
the process is a heater monitored and controlled by the heat control. The monitored
variable represents the current room
temperature taken by the sensor. The
temperature is a feedback value to
the control and used to compute the
value of the manipulated variable,
which, in turn, is sent to the actuator.

Fig. 7. The Heat Control Loop

Figure 8 shows a configuration of the heat control loop in Figure 15 constructed
using the Point classes in the control loop framework. The arrows represents trigger
directions between the connected Point objects. The setpoint and the sensor are
InputPoint objects of the framework. The manipulated variable, monitored variable,
actuator and the simulation point are all ComputedPoint objects, and each references
to its own Formula object.

The control mechanism of the heat control loop system is as follows: The sensor is
triggered by the sensor timer at specific periods of time, and sends the measured

control process
actuator

temperature
sensor

manipulated variable

monitored variable
= current temperature

setpoint
= desired temperature

temperature to the monitored variable. The manipulated variable takes the monitored
value from the monitored
variable and computes the
manipulated value using the
PID control algorithm of the
PID formula. The computed
manipulated value is sent to
the actuator. Then, the value is
reflected on the simulated
process. The manipulated
variable timer notifies the
manipulated variable that a
certain period of time has
elapsed. Then, the manipulated
variable, with the monitored
value and the setpoint value,
judges whether the control is
in the normal state or not.

Fig. 8. The Heat Control Application

The value of the actuator is sent to th simulation point. As soon as the simulation
timer notifies the simulation point that the feedback delay time has elapsed, the
simulation point sends the current temperature to the sensor. The value of the sensor
is, in turn, sent to the monitored variable to make a loop.

Figure 7 is a single control loop system where there is only one point object for
each of the actuator, sensor, monitored variable and manipulated variable. There
exists a single control loop system with many process variables, or a control loop
system with many single control loops. Such complicated control loop systems can
also be easily implemented using the control loop framework.

Figure 9 shows a control
loop system which consists
of two single control loops.
An application of such a
system can be constructed
using Point classes of the
control loop framework as
shown in Figure 10.

Fig. 9. A Control Loop System with Two Single Control Loops

5. Related Works

Current researches on the design of the process control software in an object-oriented
framework are reviewed in this chapter.

setpoint manipulated
variable actuator

monitored
Variable sensor

manipulated
value

monitored value

desired
temperature

feedback value

control simulated process

manipulated
variable timer PID

formula

average
formula

transform
formula

object
update function call
setValue function call
compute function call
timeout function call

sensor
timer

control-process
interface

simulation
point

simulation
point
timer

simulation
formula

control1 process1
actuator1

temperature
sensor1

manipulated variable1

monitored variable1
= current temperature1

setpoint
= desired

temperature

control2 process2
actuator2

temperature
sensor2

manipulated variable2

monitored variable2
= current temperature2

Per Dagermo and Jonas Knutsson[8] regarded the process control as a continuous
re-computation of a number of output values as the response to changes to a number
of input values. A value in [8], which is an abstraction of a process variable, can
either be an input value or a computed value. When a value changes, it notifies all the
computed values registered as its dependents. When a dependent value is notified, it
re-computes itself.

P. Molin and L. Ohlsson[9] designed a framework for fire alarm systems, where
the logical behavior of the input/output devices such as sensors and actuators at the
interface are standardized and defined as Points [9]. The concept of Point was applied
in this paper as the Point class.

Jan Bosch[10] designed an object-oriented framework for the measurement system
which measures the quality of manufactured products and picks out low-quality
products. The Strategy pattern and the Composite Pattern were mainly utilized in the
design of the system. The control loop of the measurement system differs from the
one proposed in this paper in that the measured values are not used directly to control
the manufacturing process. In this paper, the measured value, that is, the monitored
variable is used as the controlled variable to control the process.

The process variables as well as sensors and actuators in this paper are all defined
as Point classes or its subclasses performing continuous re-computation. While data
types, computation algorithm, and control of the computation are all encapsulated in
the Value class in [8], they are separated in different classes in this paper. As the data
type of a process variable is separated from its control and defined in a Number class,
the operations of the process variable are performed polymorphically. This allows the
control loop to have multiple types for its point values. We defined computation
algorithms in separate classes according to the Strategy pattern so that the algorithms
used by computed points are easily replaceable at runtime.

setpoint

manipulated
variable1 actuator1

monitored
Variable2

sensor2

controller simulated process

mv
timer1

PID
formula1

average
formula2

transform
formula1

object
update function call
setValue function call
compute function call
timeout function call

sensor
timer1

controller-process
interface

simulation
point1

simulation
timer1

simulation
formula2

manipulated
variable2 actuator2

monitored
Variable1

sensor1

mv
timer2

PID
formula2

average
formula1

transform
formula2

sensor
timer2

simulation
point2

simulation
timer2

simulation
formula1

Fig. 10. An Application of the System in Figure 9

6. Conclusions and Future Work

The design and implementation of a highly reusable object-oriented control loop
framework for process control systems was proposed in this paper. The core of the
control loop framework is the design pattern of the Point class which encapsulates
state values of the process together with the control mechanism. Since the Point
classes are designed using the Observer and Composite patterns, the Point objects are
loosely coupled one another and can be easily reconfigured. Furthermore, connection
and disconnection of objects can also be easily done during the execution. Therefore,
control loop application developers using the framework can complete their
applications more efficiently and flexibly by adapting and extending the Point classes
to their requirements and connect them to the framework.

Most of the process control systems require parallel and real-time processing.
Although the control loop framework proposed in this paper utilizes Java's multi-
thread function for the parallel processing, it does not directly support real-time
scheduling. It assumes a real-time kernel to be used when it is extended to an
application. Enhancing to a control loop framework that can be easily extended to a
specific real-time operating system environment is the primary work to be done in the
future.

References

[1] Mary Shaw, "Beyond Objects: A Software Design Paradigm Based on Process Control",
ACM Software Engineering Notes, Vol 20, No 1, Jan, 1995

[2] Gregory F. Rogers, "Framework-Based Software Development in C++", Prentice Hall PTR,
1997

[3] S.Faulk, J. Brackett, P.Ward, and J.Kirby Jr, "The Core Method for Real-Time
Requirements", IEEE Software, pp 22-23, Sept. 1992.

[4] B.Selic, G.Gullekson, and, P.T. Ward, "Real-Time Object-Oriented Modeling", John Wiley
and Sons, 1994.

[5] Erich Gamma and et al, "Design Patterns: Elements of Reusable Object-Oriented Software",
Addison-Wesley Publishing Company, 1995.

[6] Stuart Bennett, "Real-time Computer Control: An Introduction", 2nd Edition, Prentice Hall
International (UK) Limited, 1994.

[7] Bobby Woolf, "The Abstract Class Pattern"
[8] Per Dagermo, Jonas Knutsson, "Development of an Object-Oriented Framework for Vessel

Control Systems", Technical Report, Dover Consortium 1996.
[9] P.Molin and L. Ohlsson, "Points & Deviations - A Pattern Language for Fire Alarm

Systems", Pattern Languages of Program Design 3, Addison-Wesley Publishing Company,
1995

[10] Jan Bosch, "Design of Object-Oriented Framework for Measurement Systems"
[11] Ken Arnold, James Gosling, and David Holmes, The Java Programming Language, 3rd

edition, Addison-Wesley, 2000

