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In this paper, we present a novel active contour (AC) model for medical image segmentation that is
based on a convex combination of two energy functionals to both minimize the inhomogeneity within
an object and maximize the distance between the object and the background. This combination is
necessary because objects in medical images, e.g., bones, are usually highly inhomogeneous while
distinct organs should generate distinct image configurations. Compared with the conventional
Chan-Vese AC, the proposed model yields similar performance in a set of CT images but performs
better in an MRI data set, which is generally in lower contrast.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Medical image analysis has played a more and more important
role in many clinical procedures due to the advancements in
medical imaging modalities such as computed tomography (CT),
magnetic resonance imaging (MRI), and ultrasound [1]. Medical
image analysis deals with enhancement, segmentation, registra-
tion, and visualization, among which segmentation is a very
crucial task because it provides the organ of interest, such as
bone [2,3], brain [4], or heart [5], that is necessary for clinical
diagnosis and/or treatment [6]. Image segmentation is to partition
the image into its constituent parts which correspond to sepa-
rated objects. One then may think of the extraction of object
boundaries, where simple edge detectors like the gradient-based
and the second-order derivative-based operators [7] or a more
elaborated approach like Canny edge detector [8] are widely used.
However, an edge detector is usually not suitable for extracting
object boundaries due to many reasons. Firstly, extracted edges
do not always correspond to object boundaries. For example, one
may think of texture. Secondly, edge detectors usually yield
discontinued edges, whereas objects are necessarily separated
by closed contours. So post-processing tasks are needed to link
discontinued edges, which are complex and prone to be erro-
neous. Finally, edge detectors depend on the local information in
a neighborhood of a pixel. Being local is sometimes advantageous,
yet in many cases, the global view of the object appearance is
of significant clues. Therefore, image segmentation in general is
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different from edge detection. The former is to provide regions,
represented by closed boundaries, not edges.

Region growing [7,9] is one of the simple techniques that
provide regions. Starting with a set of seed points, the algorithm
successively appends to each seed point its neighboring pixels
that share similar image features such as intensity, texture, or
color to form larger regions. This is an iterative process that stops
when all pixels are processed. The algorithm can be regarded as
a heuristic minimization for the Mumford-Shah functional [10]
where the energy decreases while the regions are growing.
Therefore, just like its energy optimization counterpart, region
growing suffers from the sensitivity to seed selection as the initial
condition, which can lead to under- or over-growing.

Another region-providing method is snake or active contour (AC).
An AC model is the description of contours in 2D or surfaces in 3D
which evolve under an appropriate energy to move toward desired
features, such as object boundaries. Because contours are always
closed, object boundaries extracted are continuous, making post-
processing tasks to connect discontinued edges no longer necessary.
Since it was first introduced by Kass, Witkin, and Terzopoulos [11],
active contour has attracted a large amount of researches: many AC
models have been proposed, which can be categorized into para-
metric-type and geometric-type ACs. In parametric ACs [11-15], the
curve (contour) C is explicitly represented using its parameteriza-
tion: C(p) = [x(p), y(p)], where p(0 < p < 1) parameterizes the curve.
This makes the parametric ACs non-intrinsic because their energy
functional depends on the parameterizations but not on the geo-
metry of the contour. As a result, these models cannot naturally
handle topological changes to simultaneously detect multiple objects.
Many special (usually heuristic) procedures have been proposed in
detecting possible splitting and merging [16-18] but prior knowledge
about the number of objects needs to be given.
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Geometric-type ACs [19-24], on the other hand, can handle
topological changes without additional efforts because they are
implemented using level-set framework [25,26]. In this frame-
work, the curve C is implicitly represented by the zero level set of
a function ¢(x,t) : R" x [0,00) >R, n = {2, 3} such that

C={xeR": p(xxt)=0). (1)

The function ¢ is then evolved using the following general
equation
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where x is the Euclidean curvature and (b, Vy, and S) are three
parameters determining the velocity and direction of the evolu-
tion. The curvature-based force is to smooth the curve; the
normal direction force shrinks or expands the curve along its
normal direction; and the external vector field-based force acts as
a translation operator. Although the function ¢ itself moves up
and down on a fixed coordinate system without changing its
topology, its zero level set (or the curve C) may automatically split
or merge.

The first geometric-type AC is the (original) Geometric AC
which was introduced independently by Caselles et al. [19] and
Malladi et al. [27]. The main idea is to move the curve using the
curvature and the normal direction forces and stop the motion at
the object boundaries using an edge-based function g(x) = g(|VI|?)
(where VI is the gradient of the input image I) which approaches
0 on the edges and 1 otherwise, e.g., g(x) = e~(1/9DIVC®F with g,
a scaling factor and G, the smoothing Gaussian kernel of scale .
Caselles et al. [20] proposed another geometric-type AC, called
Geodesic AC, using an energy functional to search for a curve of
minimal edge-weighted length (geodesic curve). This model is
similar to the Geometric AC, except that Vg is used as a vector
field force to increase the curve attraction towards weak edges.
Then, Paragios et al. [24] proposed to replace the vector field force
Vg with the well-known gradient vector flow (GVF) introduced
by Xu and Prince [15] to increase the capture range, leading to the
GVF Fast Geometric AC (shortly, GVF-Geo AC). Differently, Chan
and Vese [22] proposed a new model, which we call the CV AC,
using an approximation of the Mumford-Shah functional. All
these geometric-type ACs are considered as classical models in
the research field and their level-set parameters are summarized
in Table 1. Here, we do not consider other approaches that
incorporate prior knowledge about object shape [28-30] or
texture [31] since they require a training stage which is generally
application specific.

We can see from Table 1 that the first three models depend
heavily on the edge function g(x), making themselves prone to be
trapped in false edges caused by noises. This can be alleviated by
performing smoothing with larger o, yet it in turn leads to inexact
results because edges are smoothed as well. The CV AC, on the
other hand, does not depend on g (this gives it the name

Table 1
Level-set parameters of the classical AC models.

b Vn y

Geometric g(x) ngx) 0

Geodesic g(x) ng(x) Vg(x)

GVF-Geo &(x) NKX)g(x) gx)(1-IK)D[A, V]

v U n +(17‘:1?1)Zf(l*caur)z 0

y and # are constants, [1,V] the GVF [15], K(x) a function depending on the curve
normal and the GVF, I=I(x) the image intensity, and c;, and c,,,, respectively, the
average intensity values inside and outside the variable curve.

“without-edge AC”) but on the homogeneity assumption, i.e.,
image features within a segment should be similar. In this case,
the image I is assumed to be consisted of two segments with
approximately piecewise-constant intensities. The CV energy
functional F(C) is defined as

|I(x)—cour|2dx,

3

F(C) = F1(CO)+ F2(C) = /

inside(C)

II(X)—Cin\ZdX+/

outside(C)

where c;; and ¢,y are, respectively, the average intensities inside
and outside the variable curve C. Compared to the other three AC
models, the CV AC can detect the objects more exactly since it
does not need to smooth the initial image (via the edge function
g(|VI;|?) where I, = G,+I), even if it is very noisy. In other words,
this model is more robust to noise and thus suitable for medical
images since they are often noisy and low contrast. Also, it was
shown to provide a relaxed initial position requirement [22].

However, the convergence of the CV AC depends on the
homogeneity of the segmented objects. When the inhomogeneity
becomes large like in carpal bones or knee bones, the CV AC
provides unsatisfactory results. To address this, let us consider a
synthetic image (size 128 x 128) with an inhomogeneous object
having five different parts over the bright background as shown
in Fig. 1. The image intensity is scaled on the range [0, 1], with 1
the brightest. The CV fitting term F(C) is calculated at each
iteration during the evolution and plotted in Fig. 2.! As expected,
the curve moves in the direction of decreasing F(C) and stops
when F(C) reaches a minimum value, which is F(C*)=34 (at
iteration number 16) in this case. Nevertheless, this is not the
“desirable” result, whose minimum fitting term is F(C%%) = 197.
Clearly, the desirable minimum here is larger (more local) than
the practically resulting minimum F(C¥).

From the above example, we can see that the global minimum
of the CV energy functional does not always guarantee the
desirable results, especially when a segment is highly inhomoge-
neous. To provide flexibility in searching for the desirable mini-
mum (which is often neither the most local nor global), Li and
Yezzi [32] proposed a dual-front AC model with the active region’s
width as a controlling factor. The model is an iterative process
consisting of the active region relocation and the dual front
evolution which is another iterative process, demanding a high
computational cost.

Vese and Chan [23] and Tsai et al. [33] independently and
contemporaneously proposed to use the original Mumford-Shah
functional [10] to segment inhomogeneous objects. Because the
minimizer of the Mumford-Shah functional is difficult to get (and
remains an issue) due to the term of discontinuities, the authors in
[23,33] presented the set of discontinuities in form of a curve
evolution problem. The resulting optimization process involves
both evolving a level-set function and solving Poison partial
differential equations. Although it can generate a piecewise smooth
approximation of the input image that well represents the objects
of interest, this process is very complicated and computationally
expensive and requires a good initialization. Another piecewise
smooth approach was presented in [34]. The authors elegantly
generalized the mean intensities ¢;; and ¢,y in (3) to the local
weighted averaging using a Gaussian kernel convolution. This leads
to a model that approximates the original Mumford-Shah func-
tional but has a complexity close to that of the CV model. When the
variance of the Gaussian kernel approaches infinity, this model
becomes the CV model. On one hand, this variance parameter

! Note that Fig. 2 plots only the term F(C) in (3), whereas the result in Fig. 1
was obtained from the original CV model [22] that includes both F(C) and a length
term to guarantee the smoothness of the contour.
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Fig. 1. CV AC failure on capturing an inhomogeneous object, cpu = 58 s. Left to right: initial (F(C) = 645), intermediate (312), final (34), and desired position (197).

The plot of F(C) at every iteration is given in Fig. 2.
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Fig. 2. CV fitting term F(C) at every iteration of the CV AC evolution process. The
obtained minimum (& 34) is not the “desirable” one (~ 197).

provides a great flexibility to segment objects with large range
of inhomogeneity levels, but on the other hand, it requires
much user interaction to decide the right value to work with the
problem at hand. Estimation of a varying optimal variance remains
unsolved.

Alternatively, this paper presents a novel AC model? to tackle
the problem of CV AC. The reason CV AC fails is that in this model,
a segment is represented by only its mean value, which is not
sufficient for a highly inhomogeneous object. If one considers
segmentation as a classification problem, i.e.,, a specific pixel
needs to be classified into either the object or the background,
the CV model resembles a classification solution where the
difference within each class is minimized. The proposed model,
on the other hand, uses the whole density function instead of only
the mean value (as in (3)). Here, we assume that the density
function of one object should be different from that of another.
This is true, especially for medical imagery, because distinct
organs shall generate distinct configurations in a medical image.
The difference between density functions is reflected as an
additional energy term into the CV fitting term F(C) in order to
balance the differences within every segment and the distances
between separate segments. By properly weighting the two
terms, the new evolution flow, which is implemented in a level-
set framework, can flexibly drive the contour towards the desir-
able position without the overhead required by the iterative
dual-front evolution [32]. From a classification’s perspective, the
proposed flow searches for a classifier that provides optimal
classification errors since it both minimizes the error within one
class and maximizes the distances between classes.

The rest of the paper is organized as follows. We formulate our
model as an energy optimization and derive its level-set formula-
tion and implementation in the next section. Then, in Section 3, we
describe the testing data sets and the quantitative measures we

2 The conference version of the proposed work was presented at EMBC 2008 [35].

use to evaluate the proposed model. Section 4 presents evaluation
results of our model in comparison with the conventional CV AC.
Finally, we summarize and conclude the paper in Section 5.

2. The proposed AC model
2.1. Mathematical derivation

Our approach is to incorporate an additional density distance
term into the CV fitting term F(C). Although there are alternative
measures defining the distance between probability distributions
such as the Fisher ratio, the Kullback-Leibler divergence [36], and
the Wasserstein distance [37], we choose the Bhattacharyya
distance for both its better performance in applications of signal
selection as observed in [38] and its simple analytical form.
Another advantage of this measure over the Fisher ratio and the
Wasserstein distance is that it works with arbitrary distributions,
whereas the Fisher ratio requires mean-separated distributions to
yield good results [39, p. 132] and the Wasserstein distance-based
segmentation model [37] assumes an independently identical
distributed image intensity. Also, the Bhattacharyya distance
has recently been successfully applied in computer vision [40],
object tracking [41,42], and image segmentation [43]. In [40], it
was shown as an efficient contrast parameter between the target
and background whose distributions’ parameters are unknown.
Based on this observation, the authors in [41,43] formulated the
distance in form of an active contour term to extract the natural
shape of the object as opposed to the pre-defined elliptical shape
assumed in [42]. Specifically, in the active contour framework, the
Bhattacharyya distance between the density functions inside and
outside the curve C, i.e., pir(z) and poudz), ze R", is defined as
[—log B(C)] where B(C)=B= [zn\/Pin(@Pour(2)dz and thus the
maximization of this distance is equivalent to the minimization
of B(C). The additional term B(C) is incorporated as

Eo(O) = BF(O)+(1-B)B(O), 4)

where f € [0,1]. Note that to be comparable to the F(C) term, in our
implementation, B(C) is multiplied by the area of the image
because its value is always within the interval [0, 1], whereas
F(C) is calculated based on the integral over the image plane. As
usual [22], we regularize the solution by constraining the length
of the curve and the area of the region inside it, yielding the total
energy functional as

E(C) = yLength(C)+nArea(inside(C))+ SF(C)+(1—p)B(C), 5)

where y and # are non-negative constants.

The intuition behind the proposed model, inf-E(C), is that we
seek for a curve which is regular (the first two terms) and
partitions the image into two regions such that the differences
within each region are minimized (the F(C) term) and the distance
between the two regions’ density functions is maximized (the
B(C) term).
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For the level-set formulation, let us define ¢ as the level-set
function, I: Q-2 c R" as a certain image feature such as inten-
sity, color, texture, or a combination thereof, and H(-) and dq(-) as
the Heaviside and the Dirac functions, respectively.

1 ifu>0 d
H(u) = { do(w) = - HW). (6)

0 ifu<O

The energy functional can then be rewritten as
E) =7 [ IVH@@)| dx-+1 | H-p0) dx

+B { / 1) —Cin PH(— (X)) dx+ / ()~ Cou P H($(X) dx
Q Q

+0=p) [ VPu@Pouc@ @)

where
o JoOoz—IX)H(—p(x)dx
Pin(2) = ToH(— ) dx ,

_ JoOoz—I(X)H(p(X))dx 3
Pout(2) = ToH(@)dx . 3
In a general form, it reads
B = [ [ by) dx+(1=DB@) ©)

E(¢)

where X=[x1,X,.... %1€ R", ¢, =0¢/ox;, i=1.n, Bdp)=/,
V/Pin@Pour(2) dz, and f =730($)I V| +nH(—¢)+ Bll—cinl* H(—p)+
B|I*Cout|2H(¢)-

The first variation (w.r.t ¢(x)) is given by

OE  OF OB
Using Euler-Lagrange equation, one has
OF of o of

—_35 N R([—c: )2 _ 2_ 4
%_%_i:15_&@_60(¢)[ n—PBU—Cin)” + BUd—Cour)” —YyK].
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On the other hand,
0B 1 [ (0pin(@) [Pout(2) | 0Pout(2) | Pin(2)
2 - dz, 12
56~ 2 z( Pin(@) Poue@) (12

where p;;(z) and poyu(2) are given in (8). Differentiating them w.r.t
¢(x), one obtains

@  So(P),
o Tm[pm(z)—fso(Z—I)],

OPout@) _ So(¢)
6¢ - Aout

[00(z—D)—Pout(2)], 13)

3 e

s 2 8

where A;, and A,,; are, respectively, the areas inside and outside
the contour and are given by

A = / H(— (%) dX, Agy = / H((%)) dx. (14)
JQ Q

Substituting (13) into (12) and taking some simple modifica-
tions, one obtains

JB
56 = So(P)V(X), (15)
where
— § l, 1 1 ' _ 1 Pin(2) 7l Dout(2)
Voo =3 ( i Am>+2 JEE I(x))< I el m)dz
(16)

Combining (10), (11), and (15), one can derive the first
variation of E(¢) as
oE
ag = Qo DU=yK=11==Cn)” + fll—Cou)* + (1= V] a7
Hence, the evolution flow associated with minimizing the
energy functional in (7) is given by

o OF
E
5 5 B/1 1
= so({ e+ =~ 1-(1-)[3 (= 5

1 1 Din 1 Pout :| }
= [ do(z—1 1/ -1/ d . 18
+ 2 ~/2( ol )<Aout DPout  Ain \ Pin ‘ (s)

2.2. Implementation

There are a couple of possible regularizations of function H
(and d¢) [22,44] which determine the number of level curves that
the evolution flow for ¢ acts on. Some regularizations make the
flow acts on a few level curves around the zero level set {¢(x) = 0}
whilst some others acts on all level curves. In this paper, we
choose to replace d¢(¢p) by |V¢| to extend the evolution to all level
sets of ¢ as suggested in [44].

The pseudo-code for the proposed algorithm can be outlined
as follows:

o k=0, initialize ¢* by ¢,.

o Compute the mean values c;;, and Coy;.

o Compute p;,(z) and po,{z) according to (8).
o Compute A;;, and Ay by (14).

« Evolve the curve using (18) to obtain ¢
« Reinitialize ¢ as the signed distance function of the current
curve (see [26] for details).

e Check whether convergence is met. If not, k=k+1 and go
back to the second step.

k+1

Fig. 3. Results of the proposed AC applied on the example image in Fig. 1 using y = 0.3 and various values of f: (a) initial curve in white, (b) final curve with = 1.0 (purely
CV term), cpu = 575, (c) f#=0.8, cpu = 215, (d) =0.5, cpu = 715, (e) f=0.3, cpu = 18, and (f) f = 0.0 (purely Bhattacharyya term), cpu = 25 s. The whole body is

segmented correctly with a large range of f, i.e., (c)-(e).
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Note that for digital images, p;,(z) and pou(z) are nothing but
the histograms. Note also that the integral in (18) can be easily
calculated as follows.

700 T T T T T
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Fig. 4. CV fitting term F(C) at every iteration of the proposed AC’s evolution
process with = 0.5. The “desirable” minimum is found.
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VXp € Q, find in the histograms p;,(z) and pou(z) the zo such that
Zo=I(Xp). Then, the integral calculated at xo is (1/Aout)
vV (0in(20)/Pout(20))—(1/Ain)\/ (Pout(20) /Pin(20)) if Pour(20)Pin(20) # 0.
Otherwise, it is 0.

Therefore, although the proposed evolution flow looks com-
plicated, its computation is straightforward and the complexity is
comparable to that of the piecewise constant model, which is an
advantage over the piecewise smooth approaches [23,33].

3. Experimental setup

3.1. Testing data

For performance evaluation, we use four testing data sets. The
first one is an MRI data set [45], consisting of 14 gray scale cardiac
images. Each image is of size 150 x 150 and the endocardial contours
of the left ventricle were manually annotated, which will be used as
“ground truths” (see, e.g., Fig. 13). The second data set is a set of 16
CT bone images covering the knee region of a patient. The images are
also gray scale and of size 151 x 151. A medical expert was asked to
manually extract bones from those images, the results of which are

4=04

3 =028

Fig. 5. Sample segmentation results of the proposed AC applied on an CT image using y = 0.1 and various values of f5. The bone structure is segmented correctly with many

B values, i.e., (d)-(f). This figure is in color in the electronic version.
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Fig. 6. Mean and SD plots of the error measures of the proposed AC applied on the real CT data set vs. f§ values.
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considered as “ground truths” (see, e.g., Fig. 12). Then, we created 16
corresponding synthetic images of size 100 x 100; each one adopts
the extracted bone region as its foreground and has a homogeneous
background whose intensity equals to the mean value of the
extracted background in the corresponding CT image. These syn-
thetic images were then used to generate the two other data sets,
named Salt-pepper data set and Contrast data set (see, e.g.,
Figs. 7 and 10, respectively).

The Salt-pepper data set was created by adding salt and pepper
noise of five different density values, d = {0, 0.05, 0.1, 0.2, 0.3}, to the
16 original synthetic images. So, this data set has 80 images (16
images x 5 noise levels each). The density of d = 0 corresponds to
noise-free images and of d = 0.3 is beyond the practically worst
cases. Similarly, the Contrast data set contains 160 images, created

d = 0. Left to right: initialization (F(C) =116),
CV AC (y = 0.1, F(C) = 19), and Proposed AC (0.1, 19).

d = 0.1. Initialization (515), CV AC
(0.1, 353), and Proposed AC (1.0, 446).

d = 0.3. Tnitialization (1441), CV AC
(0.1, 1090), and Proposed AC (5.0, 1421).

Fig. 7. Segmentation of a sample image with various noise densities. Average cpu
time for each image is 84 s (CV AC) and 36 s (Proposed AC). This figure is in color
in the electronic version.

by changing the background intensity of each of the 16 original
synthetic images such that its contrast varies in 10 levels ranging
from 1% to 20%. Here we adopt the definition of contrast introduced
by Morrow et al. [46]

__ Bo-B
o Bo+B

where B and By are, respectively, the mean intensity of the object
(foreground) and the surrounding region (background) in an image.
In our real CT data, the contrast is about 8%. To our knowledge, CT
images with the contrast of 20% are quite clear and those with the
contrast of 1% are beyond the worst cases.

G

100%, (19)

3.2. Evaluation measure

We evaluate the quantitative performance using two error
measures, ¢; and &, defined as

_ #(Extracted regions N True regions)
#(Extracted regions U True regions)’

e =1

&, = Hd(Extracted boundaries, True boundaries), (20)

where # denotes the number of points in a set and Hd(A, B) the
Hausdorff distance between two polygons A and B.

Hd(A,B) = max{h(A,B),h(B,A)}, @1

where h(A,B) = max, . amin, . g{dist(a,b)} and dist(a,b) is the Eucli-
dean distance between points a and b.

The error measure ¢; quantifies the relative overlap between the
segmented and the true regions and &, measures the difference of
the extracted and the true contours. The former provides a global
goodness of the result, whereas the latter determines how much
details of the object shape are captured. The more these measures
are close to zero, the better the segmentation is.

4. Experimental results

In this section, we test the proposed model on various synthetic
and real medical images in comparison with the conventional CV AC.
The image feature, I(x), employed is intensity. Both models share the
same parameters # and 7. Because # is a constant used to shrink or
expand the contour along its normal direction no matter where the
contour is, increasing # will make the contour likely pass weak edges
though the evolution will be faster. Hence, for fair comparison,
we choose # =0 for both models. The other parameter ), which

Table 2
y value settings for different noise densities.

d 0 0.05 0.1 0.2 0.3
Proposed AC 0.1 1 15 3.5 5
CV AC 0.1 [0.1, 1] [0.1, 1.5] [0.1, 3.5] [0.1, 5]

Fig. 8. CV AC's segmentation with different y: (a) y=0.2, (b) 0.3, (c) 0.5, and (d) 5. The input image and the initialization are the same as Fig. 7(c).
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weights the length constraint, is not the same for all experiments
and will be specified in each case. If we want to detect as many
objects as possible and of any size, y should be small. On the
contrary, if we have to avoid extracting smaller objects (like points,
due to noise), we should select a larger 7. The cpu time, in seconds, of
our calculations performed on a Pentium IV Duo Core 1.87 GHz with
1GB of RAM will also be provided.

4.1. The phantom image

Let us get back to the phantom image in the example in
Introduction. The curve is initialized in the same way as in
Fig. 1(a) and the results with various f values are shown in Fig. 3.
It is possible to see that, with appropriate f, all four objects are
detected, i.e., the “desirable” minimum of F(C) is successfully found.
The finding process with = 0.5 is shown in Fig. 4 for a comparison
against that in Fig. 2.

4.2. Sensitivity to

Compared to the CV AC, our proposed AC introduces a new
parameter, 5. We can see from Fig. 3 that the proposed model can
successfully detect the object with a large range of 8. To investigate
more thoroughly its sensitivity with respect to the f parameter, we
apply it on the real CT data set. Sample results are displayed in Fig. 5
and the quantitative evaluation is shown in Fig. 6. Again, it can be
seen that this AC model is not much ff-sensitive since it provides
small error measures with many f§ values ranging from 0.4 to 0.7.
Consequently, we choose f# = 0.5 for all follow-up experiments.

4.3. Sensitivity to noise

Fig. 7 shows that the CV AC works well with the noise-free image,
but becomes stuck in the noise when available. Note the energy term
F(C); better results correspond to higher (more local minima) energy
value. One may want to increase y to avoid the speckle noise. This
works for the proposed AC, but not the CV AC. A higher y makes the
CV AC unable to capture the fine-scale structure of the object as can
be seen in Fig. 8(c)-(d). With that observation, we choose the
appropriate y values proportional to the noise density as shown
in Table 2. Here, the CV AC is tested with many values of y in the
range (e.g., with d=0.05 we test the CV AC three times with
7 =1{0.1,0.5,1}) and the best results (in term of error measures) are
reported in comparison with the proposed AC. The errors measures
of the two models applied on the Salt-pepper data set are plotted in
Fig. 9. We can see that the CV AC is more sensitive to noise than the
proposed AC.
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0.5 »
0.4 e
T 03 7
0.2 K
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30 [ i i
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Salt-and-pepper noise density
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4.4. Sensitivity to contrast level

The Contrast data set is used to test the effectiveness of the
proposed AC in segmenting low contrast objects. Fig. 10 shows
segmentation of sample images having contrast of 20%, 11%, and
1%, respectively. Note that the region inside the little circle also
belongs to the bone region, which is desirable target. At the
contrast level of 20%, the two models have similarly good results.

a
Contrast = 20%. Left to right: initialization
(F(C) = 63), CV AC (12), and Proposed AC(13).
b
Contrast = 11%. Initialization (31), CV
AC (10), and Proposed AC (13).
c

1%. Initialization (14), CV
AC (6), and Proposed AC (13).

Contrast

Fig. 10. Segmentation of a sample image with various contrast levels. y =0.3.
Average cpu time for each image is 45s (CV AC) and 25 s (Proposed AC). This
figure is in color in the electronic version.

15

10 |

0 0.05 041 0.15 0.2 025 03
Salt-and-pepper noise density

Fig. 9. Plots of error measures vs. noise density for the Salt-pepper data set. The proposed AC is less noise sensitive than the CV AC.
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Fig. 11. Plots of error measures vs. contrast level for the Contrast data set. The proposed AC performs better than the CV AC, especially at low contrast levels.

Initialization CV AC

Proposed AC Ground truth

Fig. 12. Sample segmentation results for CT images. Average cpu time for each image is 47 s (CV AC) and 44 s (Proposed AC).

However, the CV AC’s performance starts to decrease when the
contrast level decreases, whereas the proposed AC’s does not (see
also Fig. 11).

4.5. Performance with real medical images

Figs. 12 and 13 show some sample segmentation results of the
two models on CT and MRI images, respectively, and Table 3
displays the quantitative performance evaluated on these two
whole data sets. It is observed that the proposed AC yields similar
results to the CV model for the CT data set but performs
significantly better when dealing with the MRI data set. One
possible reason is that the testing MRI images are of lower
contrast (see, e.g., the last row of Fig. 13). This is consistent with
the experimental results obtained in Section 4.4.

5. Summary and discussion

A geometric AC model is usually built upon an image-dependent
energy functional whose global minimum hopefully corresponds to
a desirable solution as opposed to an undesirable result caused by
noise or complex image structure. Unfortunately, as Li and Yezzi
pointed out in their work [32], the desirable minimizers are often
neither the most local nor the most global. In this paper, we have
proposed a novel AC model based on a convex combination of the

CV energy functional and the Bhattacharyya distance between the
density functions inside and outside the curve. The resulting flow
searches for a segmentation where both the difference within one
segment is minimized and the distance between distinct segments
are maximized. It is therefore more likely for the proposed model to
reach desirable solution. The evolution flow of the proposed model
is derived using the level-set framework, making it inherit advan-
tages of a geometric AC such as topology adaptability.

Of course, incorporating another term means that we have
introduced a new parameter which needs to be determined upon
implementation. Fortunately, experimental results showed that
the proposed model is not very sensitive to this new parameter,
i.e., it could generate desirable results with a large range of the
parameter’s value (see, e.g., Section 4.2).

One of the advantages of the CV AC over other geometric AC
models is that it can be initialized outside, inside, or even across the
objects of interest because its force Vy can flexibly and automatically
change its direction during evolution (from negative to positive and
vice versa, depending on the current curve’s position) as opposed
to the fixed direction of Vy in other models. Our model also inherits
this great advantage. Thus, in the experiments, although the two
models would work with other initialization schemes, the “outside”
initialization was selected for its more intuitive form and again, for
fair comparison.

Compared with the conventional CV model, the proposed AC
mostly performs better and is less sensitive to noise and contrast



300 P.T.H. Truc et al. / Computers in Biology and Medicine 41 (2011) 292-301

Initialization CV AC

Ground truth

.

Proposed AC

Fig. 13. Sample segmentation results for MRI images. Average cpu time for each image is 65 s (CV AC) and 52 s (Proposed AC). This figure is in color in the electronic

version.

Table 3
Mean and SD of error measures for real medical data sets.

&1, &
(SD4, SD3)
CT data MRI data
CV AC 0.086, 6.764 0.309, 20.387
(0.016, 1.542) (0.159, 11.860)
Proposed AC 0.089, 7.120 0.148, 6.097

(0.013, 1.537) (0.038, 2.342)

Note: SD; =SD(gy), i = {1, 2}.

levels. It is also possible to see that the cpu time of our model is
comparable to or even less than that of the CV AC despite the
higher computational cost. This is due to the fact that the
additional evolving term helps to move the curve faster towards
convergence. As a conclusion, we consider it a good candidate for
unsupervised medical image segmentation, where the images are
usually noisy and low-contrast.
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