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Abstract.  Control loop is an essential part of the process control system that 
must control physical processes in which it is difficult or impossible to compute 
correct output value with input values alone. In this paper, we describe the 
design and implementation of a highly reusable object-oriented control loop 
framework to support the efficient development of real time process control 
applications. The basic building block in our control loop framework is the 
Point class. The Point class encapsulates process variables of a control loop 
together with control algorithms so that it can be easily adapted and extended to 
process control applications that have various structures and behaviors. The 
core of this paper is the design pattern of event/time-triggered Point class that 
can be used for flexible implementation of monitor and control functions 
required of target processes through the interaction of point objects performing 
continuous re-computation. 

1. Introduction 

The process control system produces the desired output from the input resources of a 
process responding adequately to the constantly changing environment, or 
continuously monitors and controls a process in order to maintain required relations 
among the objects in the process. In such a system, it is difficult or impossible to 
compute the correct output value with input values alone, and the time constraint is 
usually accompanied. A control loop is an essential part of the process control 
system.[1] 

An object-oriented framework provides an architecture that can be commonly used 
for the development of application programs that belong to a specific area or 
functional group. The architecture includes classes that can be easily adapted and 
extended. Accordingly, a complete application system can be easily built by 
modifying some of the classes in a framework and appending additional functions to 
the framework, then connecting them to the building blocks of the framework.[2] 

On the other hand, much research has been done recently for the development of 
real-time systems based on the object-oriented methodology. S. Faulk et al. in [3], 



tried to make requirement specifications in the real-time software development 
mathematically more rigid and easier to share, by putting object-orientation, graphic 
representation and standardized approaches together. B. Selic et al., in [4], provided 
more accurate and simple system modeling strategies by graphically representing the 
real-time system architecture through object-oriented methodologies. The system 
model, practicable at all the levels of abstraction, helps find out requirement or design 
drawbacks at the early stage of development. 

While the development of general real-time systems is treated in [3] and [4], this 
paper focuses on the development of a process control framework with higher 
reusability. That is, the purpose of this paper is to make development of a process 
control system more efficient and easier by studying the methods to design common 
parts of process control application programs as an object-oriented framework with 
higher reusability and flexibility. In such a framework, the structure of a control loop 
can not only be modified dynamically during the execution of an application, but it 
can also be easily extended to a single control loop with many process variables or a 
complicated control loop application with many single control loops. The core of this 
paper is the design pattern of the Point class which flexibly supports the continuous 
re-computation of process variables of a control loop. A control loop framework is 
composed of frozen parts and hot spots. The frozen parts implement common 
functions of various control loops and can be used without modification during an 
application development. The hot spots represent the variability between control 
loops. A control loop application can be completed by adapting and extending the hot 
spots of the framework according to the system requirements, and then compounding 
them to the frozen parts of the framework. 

This paper is organized as follows. Section 2 analyzes the domain of the control 
loop framework to be developed, explains the control loop model, and reviews 
requirements to be considered in order to develop a highly reusable and flexible 
framework. In Section 3, we propose a control loop framework designed to be easily 
adapted and extended to process control application systems with various structures 
and behaviors to meet the requirements presented in Section 2. In Section 4, an 
example of implementing a control loop application using the proposed control loop 
framework is explained. Section 5 reviews previous researches on the process control 
software designed as an object-oriented framework. Section 6 presents our conclusion 
and future work. 

2. Domain Analysis of the Control Loop System 

2.1 Control Loop Model 

A process control system consists of a process and a control which controls and 
monitors the process. The current status of the process can be represented by process 
variables. There are four types of process variables: controlled variable, input 
variable, manipulated variable and reference variable. A controlled variable represents 
an actual measured value of an object to control. An input variable, not an object to 



control, is a process variable which represents an input value needed to control the 
process. Both variables are used as process variables monitored by the control. That 
is, they are monitored variables of the process. A manipulated variable can be directly 
modified by the control. A reference variable represents a setpoint, that is, a target 
value of the controlled variable.[1] 

Since the external environment of a process control system is indeterministic, 
unstable and constantly fluctuating regardless of the process, it is difficult or 
impossible to determine the correct output value with values of input and internal 
state alone. Therefore, in order to meet or maintain the requirements of the process 
outputs specified by the reference variables, the control computes the values of 
manipulated variables based on the reference and monitored variables and sends them 
to the process. The process, in turn, controls the monitored variables according to the 
values of the manipulated variables entered from the control. Such a process control 
system can be regarded as a control loop model.[Figure 1] A control loop model is 
composed of two components, a 
control and a process, and two 
connectors which provide paths of 
the asymmetric and cyclic flow of 
data.  

Fig. 1. The Control Loop Model 

2.2 Requirements of the Control Loop Framework 

Following are the requirements considered in this paper to enhance reusability and 
flexibility of the control loop framework. 

- By adapting and extending hot spots of the control loop framework, it should be 
possible to easily build up a control loop application which implements interactions of 
process variables and control algorithms required in a specific system. It should be 
also possible to dynamically modify the configuration of the control loop during 
execution of the application. 

- It should be possible to extend to a complex process control application which 
includes many control loops, not just one. 

- The control loop application should be both time-triggered and event-triggered. 
-Simulations of the control loop application should be possible, and once they are 

done, the application should be easily migrated to the real process control 
environment. 

- If the user of the framework wants alarming or watching function, it should be 
added with ease. 
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3. Design of the Control Loop Framework 

3.1 Point Class 

The control loop controls the process through an actuator so that the state of the 
process can be kept within the setpoint, and monitors the state of the control through a 
sensor. The control loop system timely reacts to the value changes of the monitored 
variables entered from the sensor and recomputes the values of the manipulated 
variables. Then, it sends the result to the actuator to change the values of the 
controlled variables of the process. The control loop framework proposed in this 
paper is designed to have the Point class as its basic building block which 
encapsulates process variables together with control algorithms in order to flexibly 
constitute the interrelationship among the process variables. 

A point can either be an input point or a computed point according to the way its 
value is determined. While the value of an input point comes from an external data 
source, a computed point gets its value from the other points inside the system. That 
is, a computed point depends on input points or other computed points to determine 
its value, and registers itself as a destination point(toPoints) to those points. If the 
value of a point changes, it notifies all the registered toPoints of the change. A 
toPoints, then, reads the values of all the source points(fromPoints) to recompute its 
value using its own formula. Continuous re-computation is performed as the change 
of point values is propagated 
to all the toPoints connected 
through the dependency chain. 
Figure 2 shows the relation 
between a point P and 
fromPoints/toPoints. The point 
P becomes toPoints1 from the 
viewpoint of fromPoints1, and 
fromPoints2 from the 
viewpoint of toPoints2. 

Fig. 2. Relation between the Point P and fromPoints/toPoints 

Loose coupling among the objects must be maintained in order to easily adapt and 
extend the process control framework to a process control application system that has 
various structures and behaviors. The point objects can be loosely coupled by 
representing control relationships among them using the Observer Pattern and the 
Composite Pattern[5] in design.  

Figure 3 shows the design pattern of the Point class and depicts the relationship 
among the Point class and its subclasses, InputPoint and ComputedPoint class. The 
ComputedPoint class responds to the value changes of the process variables in the 
Point class whose destination point(toPoints) is the Computed Point. It plays the role 
of observers. The ComputedPoint also creates a Composite pattern in which it has 
other point objects as its components through the fromPoints reference. The 

fromPoints1 toPoints2
Point (P)

= toPoints1
= fromPoints2

Trigger direction
Point object



InputPoint gets its value directly from the outside through the setValue member 
function, while the ComputedPoint computes its value using the values of the other 
points affecting it. Therefore, the fromPoints reference in Figure 2 can be either an 
InputPoint object or a ComputedPoint object, but the toPoints reference  can be a 
ComputedPoint object only. In Figure 4, when a value is set to anInputPoint, its 
notifyPoints member function is called, which, in turn, calls the update functions of 
all the toPoints of the InputPoint. After the update function of the invoked 
aComputedPoint1 re-computes its point value through the formula class(aFormula1), 
it calls the update functions of its toPoints(aComputedPoint2). Since values of the 
monitored variables entered from the sensor end up with starting the actuator through 
the chain reaction of the point re-computations and update calls, an expected control 
effect can be achieved. 

Observer pattern

Composite pattern

Strategy pattern

InputPoint

v oid setValue(Number v alue)

Point
Number v alue
Vector toPoints

v oid setValue(Number v alue)
Number getValue()
v oid notif y Points()
v oid register(Point point)
v oid unregister(Point point)
v oid timeout()

public v oid setValue(Number v alue)
{ this.v alue = v alue;
}
public Number getValue()
{ return v alue;
}
protected v oid notif y Points()
{ f or(int i=0; i<toPoints.size(); i++)

 ((ComputedPoint)toPoints.elementAt(i)).update();
}
public v oid register(Point point)
{ toPoints.addElement(point);
}
public v oid unregister(Point point)
{ toPoints.remov eElement(point);
}
public v oid timeout()
{
}

public v oid setValue(Number v alue)
{ super.setValue(v alue);

notif y Points();
}

public  v oid setF ormu la(Form ula f ormula)
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}
public v oid addPoint(Point point)
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}
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}
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}
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P IDFormu la
Number sn, enOld, en, mn
double kp, ki, kd;

v oid setParameter(f loat kp, f loat ki, f loat kd)
Number compute(Vector f romPoints)

TransformFormula

N umber c ompute (Vec tor from Po int s)

Ave rage Formul a

Number compute(Vector f romPoints)

Compu tedPoint
Formula f ormula
Vector f romPoints

void addPoin t(Point point)
void  de lPo int(Point poin t)
v oid update()
Number compute()
v oid setFormula(Formula f ormula)

toPoints

fromPoints

Formula

Number compute(Vector f romPoints)

formula

 
Fig. 3. The Point Class 

3.2 Formula Class 

The manipulated variables, the monitored variables and the actuator can be regarded 
as computed points. Their structures are the same, but the behaviors of their formula 
functions are different. So, we applied the Strategy pattern[5] to encapsulate the 
formula in a separate class in designing a computed point. 

The computation algorithm of a computed point is determined by a Formula class 
object which is dynamically replaceable according to the Strategy pattern. The 
computed point class has a formula which is a reference to the Formula class object. 
The Formula class provides a compute member function which is a common interface 
to the various algorithms a computed point may have. Using the compute function, a 



computed point invokes an algorithm defined in a subclass of the Formula class. If a 
computed point object represents a manipulated variable using the PID control 
algorithm, it references to the PID Formula. If a computed point object represents a 
monitored variable that contains an average value of many sensors, it references to the 
Average Formula class object. If a computed point object represents an actuator, it 
references to the Transform Formula. The compute member function of the PID 
Formula class contains PID control algorithm, and the setParameter member function 
reads parameter values required for the PID control algorithm when the program 
starts. By making the reconfiguration of parameters possible, the system can be easily 
modified without rebuilding the program. 

 

Fig. 4. Interactions of Point Objects                Fig. 5. Interaction of the LazyPoint 

3.3 Lazy Point Class 

If a value of a certain computed point is used infrequently, it is a waste of time to re-
compute its value every time the values of points it is dependent on change. It is more 
efficient to re-compute when the value is requested. In order to meet such a 
requirement, a LazyPoint class[8] is incorporated in this paper as a subclass of the 
ComputedPoint class. A LazyPoint re-computes its value only when it is used by 
another point, while a ComputedPoint is re-computed whenever the values of 
fromPoints change. 

As shown in Figure 5, a LazyPoint simply records an update and delays the re-
computation of its value until it is requested, while a ComputedPoint re-computes its 
value every time its update function is called, and notifies the registered points of the 
change. Only when a record of an update exists, its value is re-computed, otherwise, 
the stored point value is sent. So, time waste for the unnecessary point re-computation 
can be avoided. 

Main anInputPoint aComputed
Point1

aFormula1 aComputed
Point2

setFormula(aFormula1)

addPoint(anInputPoint)

addPoint(aComputedPoint1)

setValue

notifyPoints update
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notifyPoints update

aFromPoints aLazyPoint aL azyPoint
Formula

aToPoints

update

notifyPoints update

getValue

compute

return(getVa lue())



3.4 Time Triggered Point Class 

In the control loop system, not only the event triggered approach, in which the system 
reacts to the state change of the process, but also the time triggered approach must be 
utilized, so that the system can reach or maintain the setpoint value of the process 
within a required time by monitoring the control state of the process at specific points 
in time regardless of the state change of the process. A Timer class is defined in the 
system to meet such requirement. 

As explained above, the manipulated variable point of the control loop computes 
its value based on the values of the setpoint and the monitored variable, and sends the 
value to the actuator. If the value of the monitored variable does not reach the setpoint 
value after a specific period of time, it might be necessary to raise an alarm condition. 
To represent such a manipulated variable, the ManipulatedVariablePoint class which 
needs a timer is provided as a subclass of the ComputedPoint class. General 
manipulated variables which do not need alarming function are created from the 
ComputedPoint class. 

The TimeTriggeredSensor is periodically activated by the Timer, and the 
EventTriggeredSensor is activated in case the value of the sensor changes. Both 
sensors are created by inheriting from the InputPoint. The Point objects that need a 
timer such as the time triggered sensors, manipulated variables with alarming 
functions, or the Simulation Point objects register themselves and the duration of time 
to the Timer. The Timer, at specific intervals of time, invokes the timeout member 
function in the registered Point object and notifies the registered time has passed. The 
manipulated variable whose registered time has passed checks if the monitored 
variable has reached the setpoint, and raises an alarm condition if it has not. 

3.5 Simulated Process 

The SimulationPoint class represents a simulated process by simulating the 
interaction between an actuator and a sensor. The effect caused by the actuator is sent 
to the SimulationPoint object, which, in turn, transfers the simulated value based on 
the effect to the sensor after a certain feedback delay time. Therefore, when an 
application which is made out of a framework is to run under the actual operational 
environment, the SimulationPoint is only to be replaced by the actual process. The 
starting point of the SimulationPoint is the actuator, and the destination point is the 
sensor. Once the actuator object invokes update function of the SimulationPoint 
object, the SimulationPoint object computes a simulated value through the 
SimulationFormula object it references to. When the Timer object of the 
SimulationPoint invokes timeout function after the feedback delay time passes, the 
simulated value is sent to the sensor. 

3.6 Architecture of Entire Classes of the Control Loop Framework 

Figure 6 shows the inheritance and composition relationship among the classes of the 
control loop framework as a whole. Since the fundamental concept of the framework 



design in this paper is the continuous re-computation of point values, the various 
classes that consist of the control loop framework are inherited from the Point class. 
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Lazy Point Sim ulat ionPoint ManipulatedVariablePoint
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Sim ulationsensorR ealSensorProxy sensor
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In teger Float Boolean
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Fig. 6. The Control Loop Framework 

4. An Application using the Control Loop Framework 

Using the control loop framework proposed in this paper, it is possible to design a 
flexible control loop software component based on the control loop model in Figure 1. 
To implement a control loop application, the control loop system developer using the 
framework can build the classes his/her application requires by inheriting and 
extending the Point class or its subclasses. This section explains a control loop 
application implemented using the Java programming language. 

Figure 7 shows a heat control loop model which controls room temperature. The 
control is a heat control to maintain the desired room temperature as a setpoint, and 
the process is a heater monitored and controlled by the heat control. The monitored 
variable represents the current room 
temperature taken by the sensor. The 
temperature is a feedback value to 
the control and used to compute the 
value of the manipulated variable, 
which, in turn, is sent to the actuator. 

Fig. 7. The Heat Control Loop 

Figure 8 shows a configuration of the heat control loop in Figure 15 constructed 
using the Point classes in the control loop framework. The arrows represents trigger 
directions between the connected Point objects. The setpoint and the sensor are 
InputPoint objects of the framework. The manipulated variable, monitored variable, 
actuator and the simulation point are all ComputedPoint objects, and each references 
to its own Formula object. 

The control mechanism of the heat control loop system is as follows: The sensor is 
triggered by the sensor timer at specific periods of time, and sends the measured 

control process
actuator

temperature 
sensor

manipulated variable

monitored variable
= current temperature

setpoint
= desired temperature



temperature to the monitored variable. The manipulated variable takes the monitored 
value from the monitored 
variable and computes the 
manipulated value using the 
PID control algorithm of the 
PID formula. The computed 
manipulated value is sent to 
the actuator. Then, the value is 
reflected on the simulated 
process. The manipulated 
variable timer notifies the 
manipulated variable that a 
certain period of time has 
elapsed. Then, the manipulated 
variable, with the monitored 
value and the setpoint value, 
judges whether the control is 
in the normal state or not.  

Fig. 8. The Heat Control Application 

The value of the actuator is sent to th simulation point. As soon as the simulation 
timer notifies the simulation point that the feedback delay time has elapsed, the 
simulation point sends the current temperature to the sensor. The value of the sensor 
is, in turn, sent to the monitored variable to make a loop. 

Figure 7 is a single control loop system where there is only one point object for 
each of the actuator, sensor, monitored variable and manipulated variable. There 
exists a single control loop system with many process variables, or a control loop 
system with many single control loops. Such complicated control loop systems can 
also be easily implemented using the control loop framework. 

Figure 9 shows a control 
loop system which consists 
of two single control loops. 
An application of such a 
system can be constructed 
using Point classes of the 
control loop framework as 
shown in Figure 10. 

Fig. 9.  A Control Loop System with Two Single Control Loops 

5. Related Works 

Current researches on the design of the process control software in an object-oriented 
framework are reviewed in this chapter. 
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Per Dagermo and Jonas Knutsson[8] regarded the process control as a continuous 
re-computation of a number of output values as the response to changes to a number 
of  input values. A value in [8], which is an abstraction of a process variable, can 
either be an input value or a computed value. When a value changes, it notifies all the 
computed values registered as its dependents. When a dependent value is notified, it 
re-computes itself. 

P. Molin and L. Ohlsson[9] designed a framework for fire alarm systems, where 
the logical behavior of the input/output devices such as sensors and actuators at the 
interface are standardized and defined as Points [9]. The concept of Point was applied 
in this paper as the Point class. 

Jan Bosch[10] designed an object-oriented framework for the measurement system 
which measures the quality of manufactured products and picks out low-quality 
products. The Strategy pattern and the Composite Pattern were mainly utilized in the 
design of the system. The control loop of the measurement system differs from the 
one proposed in this paper in that the measured values are not used directly to control 
the manufacturing process. In this paper, the measured value, that is, the monitored 
variable is used as the controlled variable to control the process. 

The process variables as well as sensors and actuators in this paper are all defined 
as Point classes or its subclasses performing continuous re-computation. While data 
types, computation algorithm, and control of the computation are all encapsulated in 
the Value class in [8], they are separated in different classes in this paper. As the data 
type of a process variable is separated from its control and defined in a Number class, 
the operations of the process variable are performed polymorphically. This allows the 
control loop to have multiple types for its point values. We defined computation 
algorithms in separate classes according to the Strategy pattern so that the algorithms 
used by computed points are easily replaceable at runtime.  
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Fig. 10. An Application of the System in Figure 9 

 



6. Conclusions and Future Work 

The design and implementation of a highly reusable object-oriented control loop 
framework for process control systems was proposed in this paper. The core of the 
control loop framework is the design pattern of the Point class which encapsulates 
state values of the process together with the control mechanism. Since the Point 
classes are designed using the Observer and Composite patterns, the Point objects are 
loosely coupled one another and can be easily reconfigured. Furthermore, connection 
and disconnection of objects can also be easily done during the execution. Therefore, 
control loop application developers using the framework can complete their 
applications more efficiently and flexibly by adapting and extending the Point classes 
to their requirements and connect them to the framework. 

Most of the process control systems require parallel and real-time processing. 
Although the control loop framework proposed in this paper utilizes Java's multi-
thread function for the parallel processing, it does not directly support real-time 
scheduling. It assumes a real-time kernel to be used when it is extended to an 
application. Enhancing to a control loop framework that can be easily extended to a 
specific real-time operating system environment is the primary work to be done in the 
future. 
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