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Abstract

As a new distributed heterogeneous computing platform, grid aims at achieving Internet-wide resource 
sharing and collaborative computing. Grid task scheduling (GTS) is the key issue of grid computing, and its 
algorithm has a direct effect on the performance of the whole system. In this paper, two key entities in GTS, 
applications and target systems, are defined first. And then two types of the most popular GTS algorithms, 
namely, meta-task GTS algorithm and directed acyclic graph GTS algorithm, are discussed in details in ac-
cordance with the classification of the traditional deterministic algorithm and heuristic intelligent algorithm. 
In addition, the comparative analysis is made among them. Finally, some main research directions of GTS 
are pointed out.
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1. Introduction

As a new distributed heterogeneous computing 
(HC) platform, grid computing aims at achieving 
Internet-wide resource sharing and collaborative 
computing. Task management, task scheduling, and 
resource management are the three key issues of grid  
computing [1]. In particular, grid task scheduling (GTS) 
plays an important role in the whole system, and its 
algorithms have a direct effect on the grid system perfor-
mance. Task scheduling in HC environment has proved 
to be a NP-complete problem [2]. 

In order to solve this problem, various kinds of algo-
rithms have been proposed since the grid system 
emerged. Generally, grid applications can be classi-
fied into meta-task applications and directed acyclic 
graph (DAG) applications, which will be discussed in 
Section 2. Based on this point, we divide the existing 
GTS algorithms into two types, namely, meta-task GTS 
algorithms and DAG GTS algorithms. Furthermore, 
they are classified into traditional deterministic algo-
rithm and heuristic intelligent algorithm for their use 
of different optimization technologies. As been well 
known, task scheduling strategies usually include two 
types: static and dynamic strategies. The static strategy 
needs to accurately obtain some correlative information 
in advance, whereas the dynamic strategy assigns tasks 
according to the information collected at the runtime. 
So the former has the advantages of simple implemen-
tation, low running load, high efficiency, etc., and the 
latter has many uncertain factors and a relatively high 
scheduling overload. However, it can flexibly assign 

tasks during program execution and be well adapted 
to the different environments. As you might imagine, 
both of these two strategies are involved in GTS. And 
they are often used simultaneously in the algorithm 
design. That’s to say, some algorithms use both static 
and dynamic strategies. For this reason, in our later 
classified discussion, we will not distinguish whether 
the algorithms is static or dynamic.

The remainder of this paper is organized as follows: 
Section 2 states the basic principles of GTS including 
grid applications and target systems. In Section 3, we 
provide a detailed classified discussion on the various 
GTS algorithms according to the type of grid applica-
tions. Several main researching directions on GTS are 
summed up and analyzed in Section 4. Finally, conclu-
sions are drawn in Section 5.

2.	 Principles	and	Definition

GTS is to assign tasks to suitable processing units to 
execute under restraint by certain rules. It aims to maxi-
mize system throughput, improve resource utilization 
ratio, shorten task execute time as well as satisfy users’ 
requirements of quality of service (QoS). Specifically, 
the objectives of GTS include optimal makespan, load 
balancing, QoS, economic principles, etc. [1]. The two 
key entities in GTS are applications and target systems: 
the former can be viewed as tasks in abstract; the latter 
can be described as a processing unit (PU) network. 
Correspondingly, task scheduling algorithm is the com-
munication bridge between these two entities.
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2.1	 Grid	Application	

Conclusively, grid applications [3] can be described by a 
four-tuple ( , , , )T C D , where 1 2( , , , )nT t t t=   represents 
the executable tasks set;   denotes the partial ordering 
relation over T tasks set, which are used to express the 
priority constraint relation between task, for example, 
if existing ti < tj, then task ti must be executed before 
task tj; C is a n-dimensional vector, let  Ci > 0(1 ≤ i ≤ n) 
denote the amount of calculation of task ti; D is a n × n 
communication matrix, let Di,j ≥ 0 be the data quantity 
needing to be transferred from task ti to tj.

In substance, grid applications can be classified into two 
categories as follows:
(1) Meta-task applications: Such applications can be simpli-
fied as a two-tuple (T,C). There are no priority constraint 
relation and data communication between tasks. That is, 
all the tasks can run independently. 

(2) DAG applications: These applications are a typical 
model of ( , , , )T C D , which is usually described by DAG. 
A typical DAG task graph is illustrated in Figure 1. In 
the DAG graph, nodes represent tasks, directed edges 
denote the partial ordering relation between tasks, the 
node weights and edge weights are the amount of calcu-
lation and communication traffic of tasks, respectively.

2.2		 Grid	Target	System

Grid target system is a PU network with a certain topo-
logical structure [4]. Each PU has its own processor and 
local restore unit. That is, PUs couldn’t share memory, 
and they communicate with each other based on a 
message-driven mechanism. 

A PU network can be described by an undirected graph  
P = (Rp , Ep , C, D), where Rp is the set of nodes that repre-
sent processors; Ep is the set of edges that represent the 
communication link between processors; C(ri) denotes 
the calculation amount of processor ri per unit time;  
D(ri , rj) denotes the communication traffic that commu-
nication link (ri , rj) ∈ Ep can transfer per unit time. An 

example of the PU network is showed in Figure 2.

3.		 GTS	Algorithms

3.1		 Meta-task	GTS	Algorithms

In this section, some typical meta-task GTS algorithms 
are introduced including traditional GTS algorithms and 
heuristic intelligent algorithms. The former addresses 
some deterministic algorithms, whereas the latter 
concentrates on some randomized intelligent algorithms. 

3.1.1 Traditional Deterministic Meta-task GTS Algorithms

Early in 1999, Maheswaran et al. [5] studied dynamic 
mapping heuristics for a class of independent tasks 
used in the distributed HC systems, including minimum 
completion time (MCT), minimum execution time (MET), 
switching algorithm (SA), K-percent best (KPB), oppor-
tunistic load balancing (OLB), MinMin, MaxMin, and 
suffrage heuristic (SH). Ritchie et al. first reviewed several 
previous static scheduling algorithms including OLB, 
MET, MCT, MinMin, and MinMax [6]. Then combined 
with local search (LS), two new improved algorithms, 
MinMin plus LS and SH plus LS, were introduced. In 
2004, Fujimoto et al. [7] conducted a comparison among 
round robin (RR) and five related algorithms including 
dynamic fastest processor to largest task first (DFPLTF), 
suffrage-C, MinMin, MaxMin, and work queue (WQ). 
Kim et al. [8] proposed a new online heuristic scheduling 
algorithm MECT. Compared with MET, MCT, and KPB, 
MECT can achieve better performance. In 2007, Luo et al. 
[9] investigated fast greedy heuristics for mapping a class 
of independent tasks onto HC systems, in which a collec-
tion of 20 greedy heuristics were implemented, analyzed, 
and systematically compared within a uniform model of 
task execution time. In 2009, Tseng et al. [10] proposed a 
novel GTS algorithm called ATCS-MCT taking execution 
time, weight, due date, and communication time factors 
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Figure 1: A DAG task graph. Figure 2: A processing unit graph.
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together into account. Their experiments showed that 
ATCS-MCT not only achieved better makespan than 
MinMin did but also reduced costs. 

In summary, traditional GTS algorithms mainly include 
OLB, MET, MCT, MinMin, MaxMin, etc., which are usu-
ally stated by expected time to compute (ETC) matrix, 
machine availability time (MAT) vector, and completion 
time (CT) vector. One row of the ETC matrix contains 
the estimated execution times for a given task on each 
machine. Similarly, one column of the ETC matrix con-
sists of the estimated execution times of a given machine 
for each task. Thus, for an arbitrary task ti and an arbi-
trary machine mj, ETC(i,j) is the estimated execution time 
of ti on mj. Machine availability time MAT(j) is the earliest 
time in which machine mj can complete the execution 
of all the tasks that have previously been assigned to it. 
The completion time for a task ti on machine mj, CT(i,j), 
is the machine availability time plus the execution time 
of task ti on machine mj, CT(i,j)=MAT(i,j)+ETC(i,j). The 
maximum CT(i,j) value is known as the makespan. At the 
beginning, most of algorithms are designed to minimize 
the makespan with little consideration of other factors. 
However, multiobjective GTS has attracted more and 
more attentions with the deep research of GTS.

OLB assigns an unexecuted task to a currently avail-
able machine randomly. MET allocates an unexecuted 
task to a machine that gives it the minimum execution 
time. Both of them are regardless of the machine’s cur-
rent workload. So they can induce a heavy unbalancing 
workload. MCT absorbs their respective advantages, 
dispatching an unexecuted task to a machine that cur-
rently will result in minimum completion time. MinMin 
first calculates the set of minimum completion time for 
each task on all machines, and then the task with overall 
minimum completion time is selected and assigned to 
the corresponding machine. As a modification of Min-
Min, MaxMin is very similar to MinMin; just the task 
with overall maximum completion time is selected and 
assigned to the corresponding machine after obtaining 
the set of minimum completion time for each task.

Among these five algorithms, MinMin is the most out-
standing one. Although MCT usually outperforms the 
OLB and MET, it can induce a larger makespan compared 
with MinMin. If there are several long tasks in many 
short tasks, MaxMin will outperform MinMin with a 
balance system workload. It is worth to mention that 
MinMin has been adopted in some practice projects. Here 
we make a summary of several improved algorithms 
based on MinMin in the literature. Wu et al. [11] pre-
sented a segmented MinMin algorithm which can make a 
more balancing workload than MinMin and MaxMin do.  
Taking QoS requirements of GTS into consideration, He 
et al. [12] proposed a QoS-guided MinMin algorithm, 

where both tasks and resources were sorted by differ-
ent QoS levels first, and then tasks were selected and 
assigned to those resources whose QoS levels were equal 
or greater than those of tasks. Compared with the original 
MinMin, their algorithm can improve resource utilization 
ratio, satisfy user’s QoS requirements, and make a good 
synthetical performance. This is also the main objective of 
GTS we purchase all the time. In 2007, Etminani et al. [13] 
introduced a new MinMin MaxMin selective algorithm 
based on MinMin and MaxMin. It transferred between 
the two algorithms based on the standard deviation of 
the expected completion time of tasks on resources. Their 
experimental results showed that the new algorithm 
can lead to a significant performance gain for a variety 
of scenarios. And then in 2008, Venugopal and Buyya 
[14] proposed a two-phase GTS model for scheduling an 
application composed of a set of independent tasks. In 
the first part, they applied a SCP-based heuristic to match 
tasks to resources, and the second part was tackled by 
extending MinMin and suffrage to schedule the set of 
distributed data-intensive tasks.

3.1.2 Heuristic Intelligent Meta-task GTS Algorithms

Heuristic intelligent algorithms are inspired by some 
principles of nature such as biological evolution, physi-
cal process, and human thinking. At present, such algo-
rithms, which are used in GTS, mainly include genetic 
algorithm (GA), simulated annealing (SA), genetic simu-
lated annealing (GSA), tabu (tabu Search), ant colony 
optimization (ACO), particle swarm optimization (PSO), 
etc. As a basic work, it is necessary to use a number of 
different presentations to encode solutions onto chro-
mosomes or individuals in such algorithms. The most 
commonly used presentations are binary, numeric, and 
symbolic. Taking the numeric presentation as an exam-
ple, an individual is a m × 1 vector, where position i(0 ≤ 
i < m) represents task ti, and the entry in position i is the 
machine to which the task has been mapped. Next, these 
main algorithms are introduced respectively.

(1) Genetic algorithm: GA is one typical branch of evolu-
tionary algorithms inspired by evolutionary biology such 
as inheritance, mutation, selection, and crossover. It oper-
ates on a population of potential solutions, applying the 
principle of survival of the fittest to produce successively 
exact or approximate solutions to the given problems. Its 
main procedures can be depicted as Figure 3.

The GA has been applied for task scheduling in HC 
environments since the late 1990s [15]. In [16], Braun et al. 
made a comparison of 11 static algorithms; their simula-
tions showed that the GA always gave the best results 
than other algorithms, and MinMin was the second 
best. Many efforts on GAs used in GTS have been done 
in the past years. In 2007, Carretero et al. [17] presented 
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an extensive study on the usefulness of GAs for design-
ing efficient grid schedulers when both makespan and 
flow time were minimized. And then, Priya et al. [18] 
proposed a four-task-level fault tolerance technique 
including retry, alternate resource, check point, and 
replication. The GA for GTS with fault tolerance was 
presented using check point. In 2008, Yuan et al. [19] 
introduced an improved adaptive GA combined with 
neighborhood search, and their simulations showed 
that the proposed algorithm could greatly improve the 
performance of GTS.

(2) Simulated annealing algorithm: SA is a probabilistic 
heuristic for the optimization problems. It aims to merely 
find an acceptably good solution in a fixed amount of 
time rather than the best possible solution. Its inspira-
tion comes from annealing in metallurgy, a technique 
involving heating and controlled cooling of a material to 
increase the size of its crystals and reduce their defects. 
The heating causes the atoms to become unstuck from 
their initial positions and wander randomly through 
states of higher energy; the slow cooling gives them more 
chances of finding configurations with lower internal 
energy than the initial one. Its basic procedure is shown 
in Figure 4. 

SA has proved to be a flexible search method and can be 
successfully applied to the majority of practice problems. 
In 2006, Fidanova [20] introduced a task scheduling 
algorithm for GTS based on SA, and better results were 
obtained compared with ACO. And Kazem et al. [21] pro-
posed a modified SA for scheduling independent tasks 
in grid environment in 2008. Their experimental results 
showed that it can improve the performance of static 
instances compared to the results of other algorithms 
reported in the literature.

(3) Tabu search algorithm: Tabu uses a local or neigh-
bourhood search procedure to iteratively move from 
a solution x to another solution x' in the neighborhood 
of x until some stopping criterions have been satisfied. 
The basic procedures of tabu are illustrated in Figure 5.

To explore regions of the search space that would be 
left unexplored by the local search procedure, tabu 
modifies the neighborhood structure of each solution 
as the search progresses. The new neighborhoods are 
determined through the use of memory structures. 
The most important type of memory structure used to 
determine the solutions admitted to the neighborhood 
of x is the tabu list. In its simplest form, a tabu list is a 
short-term memory which contains the solutions that 
have been visited recently. Its applications on GTS can 
be found in [16,22].

(4) Ant colony optimization algorithm: ACO is a new heu-
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ristic algorithm. It is based on the behavior of real ants. 
When the blind insects, such as ants, look for food, every 
moving ant lays some pheromone on the path; then the 
pheromone on a shorter path will be increased quickly, 
and the quantity of pheromone on every path will affect 
the possibility of other ants to select the path. At last all 
the ants will choose the shortest path. ACO has been 
successfully used to solve many NP problems, such as 
TSP, job-shop scheduling, and graph coloring. 

In 2003, Xu et al. [23] designed an ACO algorithm for 
GTS. When a resource registers itself into the grid, it 
is asked to submit its performance parameters such 
as number of PE, MIPS of each PE, etc. And then the 
resource monitor tests these parameters for validation 
and initializes the pheromone on each link by Equa-
tion (1), where m is the number of PE, p is the MIPS of 
one PE, c is the size of parameters, and sj is parameter 
transfer time from j to the resource monitor. While a 
new resource joins the grid, or a resource breaks down, 
or a task is assigned, or there are tasks returned, the 
pheromone on the corresponding path will be updated 
by Equation (2), where ∆τj is the increment or decre-
ment of pheromone on the path from schedule cen-
ter to resource j, ρ is the permanence of pheromone  
(0 ≤ ρ ≤ 1), and 1- ρ is the evaporation of the pheromone. 
The probability of task assignment to every resource will 
be recomputed by Equation (3), where τj (t) is the phero-
mone intensity on the path from the schedule center to 
resource j, ηj is the innate performance of the resource, 
that is, τj(0), α is the importance of pheromone, and b is 
the importance of resource innate attributes: 

τj(0) = m.p + c/sj     (1)

τj
new= ρ.τj

old + ∆τj     (2)
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Ritchie et al. [24] presented a hybrid ACO for schedul-
ing independent jobs in HC environments, which can 
consistently find better schedules for several benchmark 
problems than other techniques. In 2007, Lorpunmanee 
et al. [25] described an ACO algorithm for dynamic job 
scheduling in grid environment. Compared with FCFS, 
EDD, and ERD, ACO can efficiently and effectively allo-
cate jobs to proper resources. And then, Liu et al. [26] pro-
posed an improved ACO called adaptive ACO for GTS, 
which was more efficient than the original algorithm both 
in task scheduling efficiency and resource load.

(5) Particle swarm optimization algorithm: PSO is a popula-
tion-based stochastic optimization technique inspired by 
social behavior of birds. It contains a swarm of particles 
in which each particle includes a potential solution. In 
contrast to evolutionary computation paradigms such as 
GA, a swarm is similar to a population, while a particle 
is similar to an individual. The particles fly through a 
multidimensional search space in which the position of 
each particle is adjusted according to its own experience 
and the experience of its neighbors. The PSO system 
combines local search methods (through self-experience) 
with global search methods (through neighboring experi-
ence), attempting to balance exploration and exploitation 
[27]. Generally, the velocity and position of each particle 
can be updated by Equations (4) and (5) [28,29]:

[ ]1 1 2 2( 1) ( ) ( ) ( )id id id id gd idv t v t c r p x t c r p x t  + = + - + -     (4)

( 1) ( ) ( 1)id id idx t x t v t+ = + +         (5)

where ω is the inertia factor; r1 and r2 are random 
numbers between 0 and 1; c1 and c2 are the accelera-
tion constants; pid is the best location of particle i in a 
d-dimensional space; and pgd is the best position of the 
entire group.

In 2008, Bu et al. [30] described an improved PSO algo-
rithm with a discrete coding rule for GTS. The experi-
mental results showed that the improved PSO was stable 
and presented low variability. And it outperformed 
MaxMin by makespan and other performance. Later 
Izakian et al. [31] introduced a PSO algorithm for sched-
uling meta-task in distributed HC systems to minimize 
makespan and the proposed algorithm obtained higher 
performance than other compared techniques did.

Recently, some new heuristic intelligent algorithms are 
also introduced to solve GTS problem, such as AFSW 
[32] and HNN [33]. Besides, hybrid algorithms are also 
one of hotspots of GTS. As we know, GSA is a typical 
algorithm for the hybrid GTS algorithm. In 2006, Zheng 
et al. [34] proposed a parallel GSA algorithm combined 
with the advantages of GA and SA for GTS. The pre-
sented algorithm was superior to the genetic algorithm 
and simulated annealing according to the analysis and 
experiment result.

3.2		 DAG	GTS	Algorithms

At first, GTS mainly focused on meta-task applications. 
So many proposed algorithms do not consider the pri-
ority constraint relation and data dependence between 
tasks. However, with the development of grid tech-
nology, its application ranges become more and more 
wide. The involved applications are also becoming more 
complex and diverse. So GTS inevitably needs to pro-



163IETE TECHNICAL REVIEW  |  VOL 28  |  ISSUE 2  |  MAR-APR 2011

Ma T, et al.: Grid Task Scheduling – Algorithm Review

cess some interdependent tasks. It is worth to mention 
that it is the original intention that grids are treated as 
a generalized distributed parallel computing platform.

As mentioned above, many complex applications, which 
consist of interdependent tasks that cooperate in order to 
solve a particular problem, can be presented in the form 
of DAG. In recent years, many efforts have progressed 
in the DAG GTS algorithm. Especially, grid workflow 
scheduling opens a new road for solving the problem. 
In general, a workflow can be represented as a DAG or 
a non-DAG. In the DAG workflow, the structure can be 
classified as sequence, parallelism, and choice. In addi-
tion to all patterns contained in a DAG workflow, a non-
DAG workflow also includes the iteration structure in 
which sections of workflow tasks in an iteration block are 
allowed to be repeated [35]. To date, many grid workflow 
scheduling methods are based on the DAG workflow. 

Yu et al. [36] investigated several existing workflow 
scheduling algorithms deployed in the different grid 
environments. They classified those algorithms into 
two major types, namely, best-effort-based and QoS-
constraint-based scheduling. The best-effort-based 
scheduling attempts to minimize the execution time 
ignoring other factors such as the monetary cost of 
accessing resources and various users’ QoS satisfaction 
levels. On the other hand, QoS-constraint-based schedul-
ing attempts to minimize performance under the most 
important QoS constraints, for example, time minimiza-
tion under budget constraints or cost minimization under 
deadline constraints. 

Here we survey some typical DAG GTS algorithms in 
terms of the same classifications used in meta-task GTS 
algorithms, including traditional deterministic algo-
rithms and heuristic intelligent algorithms. 

3.2.1  Traditional Deterministic DAG GTS Algorithms

Topcuoglu et al. [37] proposed a well-established list 
scheduling algorithm called heterogeneous earliest finish 
time (HEFT), which assigned higher priority to the work-
flow task having a higher rank value. The rank value is 
calculated based on the average execution time for each 
task and average communication time between resources 
of two successive tasks, where the tasks in the critical 
path get comparatively higher rank values. Later in 2004, 
Sakellariou and Zhao [38] proposed a hybrid heuristic 
for scheduling DAG on heterogeneous systems, and 
the experimental results demonstrated its good perfor-
mance behaviors. In 2006, Du et al. [4] addressed a fuzzy 
clustering-based scheduling heuristic (FCBSH), which 
took both the heterogeneity of resources and priority 
constraint relation of tasks into account simultaneously. 
In 2008, considering time and cost parameter, Fard et al. 

[39] proposed a new list heuristic algorithm named TCI 
(time and cost improvement) for workflow applications 
modelled as DAG; TCI is an extended version for PETS, 
which is DAG-based algorithm for the optimization of 
makespan. Their experimental results showed that TCI 
can meet low time as well as low cost. Besides, some 
algorithms, initially designed for scheduling parallel 
independent tasks, are also applied to allocate tasks 
onto resources in certain workflow applications, such as 
MinMin, MaxMin, and suffrage [40,41]. These algorithms 
usually group workflow tasks into several independent 
tasks and consider tasks only in the current group.

3.2.2  Heuristic Intelligent DAG GTS Algorithms

Based on GA, Yu et al. [42] proposed a budget constraint 
workflow scheduling approach modelled as DAG, where 
a 2D string is used to encode a schedule as well as new 
genetic operators are designed. Their algorithm can 
minimize the execution time while meeting a specified 
budget. In 2008, Aziz and El-Rewini [43] presented a 
matching and scheduling algorithm based on SA named 
as PRISM-SA, which uses SA and concepts from tabu 
search to decrease the processing time. PRISM-SA made 
a drastic improvement in job processing time than the 
original PRISM and HEFT. ACO and PSO have also been 
applied to map tasks to resources in the applications 
represented by DAG in the recent researches. Chen et al. 
[44] designed an ACO algorithm to tackle the workflow 
scheduling problem concerning about the users’ QoS 
requirements as well as minimizing the cost. Two kinds 
of pheromones and three kinds of heuristic information 
are defined to guide the search direction of the ants for 
the bicriteria problem and the information of partial 
solutions are applied to modify the bias of ants to avoid 
inferior choices. And this algorithm performs better 
than the deadline-MDP algorithm in the experiments. 
Two years later in 2009, Chen et al. [45] applied ACO to 
solve another grid workflow application, namely, the 
time-varying workflow, in which the topologies of DGA 
change over time. A nine-task gird workflow with four 
topologies is used to test the performance of and the 
experimental results demonstrate the effectiveness and 
robustness of the algorithm. Tao et al. [46] put forward 
a novel PSO algorithm called rotary hybrid discrete par-
ticle swarm optimization (RHDPSO) to solve the multi-
dimensional QoS constrained grid workflow scheduling 
problem described by DAG, in which double extremums 
are disturbed by the method of random time sequence 
based on rotation discretization, to overcome premature 
convergence and local optimum. The simulation results 
show that the RHDPSO algorithm has fast convergence, 
high precision, and strong robustness, and can effectively 
restrain premature convergence compared with DPSO. 
Moreover, Li et al. [47] proposed a scheduling algorithm 
of multiobjective optimal grid workflow scheduling with 
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QoS constraints based on the multiobjective particle 
swarm optimization (MOPSO) algorithm, which out-
performs a grid workflow scheduling algorithm based 
on the NSGA-II algorithm.

Compared with mate-task GTS algorithms, there are 
many new challenges which need to be addressed for 
DAG GTS algorithms, such as large data transmission 
across various data communication links and order 
restrictions of task execution. Besides, these algorithms 
pay more attentions to user’s QoS requirements such 
as time, cost, fidelity, reliability, security, and so on. As 
we have seen, many algorithms have been proposed 
in the literature. However, for the dynamic nature of 
grid environments and the complexity of scheduling 
interdependent tasks, it is difficult to find an approach 
to satisfy all kinds of requirements, and there are still 
many problems that need to be resolved in this aspect. 

3.3		 Comparative	Analysis	of	Different	Algorithms	

The comparative analysis of time complexity and charac-
teristics among the algorithms mentioned above on the 
basis of some representative algorithms is depicted in 
Table 1. In general, meta-task GTS algorithms are simpler 
than DAG GTS algorithms for their just considering the 
allocations of independent tasks without priority con-
straints. Traditional deterministic algorithms, applied 
in both meta-task and DAG GTS algorithms, can gener-
ate a feasible solution in a polynomial time, whereas 
the scheduling time needed to produce a good quality 
solution required by heuristic intelligent algorithms is 
significantly higher because they usually exploit the fea-
sible solution space in a number of iterations according 
to different guided random search techniques. However, 
intelligent algorithms can produce better quality solu-
tions and be suitable for different application scenarios. 
Unlike this point, the traditional deterministic algo-
rithms are usually designed for a particular application. 
Sometimes these two types of scheduling approaches 
are incorporated to generate a satisfactory solution in 
shorter time.

4.	 Research	Directions	of	GTS

GTS is the key issue of grid computing. Up to now, all 
kinds of technologies and solutions on GTS have been 
proposed over the past years. According to our long-
term tracking and analyzing, we believe the following 
several research directions will play an important role 
in the future:

(1) Constrained multiobjective GTS: As mentioned above, 
many efforts have progressed both in meta-task GTS 
algorithms and DAG GTS algorithms in the past few 
years. Besides, the optimization objectives of GTS have 
also been changing. Initially, makespan was the main 

consideration, and then deadline and budget were taken 
into account based on the market/economic scheduling 
model. Up to now, all of such objectives have been for-
mulated as the requirements of QoS such as time, cost, 
fidelity, reliability, efficiency, and security, either from 
the perspective of the system or from the users. At pres-
ent, these different objectives usually are aggregated into 
a single objective in the form of utility function, which 
are introduced in Ref [48]. However, this requires some 
prior knowledge to determine initial parameters, and it 
is difficult to obtain some information for the nature of 
dynamic of grid computing environment. Besides, con-
sidering the complexity of grid workflow scheduling, 
some new constrained multiobjective GTS methods are 
needed to make sufficient optimization among the entire 
objectives in the future work.

(2) Mobile grid computing GTS: In recent years, with the 
proliferation of wireless mobile devices and the devel-
opment of wireless network technology, mobile grids/
ad hoc grids/pervasive grids have been emerging as a 

Table 1: Comparison analysis of mentioned grid task 
scheduling algorithms 
Categories Representative 

algorithm
Time 
complexity

Characteristics analysis

Meta-task GTS algorithms
Traditional 
deterministic 
algorithms

MinMin O(m2n) Scheduling decision based 
on independent tasks, 
simple implementation, 
and the scheduling time 
of obtaining a feasible 
solution is lower

Heuristic 
intelligent 
algorithms

GA Higher Scheduling decision 
based on independent 
tasks, global solution 
obtained by combining 
current best solutions and 
exploiting new search 
space iteratively, high 
robustness but longer 
time needed for higher 
quality solutions

DAG GTS algorithms
Traditional 
deterministic 
algorithms

HEFT O(k2n) Scheduling decision based 
on interdependent tasks, 
the strategies required to 
set the priority of tasks, 
lower time complexity but 
restriction of the scale of 
applications

Heuristic 
intelligent 
algorithms

ACO Higher Scheduling decision 
based on interdependent 
tasks, more suitable for 
the multiobjective and 
multiconstraint DAG-
based scheduling, and 
higher quality scheduling 
can be achieved but 
longer time is also 
required

m is the number of tasks, k the number of nodes, and n the number of PUS.
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new computing paradigm, which is the conjunction of 
grid computing and pervasive/mobile computing. Tra-
ditional grid infrastructures are mostly based on wired 
network resources owned by various individuals and/
or institutions, structured in virtual organizations, which 
are subjected to specific sharing policies. Unlike the 
classical grid system, mobile grids enable wireless and 
mobile users to share computing resources, services, and 
information and include wirelessly networked portable 
devices (laptops, PDAs, mobile phones, wireless sensors, 
etc.). The research of mobile grid computing can make 
grid system more user-friendly and pervasive. Some 
issues and architectures have been proposed in this field 
[49-54]. However, the adaptation of grid technology to ad 
hoc networks is not straightforward, and there still exist 
numerous difficulties needing to be conquered, such as 
mobile resource discovery, power consumption, QoS, 
security, etc. Also, task scheduling is vital for the mobile 
grids and more attention needs to be paid to task replica-
tion/migration for the instability of mobile devices. This 
direct is attracting more and more attention.

(3) Agent-based GTS: Agent architectures offer valuable 
techniques to provide the autonomy and flexibility 
required in highly dynamic and heterogeneous envi-
ronments. Multiagent systems imply coordination and 
cooperation among their agents. The agent-based grid 
is intended to provide a completely distributed envi-
ronment within which agent systems and individual 
agents can participate in a broader community of agents, 
utilizing services and capabilities provided by the other 
participants or the grid itself. The combination of intel-
ligent agents and multiagent approaches can be applied 
to both local grid resource scheduling and global grid 
load balancing. Although much work [55-59] has been 
done in this aspect, but there still exist many challenges. 
Especially, it is very promising to construct and deploy 
the self-government distributed grid system using the 
technology of agent.

As you have seen, the issue of jointly using several tech-
nologies to solve certain problems has recently received 
more and more attention. In addition to the points 
mentioned above, many other similar studies have also 
been initiated such as grid-based DDM (distributed data 
mining) [60-62] and the usage of game theory [63-65]. 
So the hybrid approaches will play an important role in 
the future work.

5. Conclusion

In this paper, we have done a detailed analysis and dis-
cussion on the current main GTS algorithms, and cleared 
several researching branches of GTS and their respective 
characteristics. In addition, several future researching 
directions on GTS are summed up and analyzed finally. 
They maybe are useful for fresh researchers as references 

or overviews of the current GTS field. 
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