
ISSN : 0256-4602

www.ietejournals.org

Subscriber Copy : Not for Resale

IETE
 TELECOMMUNICATION

ENGINEERS

T
H

E
 I
N

S
T
IT

U
T
IO

N
 O

F

 E
L
E

C
T
R

O
N

IC
S

 A
N

D

The Institution of Electronics and
Telecommunication Engineers

IE
T

E
 T

e
c

h
n

ic
a

l R
e
v
ie

w
 • V

o
lu

m
e
 2

8
 • Issu

e
 2

 • M
a
rc

h
-A

p
ril 2

0
11

 • P
a
g
e

s ?
?

?

Technical Review
IETE

Volume 28 No. 2 Mar-Apr 2011

158 IETE TECHNICAL REVIEW | VOL 28 | ISSUE 2 | MAR-APR 2011

Grid Task Scheduling: Algorithm Review
Tinghuai Ma, Qiaoqiao Yan, Wenjie Liu, Donghai Guan1 and Sungyoung Lee1

School of Computer and Software, Nanjing University of Information Science and Technology, People’s Republic of China,
1Department of Computer, Keyung Hee University, South Korea

Abstract

As a new distributed heterogeneous computing platform, grid aims at achieving Internet-wide resource
sharing and collaborative computing. Grid task scheduling (GTS) is the key issue of grid computing, and its
algorithm has a direct effect on the performance of the whole system. In this paper, two key entities in GTS,
applications and target systems, are defined first. And then two types of the most popular GTS algorithms,
namely, meta-task GTS algorithm and directed acyclic graph GTS algorithm, are discussed in details in ac-
cordance with the classification of the traditional deterministic algorithm and heuristic intelligent algorithm.
In addition, the comparative analysis is made among them. Finally, some main research directions of GTS
are pointed out.

Keywords
Directed acyclic graph, Grid computing, Grid task scheduling, Heuristic algorithms, Meta-task,
Research topic, Swarm intelligent algorithms.

1. Introduction

As a new distributed heterogeneous computing
(HC) platform, grid computing aims at achieving
Internet-wide resource sharing and collaborative
computing. Task management, task scheduling, and
resource management are the three key issues of grid
computing [1]. In particular, grid task scheduling (GTS)
plays an important role in the whole system, and its
algorithms have a direct effect on the grid system perfor-
mance. Task scheduling in HC environment has proved
to be a NP-complete problem [2].

In order to solve this problem, various kinds of algo-
rithms have been proposed since the grid system
emerged. Generally, grid applications can be classi-
fied into meta-task applications and directed acyclic
graph (DAG) applications, which will be discussed in
Section 2. Based on this point, we divide the existing
GTS algorithms into two types, namely, meta-task GTS
algorithms and DAG GTS algorithms. Furthermore,
they are classified into traditional deterministic algo-
rithm and heuristic intelligent algorithm for their use
of different optimization technologies. As been well
known, task scheduling strategies usually include two
types: static and dynamic strategies. The static strategy
needs to accurately obtain some correlative information
in advance, whereas the dynamic strategy assigns tasks
according to the information collected at the runtime.
So the former has the advantages of simple implemen-
tation, low running load, high efficiency, etc., and the
latter has many uncertain factors and a relatively high
scheduling overload. However, it can flexibly assign

tasks during program execution and be well adapted
to the different environments. As you might imagine,
both of these two strategies are involved in GTS. And
they are often used simultaneously in the algorithm
design. That’s to say, some algorithms use both static
and dynamic strategies. For this reason, in our later
classified discussion, we will not distinguish whether
the algorithms is static or dynamic.

The remainder of this paper is organized as follows:
Section 2 states the basic principles of GTS including
grid applications and target systems. In Section 3, we
provide a detailed classified discussion on the various
GTS algorithms according to the type of grid applica-
tions. Several main researching directions on GTS are
summed up and analyzed in Section 4. Finally, conclu-
sions are drawn in Section 5.

2.	 Principles	and	Definition

GTS is to assign tasks to suitable processing units to
execute under restraint by certain rules. It aims to maxi-
mize system throughput, improve resource utilization
ratio, shorten task execute time as well as satisfy users’
requirements of quality of service (QoS). Specifically,
the objectives of GTS include optimal makespan, load
balancing, QoS, economic principles, etc. [1]. The two
key entities in GTS are applications and target systems:
the former can be viewed as tasks in abstract; the latter
can be described as a processing unit (PU) network.
Correspondingly, task scheduling algorithm is the com-
munication bridge between these two entities.

159IETE TECHNICAL REVIEW | VOL 28 | ISSUE 2 | MAR-APR 2011

Ma T, et al.: Grid Task Scheduling – Algorithm Review

2.1	 Grid	Application	

Conclusively, grid applications [3] can be described by a
four-tuple (, , ,)T C D , where 1 2(, , ,)nT t t t=  represents
the executable tasks set;  denotes the partial ordering
relation over T tasks set, which are used to express the
priority constraint relation between task, for example,
if existing ti < tj, then task ti must be executed before
task tj; C is a n-dimensional vector, let Ci > 0(1 ≤ i ≤ n)
denote the amount of calculation of task ti; D is a n × n
communication matrix, let Di,j ≥ 0 be the data quantity
needing to be transferred from task ti to tj.

In substance, grid applications can be classified into two
categories as follows:
(1) Meta-task applications: Such applications can be simpli-
fied as a two-tuple (T,C). There are no priority constraint
relation and data communication between tasks. That is,
all the tasks can run independently.

(2) DAG applications: These applications are a typical
model of (, , ,)T C D , which is usually described by DAG.
A typical DAG task graph is illustrated in Figure 1. In
the DAG graph, nodes represent tasks, directed edges
denote the partial ordering relation between tasks, the
node weights and edge weights are the amount of calcu-
lation and communication traffic of tasks, respectively.

2.2		 Grid	Target	System

Grid target system is a PU network with a certain topo-
logical structure [4]. Each PU has its own processor and
local restore unit. That is, PUs couldn’t share memory,
and they communicate with each other based on a
message-driven mechanism.

A PU network can be described by an undirected graph
P = (Rp , Ep , C, D), where Rp is the set of nodes that repre-
sent processors; Ep is the set of edges that represent the
communication link between processors; C(ri) denotes
the calculation amount of processor ri per unit time;
D(ri , rj) denotes the communication traffic that commu-
nication link (ri , rj) ∈ Ep can transfer per unit time. An

example of the PU network is showed in Figure 2.

3.		 GTS	Algorithms

3.1		 Meta-task	GTS	Algorithms

In this section, some typical meta-task GTS algorithms
are introduced including traditional GTS algorithms and
heuristic intelligent algorithms. The former addresses
some deterministic algorithms, whereas the latter
concentrates on some randomized intelligent algorithms.

3.1.1 Traditional Deterministic Meta-task GTS Algorithms

Early in 1999, Maheswaran et al. [5] studied dynamic
mapping heuristics for a class of independent tasks
used in the distributed HC systems, including minimum
completion time (MCT), minimum execution time (MET),
switching algorithm (SA), K-percent best (KPB), oppor-
tunistic load balancing (OLB), MinMin, MaxMin, and
suffrage heuristic (SH). Ritchie et al. first reviewed several
previous static scheduling algorithms including OLB,
MET, MCT, MinMin, and MinMax [6]. Then combined
with local search (LS), two new improved algorithms,
MinMin plus LS and SH plus LS, were introduced. In
2004, Fujimoto et al. [7] conducted a comparison among
round robin (RR) and five related algorithms including
dynamic fastest processor to largest task first (DFPLTF),
suffrage-C, MinMin, MaxMin, and work queue (WQ).
Kim et al. [8] proposed a new online heuristic scheduling
algorithm MECT. Compared with MET, MCT, and KPB,
MECT can achieve better performance. In 2007, Luo et al.
[9] investigated fast greedy heuristics for mapping a class
of independent tasks onto HC systems, in which a collec-
tion of 20 greedy heuristics were implemented, analyzed,
and systematically compared within a uniform model of
task execution time. In 2009, Tseng et al. [10] proposed a
novel GTS algorithm called ATCS-MCT taking execution
time, weight, due date, and communication time factors

4 5

5

4

3

6

t1

t2 t3

t4 t5

t6

2

3

1

1

2

Figure 1: A DAG task graph. Figure 2: A processing unit graph.

4 3

23

4

2

p1

p2 p3

p4 p5 p6

2

3 2

1

2

3

p7

160 IETE TECHNICAL REVIEW | VOL 28 | ISSUE 2 | MAR-APR 2011

Ma T, et al.: Grid Task Scheduling – Algorithm Review

together into account. Their experiments showed that
ATCS-MCT not only achieved better makespan than
MinMin did but also reduced costs.

In summary, traditional GTS algorithms mainly include
OLB, MET, MCT, MinMin, MaxMin, etc., which are usu-
ally stated by expected time to compute (ETC) matrix,
machine availability time (MAT) vector, and completion
time (CT) vector. One row of the ETC matrix contains
the estimated execution times for a given task on each
machine. Similarly, one column of the ETC matrix con-
sists of the estimated execution times of a given machine
for each task. Thus, for an arbitrary task ti and an arbi-
trary machine mj, ETC(i,j) is the estimated execution time
of ti on mj. Machine availability time MAT(j) is the earliest
time in which machine mj can complete the execution
of all the tasks that have previously been assigned to it.
The completion time for a task ti on machine mj, CT(i,j),
is the machine availability time plus the execution time
of task ti on machine mj, CT(i,j)=MAT(i,j)+ETC(i,j). The
maximum CT(i,j) value is known as the makespan. At the
beginning, most of algorithms are designed to minimize
the makespan with little consideration of other factors.
However, multiobjective GTS has attracted more and
more attentions with the deep research of GTS.

OLB assigns an unexecuted task to a currently avail-
able machine randomly. MET allocates an unexecuted
task to a machine that gives it the minimum execution
time. Both of them are regardless of the machine’s cur-
rent workload. So they can induce a heavy unbalancing
workload. MCT absorbs their respective advantages,
dispatching an unexecuted task to a machine that cur-
rently will result in minimum completion time. MinMin
first calculates the set of minimum completion time for
each task on all machines, and then the task with overall
minimum completion time is selected and assigned to
the corresponding machine. As a modification of Min-
Min, MaxMin is very similar to MinMin; just the task
with overall maximum completion time is selected and
assigned to the corresponding machine after obtaining
the set of minimum completion time for each task.

Among these five algorithms, MinMin is the most out-
standing one. Although MCT usually outperforms the
OLB and MET, it can induce a larger makespan compared
with MinMin. If there are several long tasks in many
short tasks, MaxMin will outperform MinMin with a
balance system workload. It is worth to mention that
MinMin has been adopted in some practice projects. Here
we make a summary of several improved algorithms
based on MinMin in the literature. Wu et al. [11] pre-
sented a segmented MinMin algorithm which can make a
more balancing workload than MinMin and MaxMin do.
Taking QoS requirements of GTS into consideration, He
et al. [12] proposed a QoS-guided MinMin algorithm,

where both tasks and resources were sorted by differ-
ent QoS levels first, and then tasks were selected and
assigned to those resources whose QoS levels were equal
or greater than those of tasks. Compared with the original
MinMin, their algorithm can improve resource utilization
ratio, satisfy user’s QoS requirements, and make a good
synthetical performance. This is also the main objective of
GTS we purchase all the time. In 2007, Etminani et al. [13]
introduced a new MinMin MaxMin selective algorithm
based on MinMin and MaxMin. It transferred between
the two algorithms based on the standard deviation of
the expected completion time of tasks on resources. Their
experimental results showed that the new algorithm
can lead to a significant performance gain for a variety
of scenarios. And then in 2008, Venugopal and Buyya
[14] proposed a two-phase GTS model for scheduling an
application composed of a set of independent tasks. In
the first part, they applied a SCP-based heuristic to match
tasks to resources, and the second part was tackled by
extending MinMin and suffrage to schedule the set of
distributed data-intensive tasks.

3.1.2 Heuristic Intelligent Meta-task GTS Algorithms

Heuristic intelligent algorithms are inspired by some
principles of nature such as biological evolution, physi-
cal process, and human thinking. At present, such algo-
rithms, which are used in GTS, mainly include genetic
algorithm (GA), simulated annealing (SA), genetic simu-
lated annealing (GSA), tabu (tabu Search), ant colony
optimization (ACO), particle swarm optimization (PSO),
etc. As a basic work, it is necessary to use a number of
different presentations to encode solutions onto chro-
mosomes or individuals in such algorithms. The most
commonly used presentations are binary, numeric, and
symbolic. Taking the numeric presentation as an exam-
ple, an individual is a m × 1 vector, where position i(0 ≤
i < m) represents task ti, and the entry in position i is the
machine to which the task has been mapped. Next, these
main algorithms are introduced respectively.

(1) Genetic algorithm: GA is one typical branch of evolu-
tionary algorithms inspired by evolutionary biology such
as inheritance, mutation, selection, and crossover. It oper-
ates on a population of potential solutions, applying the
principle of survival of the fittest to produce successively
exact or approximate solutions to the given problems. Its
main procedures can be depicted as Figure 3.

The GA has been applied for task scheduling in HC
environments since the late 1990s [15]. In [16], Braun et al.
made a comparison of 11 static algorithms; their simula-
tions showed that the GA always gave the best results
than other algorithms, and MinMin was the second
best. Many efforts on GAs used in GTS have been done
in the past years. In 2007, Carretero et al. [17] presented

161IETE TECHNICAL REVIEW | VOL 28 | ISSUE 2 | MAR-APR 2011

Ma T, et al.: Grid Task Scheduling – Algorithm Review

an extensive study on the usefulness of GAs for design-
ing efficient grid schedulers when both makespan and
flow time were minimized. And then, Priya et al. [18]
proposed a four-task-level fault tolerance technique
including retry, alternate resource, check point, and
replication. The GA for GTS with fault tolerance was
presented using check point. In 2008, Yuan et al. [19]
introduced an improved adaptive GA combined with
neighborhood search, and their simulations showed
that the proposed algorithm could greatly improve the
performance of GTS.

(2) Simulated annealing algorithm: SA is a probabilistic
heuristic for the optimization problems. It aims to merely
find an acceptably good solution in a fixed amount of
time rather than the best possible solution. Its inspira-
tion comes from annealing in metallurgy, a technique
involving heating and controlled cooling of a material to
increase the size of its crystals and reduce their defects.
The heating causes the atoms to become unstuck from
their initial positions and wander randomly through
states of higher energy; the slow cooling gives them more
chances of finding configurations with lower internal
energy than the initial one. Its basic procedure is shown
in Figure 4.

SA has proved to be a flexible search method and can be
successfully applied to the majority of practice problems.
In 2006, Fidanova [20] introduced a task scheduling
algorithm for GTS based on SA, and better results were
obtained compared with ACO. And Kazem et al. [21] pro-
posed a modified SA for scheduling independent tasks
in grid environment in 2008. Their experimental results
showed that it can improve the performance of static
instances compared to the results of other algorithms
reported in the literature.

(3) Tabu search algorithm: Tabu uses a local or neigh-
bourhood search procedure to iteratively move from
a solution x to another solution x' in the neighborhood
of x until some stopping criterions have been satisfied.
The basic procedures of tabu are illustrated in Figure 5.

To explore regions of the search space that would be
left unexplored by the local search procedure, tabu
modifies the neighborhood structure of each solution
as the search progresses. The new neighborhoods are
determined through the use of memory structures.
The most important type of memory structure used to
determine the solutions admitted to the neighborhood
of x is the tabu list. In its simplest form, a tabu list is a
short-term memory which contains the solutions that
have been visited recently. Its applications on GTS can
be found in [16,22].

(4) Ant colony optimization algorithm: ACO is a new heu-

Initialize experimental parameter
produce initial population

Convergence criteria?

Selection operator

Crossover operator

Mutation operator

Y

N

Evaluation operation

Evaluation operation

Print results

Figure 3: The basic process of GA on GTS.

Figure 5: The basic process of the TS algorithm on GTS.

Figure 4: The basic process of the SA algorithm on GTS.

Produce initial solution (S0), compute its fitness(f0), define
bad solution accepted function f(S), set initial temperature

 Convergence criteria?

Produce new solution (S1) from current
solution compute its fitness(f1)

f1<f0?

Decreasing temperature
S0=S1

Print result

Y

N

N

Y

Random[0,1]<f(S)?

Y

N

Evaluating S0

 Initialize control parameter,
produce initial solution (S0), set initial tabu list

Search the best solution (S1) except solution in tabu
list in the neighborhood of current solution(S0)

Print result

Y

Using the searched solution above to
replace the current solution (S0=S1)

Convergence criteria?

Update tabu list

N

162 IETE TECHNICAL REVIEW | VOL 28 | ISSUE 2 | MAR-APR 2011

Ma T, et al.: Grid Task Scheduling – Algorithm Review

ristic algorithm. It is based on the behavior of real ants.
When the blind insects, such as ants, look for food, every
moving ant lays some pheromone on the path; then the
pheromone on a shorter path will be increased quickly,
and the quantity of pheromone on every path will affect
the possibility of other ants to select the path. At last all
the ants will choose the shortest path. ACO has been
successfully used to solve many NP problems, such as
TSP, job-shop scheduling, and graph coloring.

In 2003, Xu et al. [23] designed an ACO algorithm for
GTS. When a resource registers itself into the grid, it
is asked to submit its performance parameters such
as number of PE, MIPS of each PE, etc. And then the
resource monitor tests these parameters for validation
and initializes the pheromone on each link by Equa-
tion (1), where m is the number of PE, p is the MIPS of
one PE, c is the size of parameters, and sj is parameter
transfer time from j to the resource monitor. While a
new resource joins the grid, or a resource breaks down,
or a task is assigned, or there are tasks returned, the
pheromone on the corresponding path will be updated
by Equation (2), where ∆τj is the increment or decre-
ment of pheromone on the path from schedule cen-
ter to resource j, ρ is the permanence of pheromone
(0 ≤ ρ ≤ 1), and 1- ρ is the evaporation of the pheromone.
The probability of task assignment to every resource will
be recomputed by Equation (3), where τj (t) is the phero-
mone intensity on the path from the schedule center to
resource j, ηj is the innate performance of the resource,
that is, τj(0), α is the importance of pheromone, and b is
the importance of resource innate attributes:

τj(0) = m.p + c/sj (1)

τj
new= ρ.τj

old + ∆τj (2)

 b

b

 

 

        

      


∈= ∑
()

() ()
, ,

0,

j j

u ju

k
j

t

t t
j u R

others

p

(3)

Ritchie et al. [24] presented a hybrid ACO for schedul-
ing independent jobs in HC environments, which can
consistently find better schedules for several benchmark
problems than other techniques. In 2007, Lorpunmanee
et al. [25] described an ACO algorithm for dynamic job
scheduling in grid environment. Compared with FCFS,
EDD, and ERD, ACO can efficiently and effectively allo-
cate jobs to proper resources. And then, Liu et al. [26] pro-
posed an improved ACO called adaptive ACO for GTS,
which was more efficient than the original algorithm both
in task scheduling efficiency and resource load.

(5) Particle swarm optimization algorithm: PSO is a popula-
tion-based stochastic optimization technique inspired by
social behavior of birds. It contains a swarm of particles
in which each particle includes a potential solution. In
contrast to evolutionary computation paradigms such as
GA, a swarm is similar to a population, while a particle
is similar to an individual. The particles fly through a
multidimensional search space in which the position of
each particle is adjusted according to its own experience
and the experience of its neighbors. The PSO system
combines local search methods (through self-experience)
with global search methods (through neighboring experi-
ence), attempting to balance exploration and exploitation
[27]. Generally, the velocity and position of each particle
can be updated by Equations (4) and (5) [28,29]:

[]1 1 2 2(1) () () ()id id id id gd idv t v t c r p x t c r p x t  + = + - + -  (4)

(1) () (1)id id idx t x t v t+ = + + (5)

where ω is the inertia factor; r1 and r2 are random
numbers between 0 and 1; c1 and c2 are the accelera-
tion constants; pid is the best location of particle i in a
d-dimensional space; and pgd is the best position of the
entire group.

In 2008, Bu et al. [30] described an improved PSO algo-
rithm with a discrete coding rule for GTS. The experi-
mental results showed that the improved PSO was stable
and presented low variability. And it outperformed
MaxMin by makespan and other performance. Later
Izakian et al. [31] introduced a PSO algorithm for sched-
uling meta-task in distributed HC systems to minimize
makespan and the proposed algorithm obtained higher
performance than other compared techniques did.

Recently, some new heuristic intelligent algorithms are
also introduced to solve GTS problem, such as AFSW
[32] and HNN [33]. Besides, hybrid algorithms are also
one of hotspots of GTS. As we know, GSA is a typical
algorithm for the hybrid GTS algorithm. In 2006, Zheng
et al. [34] proposed a parallel GSA algorithm combined
with the advantages of GA and SA for GTS. The pre-
sented algorithm was superior to the genetic algorithm
and simulated annealing according to the analysis and
experiment result.

3.2		 DAG	GTS	Algorithms

At first, GTS mainly focused on meta-task applications.
So many proposed algorithms do not consider the pri-
ority constraint relation and data dependence between
tasks. However, with the development of grid tech-
nology, its application ranges become more and more
wide. The involved applications are also becoming more
complex and diverse. So GTS inevitably needs to pro-

163IETE TECHNICAL REVIEW | VOL 28 | ISSUE 2 | MAR-APR 2011

Ma T, et al.: Grid Task Scheduling – Algorithm Review

cess some interdependent tasks. It is worth to mention
that it is the original intention that grids are treated as
a generalized distributed parallel computing platform.

As mentioned above, many complex applications, which
consist of interdependent tasks that cooperate in order to
solve a particular problem, can be presented in the form
of DAG. In recent years, many efforts have progressed
in the DAG GTS algorithm. Especially, grid workflow
scheduling opens a new road for solving the problem.
In general, a workflow can be represented as a DAG or
a non-DAG. In the DAG workflow, the structure can be
classified as sequence, parallelism, and choice. In addi-
tion to all patterns contained in a DAG workflow, a non-
DAG workflow also includes the iteration structure in
which sections of workflow tasks in an iteration block are
allowed to be repeated [35]. To date, many grid workflow
scheduling methods are based on the DAG workflow.

Yu et al. [36] investigated several existing workflow
scheduling algorithms deployed in the different grid
environments. They classified those algorithms into
two major types, namely, best-effort-based and QoS-
constraint-based scheduling. The best-effort-based
scheduling attempts to minimize the execution time
ignoring other factors such as the monetary cost of
accessing resources and various users’ QoS satisfaction
levels. On the other hand, QoS-constraint-based schedul-
ing attempts to minimize performance under the most
important QoS constraints, for example, time minimiza-
tion under budget constraints or cost minimization under
deadline constraints.

Here we survey some typical DAG GTS algorithms in
terms of the same classifications used in meta-task GTS
algorithms, including traditional deterministic algo-
rithms and heuristic intelligent algorithms.

3.2.1 Traditional Deterministic DAG GTS Algorithms

Topcuoglu et al. [37] proposed a well-established list
scheduling algorithm called heterogeneous earliest finish
time (HEFT), which assigned higher priority to the work-
flow task having a higher rank value. The rank value is
calculated based on the average execution time for each
task and average communication time between resources
of two successive tasks, where the tasks in the critical
path get comparatively higher rank values. Later in 2004,
Sakellariou and Zhao [38] proposed a hybrid heuristic
for scheduling DAG on heterogeneous systems, and
the experimental results demonstrated its good perfor-
mance behaviors. In 2006, Du et al. [4] addressed a fuzzy
clustering-based scheduling heuristic (FCBSH), which
took both the heterogeneity of resources and priority
constraint relation of tasks into account simultaneously.
In 2008, considering time and cost parameter, Fard et al.

[39] proposed a new list heuristic algorithm named TCI
(time and cost improvement) for workflow applications
modelled as DAG; TCI is an extended version for PETS,
which is DAG-based algorithm for the optimization of
makespan. Their experimental results showed that TCI
can meet low time as well as low cost. Besides, some
algorithms, initially designed for scheduling parallel
independent tasks, are also applied to allocate tasks
onto resources in certain workflow applications, such as
MinMin, MaxMin, and suffrage [40,41]. These algorithms
usually group workflow tasks into several independent
tasks and consider tasks only in the current group.

3.2.2 Heuristic Intelligent DAG GTS Algorithms

Based on GA, Yu et al. [42] proposed a budget constraint
workflow scheduling approach modelled as DAG, where
a 2D string is used to encode a schedule as well as new
genetic operators are designed. Their algorithm can
minimize the execution time while meeting a specified
budget. In 2008, Aziz and El-Rewini [43] presented a
matching and scheduling algorithm based on SA named
as PRISM-SA, which uses SA and concepts from tabu
search to decrease the processing time. PRISM-SA made
a drastic improvement in job processing time than the
original PRISM and HEFT. ACO and PSO have also been
applied to map tasks to resources in the applications
represented by DAG in the recent researches. Chen et al.
[44] designed an ACO algorithm to tackle the workflow
scheduling problem concerning about the users’ QoS
requirements as well as minimizing the cost. Two kinds
of pheromones and three kinds of heuristic information
are defined to guide the search direction of the ants for
the bicriteria problem and the information of partial
solutions are applied to modify the bias of ants to avoid
inferior choices. And this algorithm performs better
than the deadline-MDP algorithm in the experiments.
Two years later in 2009, Chen et al. [45] applied ACO to
solve another grid workflow application, namely, the
time-varying workflow, in which the topologies of DGA
change over time. A nine-task gird workflow with four
topologies is used to test the performance of and the
experimental results demonstrate the effectiveness and
robustness of the algorithm. Tao et al. [46] put forward
a novel PSO algorithm called rotary hybrid discrete par-
ticle swarm optimization (RHDPSO) to solve the multi-
dimensional QoS constrained grid workflow scheduling
problem described by DAG, in which double extremums
are disturbed by the method of random time sequence
based on rotation discretization, to overcome premature
convergence and local optimum. The simulation results
show that the RHDPSO algorithm has fast convergence,
high precision, and strong robustness, and can effectively
restrain premature convergence compared with DPSO.
Moreover, Li et al. [47] proposed a scheduling algorithm
of multiobjective optimal grid workflow scheduling with

164 IETE TECHNICAL REVIEW | VOL 28 | ISSUE 2 | MAR-APR 2011

Ma T, et al.: Grid Task Scheduling – Algorithm Review

QoS constraints based on the multiobjective particle
swarm optimization (MOPSO) algorithm, which out-
performs a grid workflow scheduling algorithm based
on the NSGA-II algorithm.

Compared with mate-task GTS algorithms, there are
many new challenges which need to be addressed for
DAG GTS algorithms, such as large data transmission
across various data communication links and order
restrictions of task execution. Besides, these algorithms
pay more attentions to user’s QoS requirements such
as time, cost, fidelity, reliability, security, and so on. As
we have seen, many algorithms have been proposed
in the literature. However, for the dynamic nature of
grid environments and the complexity of scheduling
interdependent tasks, it is difficult to find an approach
to satisfy all kinds of requirements, and there are still
many problems that need to be resolved in this aspect.

3.3		 Comparative	Analysis	of	Different	Algorithms	

The comparative analysis of time complexity and charac-
teristics among the algorithms mentioned above on the
basis of some representative algorithms is depicted in
Table 1. In general, meta-task GTS algorithms are simpler
than DAG GTS algorithms for their just considering the
allocations of independent tasks without priority con-
straints. Traditional deterministic algorithms, applied
in both meta-task and DAG GTS algorithms, can gener-
ate a feasible solution in a polynomial time, whereas
the scheduling time needed to produce a good quality
solution required by heuristic intelligent algorithms is
significantly higher because they usually exploit the fea-
sible solution space in a number of iterations according
to different guided random search techniques. However,
intelligent algorithms can produce better quality solu-
tions and be suitable for different application scenarios.
Unlike this point, the traditional deterministic algo-
rithms are usually designed for a particular application.
Sometimes these two types of scheduling approaches
are incorporated to generate a satisfactory solution in
shorter time.

4.	 Research	Directions	of	GTS

GTS is the key issue of grid computing. Up to now, all
kinds of technologies and solutions on GTS have been
proposed over the past years. According to our long-
term tracking and analyzing, we believe the following
several research directions will play an important role
in the future:

(1) Constrained multiobjective GTS: As mentioned above,
many efforts have progressed both in meta-task GTS
algorithms and DAG GTS algorithms in the past few
years. Besides, the optimization objectives of GTS have
also been changing. Initially, makespan was the main

consideration, and then deadline and budget were taken
into account based on the market/economic scheduling
model. Up to now, all of such objectives have been for-
mulated as the requirements of QoS such as time, cost,
fidelity, reliability, efficiency, and security, either from
the perspective of the system or from the users. At pres-
ent, these different objectives usually are aggregated into
a single objective in the form of utility function, which
are introduced in Ref [48]. However, this requires some
prior knowledge to determine initial parameters, and it
is difficult to obtain some information for the nature of
dynamic of grid computing environment. Besides, con-
sidering the complexity of grid workflow scheduling,
some new constrained multiobjective GTS methods are
needed to make sufficient optimization among the entire
objectives in the future work.

(2) Mobile grid computing GTS: In recent years, with the
proliferation of wireless mobile devices and the devel-
opment of wireless network technology, mobile grids/
ad hoc grids/pervasive grids have been emerging as a

Table 1: Comparison analysis of mentioned grid task
scheduling algorithms
Categories Representative

algorithm
Time
complexity

Characteristics analysis

Meta-task GTS algorithms
Traditional
deterministic
algorithms

MinMin O(m2n) Scheduling decision based
on independent tasks,
simple implementation,
and the scheduling time
of obtaining a feasible
solution is lower

Heuristic
intelligent
algorithms

GA Higher Scheduling decision
based on independent
tasks, global solution
obtained by combining
current best solutions and
exploiting new search
space iteratively, high
robustness but longer
time needed for higher
quality solutions

DAG GTS algorithms
Traditional
deterministic
algorithms

HEFT O(k2n) Scheduling decision based
on interdependent tasks,
the strategies required to
set the priority of tasks,
lower time complexity but
restriction of the scale of
applications

Heuristic
intelligent
algorithms

ACO Higher Scheduling decision
based on interdependent
tasks, more suitable for
the multiobjective and
multiconstraint DAG-
based scheduling, and
higher quality scheduling
can be achieved but
longer time is also
required

m is the number of tasks, k the number of nodes, and n the number of PUS.

165IETE TECHNICAL REVIEW | VOL 28 | ISSUE 2 | MAR-APR 2011

Ma T, et al.: Grid Task Scheduling – Algorithm Review

new computing paradigm, which is the conjunction of
grid computing and pervasive/mobile computing. Tra-
ditional grid infrastructures are mostly based on wired
network resources owned by various individuals and/
or institutions, structured in virtual organizations, which
are subjected to specific sharing policies. Unlike the
classical grid system, mobile grids enable wireless and
mobile users to share computing resources, services, and
information and include wirelessly networked portable
devices (laptops, PDAs, mobile phones, wireless sensors,
etc.). The research of mobile grid computing can make
grid system more user-friendly and pervasive. Some
issues and architectures have been proposed in this field
[49-54]. However, the adaptation of grid technology to ad
hoc networks is not straightforward, and there still exist
numerous difficulties needing to be conquered, such as
mobile resource discovery, power consumption, QoS,
security, etc. Also, task scheduling is vital for the mobile
grids and more attention needs to be paid to task replica-
tion/migration for the instability of mobile devices. This
direct is attracting more and more attention.

(3) Agent-based GTS: Agent architectures offer valuable
techniques to provide the autonomy and flexibility
required in highly dynamic and heterogeneous envi-
ronments. Multiagent systems imply coordination and
cooperation among their agents. The agent-based grid
is intended to provide a completely distributed envi-
ronment within which agent systems and individual
agents can participate in a broader community of agents,
utilizing services and capabilities provided by the other
participants or the grid itself. The combination of intel-
ligent agents and multiagent approaches can be applied
to both local grid resource scheduling and global grid
load balancing. Although much work [55-59] has been
done in this aspect, but there still exist many challenges.
Especially, it is very promising to construct and deploy
the self-government distributed grid system using the
technology of agent.

As you have seen, the issue of jointly using several tech-
nologies to solve certain problems has recently received
more and more attention. In addition to the points
mentioned above, many other similar studies have also
been initiated such as grid-based DDM (distributed data
mining) [60-62] and the usage of game theory [63-65].
So the hybrid approaches will play an important role in
the future work.

5. Conclusion

In this paper, we have done a detailed analysis and dis-
cussion on the current main GTS algorithms, and cleared
several researching branches of GTS and their respective
characteristics. In addition, several future researching
directions on GTS are summed up and analyzed finally.
They maybe are useful for fresh researchers as references

or overviews of the current GTS field.

6.		 Acknowledgment

This research was partly supported by Natural Science Foun-
dation from Nanjing University of Information and Science
Technology (20080302), Natural Science fund for colleges and
universities in Jiangsu Province (08KJD520018), Jiangsu over-
seas study scholarship, and Jiangsu Youth Project.

References

1. H. Luo, D. Mu, Z. Deng, and X. Wang. “A review of job scheduling
for grid computing,” Application Research of Computer, vol. 22,
no. 5, pp.16-9, May. 2005.

2. J. D. Ullman. “NP-complete scheduling problems,” Journal of
Computer and System Sciences, vol. 10, issue 3, pp. 384-93, Jun.
1975.

3. J. Li. “Research on tasks DAG scheduling algorithm based on grid,”
PhD thesis, Central South University, Hunan, China, 2008.

4. X. Du, C. Jiang, G. Xu, and Z. Ding. “A grid DAG scheduling
algorithm based on fuzzy clustering,” Journal of Software, vol. 17,
no. 11, pp. 2277-88, Nov. 2006.

5. M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F.
Freund. “Dynamic mapping of a class of independent tasks
onto heterogeneous computing systems,” Journal of Parallel and
Distributed Computing, vol. 59, Issue 2, pp. 107-31, Nov. 1999 .

6. G. Ritchie and J. Levine. “A fast, effective local search for scheduling
independent jobs in heterogeneous computing environments,” in
the 22nd Workshop of the UK Planning and Scheduling Special
Interest Group, Glasgow, UK, pp. 178-83, 2003.

7. N. Fujimoto and K. Hagihara. “A comparison among grid scheduling
algorithms for independent coarse-grained tasks,” in SAINT 2004
Workshop on High Performance Grid Computing and Networking,
Tokyo, Japan, 2004, pp. 674-80.

8. H. D. Kim and J. S. Kim. “An online scheduing algorithm for grid
computing systems,” in the 2th International Workshop on Grid
and cooperative computing, GCC 2003, Shanghai, China, pp. 34-
9, Dec. 2004.

9. P. Luo, K. Lü and Z. Z. Shi. “A revisit of fast greedy heuristics
for mapping a class of independent tasks onto heterogeneous
computing systems,” Journal of Parallel and Distributed
Computing, vol. 67, issue 6, pp. 695-714, Jun. 2007.

10. L. Y. Tseng, Y. H. Chin, and S. C. Wang. “The anatomy study of
high performance task scheduling algorithm for Grid computing
system,” Computer Standards and Interfaces, vol. 31, issue 4, pp.
713-22, Jun. 2009.

11. M. Y. Wu, W. Shu, and H. Zhang. “Segmented min-min: A static
mapping algorithm for meta-tasks on heterogeneous computing
systems,” in 9th IEEE Heterogeneous Computing Workshop
(HCW 2000), Cancun, Mexico, pp. 192-6, 2000.

12. X. S. He, X. H. Sun, and G. V. Laszewski. “QoS guided min-min
heuristic for grid task scheduling,” Journal of Computer Science
and Technology, vol. 18, no. 4, pp. 442-51, 2003.

13. K. Etminani and M. Naghibzadeh. “A Min-Min Max-Min
Selective Algorithm for Grid Task Scheduling,” in 3rd IEEE/IFIP
International Conference in Central Asia on Internet (ICI’07),
Tashkent, Uzbekistan, pp. 1-7, 2007.

14. S. Venugopal and R. Buyya. “An SCP-based heuristic approach for
scheduling distributed data-intensive applications on global grids,”
Journal of Parallel and Distributed Computing, vol. 68, issue 4, pp.
471-87, Apr. 2008.

15. L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Maciejewski.
“Task matching and scheduling in heterogeneous computing
environments using a genetic-algorithm-based approach,” Journal
of Parallel and Distributed Computing, vol. 47, issue 1, pp. 8-22,
Nov. 1997.

166 IETE TECHNICAL REVIEW | VOL 28 | ISSUE 2 | MAR-APR 2011

Ma T, et al.: Grid Task Scheduling – Algorithm Review

16. T. D. Braun, H. J. Siegelb, N. Beckc, and L. L. Bölönid, et al. “A
comparison of eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed computing
systems,” Journal of Parallel and Distributed Computing, vol. 61,
issue 6, pp. 810-37, Jun. 2001.

17. J. Carretero, F. Xhafa, and A. Abraham. “Genetic algorithm based
schedulers for grid computing systems,” International Journal of
Innovative Computing, Information and Control, vol. 3, no.5,
pp.1053-71, Oct. 2007.

18. S. B. Priya, M. Prakash, and K. K. Dhawan. “Fault tolerance-genetic
algorithm for grid task scheduling using check point,” in GCC2007,
Urumchi, China, pp. 676-80, 2007.

19. J. B. Yuan, J. M. Luo, and Z.Y. Su. “Strategy for tasks scheduling
in grid combined neighborhood search with improved adaptive
genetic algorithm based on local convergence criterion,” in 2008
International Conference on Computer Science and Software
Engineering, Wuhan, China, pp. 9-13, 2008.

20. S. Fidanova. “Simulated annealing for grid scheduling problem,”
in IEEE John Vincent Atanasoff 2006 International Symposium on
Modern Computing (JVA’06), Sofia, Bulgaria, pp. 41-5, 2006.

21. A. A. P. Kazem, A. Kazem, A. M. Rahmani, and H. H. Aghdam.
“A Modified Simulated Annealing Algorithm for Static Task
Scheduling in Grid Computing,” in International Conference on
Computer Science and Information Technology, Singapore, pp.
623-7, 2008.

22. R. Subrata, A. Y. Zomaya, and B. Landfeldt. “Artificial life
techniques for load balancing in computational grids,” Journal of
Computer and System Sciences, vol. 73, issue 8, pp. 1176-90, Dec
2007.

23. Z. Xu, X. Hou, and J. Sun. “Ant algorithm-based task scheduling
in grid computing,” in Canadian Conference on Electrical and
Computer Engineering (CCECE 2003), Montreal, Canada, vol. 2,
pp. 1107-10, 2003.

24. G. Ritchie and J. Levine. “A hybrid ant algorithm for scheduling
independent jobs in heterogeneous computing environments,” in
the 23rd Workshop of the UK Planning and Scheduling Special
Interest Group (PLANSIG 2004), pp. 1-7, Dec. 2004.

25. S. Lorpunmanee, M. N. Sap, A. H. Abdullah, and C. Chompoo-
inwai. “An ant colony optimization for dynamic job scheduling
in grid environment,” International Journal of Computer and
Information Science and Engineering, vol. 1, pp. 207-14, 2007.

26. A. H. Liu and Z. Y. Wang. “Grid task scheduling based on
adaptive ant colony algorithm,” in International Conference on
Management of e-Commerce and e-Government (ICMECG’08),
Nanchang, China, pp. 415-8, 2008.

27. A. Salman, I. Ahmad, and S. Al-Madani. “Particle swarm
optimization for task assignment problem,” Microprocessors and
Microsystems, vol. 26, issue 8, pp. 363-71, Nov. 2002.

28. Y. Shi and R. C. Eberhart. “A modified particle swarm optimizer,”
in IEEE International Conference on Evolutionary Computation,
Anchorage, Alaska, pp. 69-73, May. 1998.

29. Y. Shi and R. C. Eberhart. “Fuzzy adaptive particle swarm
optimization,” in the 2001 Congress on Evolutionary Computation
(CEC2001), Seoul, Korea, vol. 1, 2001, pp.101-6.

30. Y. P. Bu, W. Zhou, and J. S. Yu. “An improved PSO algorithm and
its application to grid scheduling problem,” in 2008 International
Symposium on Computer Science and Computational Technology,
Shanghai, China, pp. 352-5, 2008.

31. H. Izakian, A. Abraham, and V. Snášel. “Metaheuristic based
scheduling meta-tasks in distributed heterogeneous computing
system,” Sensors, vol. 9, pp. 5339-50, 2009.

32. S. Farzi. “Efficient job scheduling in grid computing with modified
artificial fish swarm algorithm,” International Journal of Computer
Theory and Engineering, vol. 1, pp. 13-8, 2009.

33. C. F. Wang, H. Y. Wang, and F. C. Sun. “Hopfield neural network
approach for task scheduling in a grid environment,” in 2008
International Conference on Computer Science and Software
Engineering, Wuhan, China, vol. 4, pp. 811-4, 2008.

34. S. J. Zheng, W. N. Shu, and L. Gao. “Task scheduling using

parallel genetic simulated annealing algorithm,” in 2006 IEEE
International Conference on Service Operations and Logistics, and
Informatics (SOLI 2006), Shanghai, China, vol. 1,pp. 46-50, 2006.

35. J. Yu and R. Buyya. “A taxonomy of workflow management systems
for grid computing,” Journal of Grid Computing, vol. 3, pp. 171-
200, 2006.

36. J. Yu, R. Buyya, and K. Ramamohanarao. “ Workflow scheduling
algorithms for grid computing,” Studies in Computational
Intelligence, vol. 146, pp. 173-214, 2008.

37. H. Topcuoglu, S. Hariri, and M. Y. Wu. “Performance-effective and
low-complexity task scheduling for heterogeneous computing,”
IEEE Transactions on Parallel and Distributed Systems, vol.13,
issue 3, pp.260-74, 2002.

38. R. Sakellariou and H. Zhao. “A hybrid heuristic for DAG scheduling
on heterogeneous systems,” in the 13th Heterogeneous Computing
Workshop (HCW 2004), Santa Fe, New, Mexico, USA, April 26,
2004.

39. H. M. Fard and H. Deldari. “An economic approach for scheduling
dependent tasks in grid computing,” in Proceedings of the 11th
IEEE International Conference on Computational Science and
Engineering, CSE Workshops, pp.71-6, 2008.

40. F. Berman, H. Casanova, A. Chien, K. Cooper, H. Dail, A. Dasgupta
et al. “New Grid Scheduling and Rescheduling Methods in the
GrADS Project,” International Journal of Parallel Programming,
vol. 33, pp. 209-29, 2005.

41. J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal et al.,
“Task scheduling strategies for workflow-based applications in
grids,” in IEEE International Symposium on Cluster Computing
and the Grid (CCGrid 2005), vol. 2, pp. 759-67, 2005.

42. J. Yu and R. Buyya. “A budget constrained scheduling of workflow
applications on utility grids using genetic algorithms,” in 2006
Workshop on Workflows in Support of Large-Scale Science, Paris,
France, Jun. 2006.

43. A. Aziz and H. El-Rewini. “On the use of meta-heuristics to increase
the efficiency of online grid workflow scheduling algorithms,”
Cluster Computing, vol. 11, no. 4, pp. 373-90, Dec. 2008.

44. W. N. Chen, J. Zhang, and Y. Yu. “Workflow scheduling in grids:
an ant colony optimizaton approach,” in IEEE Congress on
Evolutionary Computation (CEC2007), Singapore, Sep. 2007.

45. W. N. Chen, Y. Shi, and J. Zhang. “An ant colony optimization
algorithm for the time-varying workflow scheduling problem in
grids,” in 2009 IEEE Congress on Evolutionary Computation,
CEC 2009, Guangzhou, China, pp. 875-80, 2009.

46. Q. Tao, H. Y. Chang, Y. Yi, C. Q. Gu, and Y. Yu. “QoS constrained
grid workflow scheduling optimization based on a novel PSO
algorithm,” in 8th International Conference on Grid and
Cooperative Computing, GCC 2009, Guangzhou, China, pp. 153-
9, 2009.

47. J. Z. Li, J. T. Zeng, J. W. Xia, M. H. Li, and C. X. Liu, “Research
on grid workflow scheduling based on mopso algorithm”, in
Proceedings of the 2009 WRI Global Congress on Intelligent
Systems, GCIS 2009, Jiangxi, China, vol. 1, pp. 199-203, 2009.

48. C. L. Li, and L. Y. Li. “A distributed multiple dimensional
QoS constrained resource scheduling optimization policy in
computational grid,” Journal of Computer and System Sciences,
vol.72, issue 4, pp.706-26, Jun. 2006.

49. M. Gaynor, M. Welsh, S. Moulton, A. Rowan, E. LaCombe, and J.
Wynne. “Integrating wireless sensor networks with the grid,” IEEE
Internet Computing (special issue on the wireless grid), pp. 32-9,
Jul–Aug. 2004.

50. A. Litke, D. Skoutas, K. Tserpes, and T. Varvarigou. “Efficient task
replication and management for adaptive fault tolerance in mobile
grid environments,” Future Generation Computer Systems, vol.
23, issue 2, pp. 163-78, Feb. 2007.

51. J. K. Kim, H. J. Siegel, A. A. Maciejewski, and R. Eigenmann.
“Dynamic resource management in energy constrained
heterogeneous computing systems using voltage scaling,” IEEE
Transactions on Parallel and Distributed Systems, vol.19, issue 11,
pp. 1445-57, 2008.

167IETE TECHNICAL REVIEW | VOL 28 | ISSUE 2 | MAR-APR 2011

Ma T, et al.: Grid Task Scheduling – Algorithm Review

AUTHORS
Tinghuai Ma is an associate professor in Computer
Sciences at Nanjing University of Information Science
& Technology, China. He received his Bachelor (HUST,
China, 1997), Master (HUST, China, 2000), PhD
(Chinese Academy of Science, 2003) and was Post-
doctoral associate (AJOU University, 2004). From Nov.
2007 to Jul. 2008, he visited Chinese Meteorology

Administration. From Feb.2009 to Aug. 2009, he was a visiting professor
in Ubiquitous computing Lab, Kyung Hee University. His research interests
are in the areas of Data Mining and Privacy Protected in Ubiquitous System,
Grid Computing. His research interests are data mining, grid computing,
ubiquitous computing, privacy preserving etc. He has published more than
50 journal/conference papers. He is a member of IEEE.

E-mail: thma@nuist.edu.cn

Qiaoqiao Yan received her Bachelor degree in
Computer Science and Engineering from Nanjing
University of Information Science & Technology, China
in 2009. Currently, she is a candidate for the degree of
Master of Computer Science and Engineering in Nanjing
University of Information Science & Technology. Her
research interests include Grid Computing, Quantum

Computing etc.

E-mail: xinfeiyanrjgc@126.com

Wenjie Liu is an assistant professor of Computer
Sciences at Nanjing University of Information Science
& Technology, China. He received his Bachelor (WuHan
University, China, 2001), Master (WuHan University,
China, 2004). Now, he is a doctoral candidate of
southeast University, China. His research interests are in
the areas of Grid computing and Quantum computing.

E-mail: wenjieliu@nuist.edu.cn

DOI: 10.4103/0256-4602.76138; Paper No TR 448_09; Copyright © 2011 by the IETE

52. A. Coronato and G. D. Pietro. “MiPeG: A middleware infrastructure
for pervasive grids,” Future Generation Computer Systems, vol. 24,
issue 1, pp. 17-29, Jan. 2008.

53. M. Vozmediano. “A hybrid mechanism for resource/service
discovery in ad-hoc grids,” Future Generation Computer Systems,
vol. 25, issue 7, pp. 717-27, Jul. 2009.

54. M. Nekovee and R. S. Saksena. “Simulations of large-scale
WiFi-based wireless networks: Interdisciplinary challenges and
applications,” Future Generation Computer Systems, vol. 26, issue
3, pp. 514-20, Mar. 2010.

55. C. L. Li and L. Y. Li. “Agent framework to support the computational
grid,” Journal of Systems and Software, vol. 7, pp.177-87, 2004.

56. Y. Gil. “On agents and grids: Creating the fabric for a new
generation of distributed intelligent systems,” Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 4, issue
2, pp. 116-23, Jun. 2006.

57. D. Chen, G. K. Theodoropoulos, S. J. Turner, W. Cai, R. Minson,
and Y. Zhang. “Large scale agent-based simulation on the grid,”
Future Generation Computer Systems, vol. 24, issue 7, pp. 658-71,
Jul. 2008.

58. L. Han and D. Berry. “Semantic-supported and agent-based
decentralized grid resource discovery,” Future Generation
Computer Systems, vol. 24, issue 8, pp. 806-12, Oct. 2008.

59. M. S. Pérez, A. Sánchez, J. H. Abawajy, V. Robles, and J. M. Peña.
“An agent architecture for managing data resources in a grid

environment,” Future Generation Computer Systems, vol. 25,
issue 7, pp. 747-55, Jul. 2009.

60. P. Luo, K. Lü, Z. Shi, and Q. He. “Distributed data mining in grid
computing environments”, Future Generation Computer Systems,
vol. 23, issue 1, pp. 84-91, Jan. 2007.

61. V. Stankovski, M. Swain, V. Kravtsov, T. Niessen, D. Wegener, J.
Kindermann et al. “Grid-enabling data mining applications with
DataMiningGrid: An architectural perspective,” Future Generation
Computer Systems, vol.24, issue 4, pp. 259-79, Apr. 2008.

62. M. Swain, C. G. Silva, N. Loureiro-Ferreira, V. Ostropytskyy, J. Brito,
O. Riche et al. “P-found: Grid-enabling distributed repositories of
protein folding and unfolding simulations for data mining,” Future
Generation Computer Systems, vol.26, issue.3, pp. 424-33, Mar.
2010.

63. Y. K. Kwok, K. Hwang, and S. Song. “Selfish grids: game-theoretic
modeling and NAS/PSA benchmark evaluation,” IEEE Transactions
on Parallel and Distributed Systems, vol. 18, issue 5, pp. 621-36, 2007.

64. R. Subrata, A.Y. Zomaya, and B. Landfeldt. “Game-theoretic
approach for load balancing in computational grids,” IEEE
Transactions on Parallel and Distributed Systems, vol.19, issue 1,
pp. 66-76, 2008.

65. S. U. Khan and I. Ahmad. “A cooperative game theoretical
technique for joint optimization of energy consumption and
response time in computational grids,” IEEE Transactions on
Parallel and Distributed Systems, vol. 20, issue 3, pp. 346-60, 2009.

Donghai Guan received his B.S. in College of
Automation from Harbin Engineering University
(HEU), Harbin, China in 2002. He got his M.S. degree
in Computer Science from Kumoh National Institute
of Technology (KIT), Gumi, South Korea in 2004. He
got his Ph.D. degree in Computer Science from Kyung
Hee University, South Korea in 2009. From 2009, he

was a Post Doctoral Fellow at Computer Science Department, Kyung Hee
University. His research interests are Machine Learning, Pattern Recognition,
Data Mining, Activity Recognition, and Trust modeling.

E-mail: donghai@oslab.khu.ac.kr

Sungyoung Lee received his B.S. from Korea University,
Seoul, Korea. He got his M.S. and Ph.D. degrees
in Computer Science from Illinois Institute of
Technology (IIT), Chicago, Illinois, USA in 1987 and
1991 respectively. He has been a professor in the
Department of Computer Engineering, Kyung Hee
University, Korea since 1993. He is a founding director

of the Ubiquitous Computing Laboratory, and has been a.liated with a
director of Neo Medical ubiquitous-Life Care Information Technology
Research Center, Kyung Hee University since 2006. Before joining Kyung Hee
University, he was an assistant professor in the Department of Computer
Science, Governors State University, Illinois, USA from 1992 to 1993. His
current research focuses on Ubiquitous Computing and applications,
Context-aware Middleware, Sensor Operating Systems, Real-Time.

E-mail: sylee@oslab.khu.ac.kr

