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Abstract Acoustic source localization has many important applications particularly
for military tracking foreign objects. Even though Wireless Sensor Networks (WSNs)
have been developed, this localization problem remains a big challenge. A system
for solving source localization must have the ability to deal with the problems of
recorded convolved mixture signals while minimizing the high communication and
computation cost. This paper introduces a distributed design for positioning multiple
independent moving sources based on acoustic signals in which we focus on utiliz-
ing the relative information of magnitudes recorded at different sensors. The sensors
perform preprocessing on the sensed data to capture the most important information
before compressing and sending extracted data to the base. At the base, the data is
uncompressed and the source locations are inferred via two clustering stages and an
optimization method. Analysis and simulation results lead to the conclusion that our
system provides good accuracy and needs neither much communication nor com-
plex computation in a distributed manner. It works well when there exists high noise
with Rayleigh multipath fading under Doppler effect and even when the number of
independent sources is greater than the number of microphone sensors.
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1 Introduction

One of the most popular purposes of Wireless Sensor Networks (WSNs) is the deter-
mination of object locations. This ability is necessary especially in the military when
WSNs have been deployed to detect objects and their locations within the deployed
region. Unlike the active devices that emit radio or ultrasonic signals to detect objects
based on the reflected waves, sensors in WSNs are usually passive and only record
the signals from objects. Thus, most developed tracking techniques with passive sen-
sors are based on known communications channels. In other words, they are only
suitable for localizing objects that are designed to be monitored, not for the very im-
portant security and defense application of localizing foreign objects. These objects
have no prior channels to communicate with the system and the only detected signals
that the system can capture are the images and the sounds. For image signals, how-
ever, cameras cannot be deployed randomly or casually in a large number due to high
costs, view blockage and the limited angle of view. Moreover, the communication
cost would be very high for image transmission while the computation for positions
needs a centralized method. Therefore, the easiest and most convenient way to mon-
itor an object is using acoustics. This article describes a full design for positioning
multiple moving objects that emit sound signals and the analysis for its performance.
The design overcomes the drawbacks of both previous works and the previous version
of the system. The input data is not simply the convolved mixtures, which are just the
combinations of signals experiencing different time delays, but is more complicated
mixtures in which Doppler effect and Rayleigh multipath fading coexist. Extracted
information from the mixtures in this work is not of time-delay differences or direc-
tions of arrivals but of the ratios between Received Signal Strengths (RSS) from each
object to different sensors. We remark that we are the first to address the multiobject
positioning problem by focusing on the ratios of source magnitudes extracted from
the complicated convolved mixture data which includes Doppler effect and Rayleigh
multipath fading. In addition, the sensors deployed in the area are not the arrays of mi-
crophones as in many previous works but the isotropic acoustic recorders. More im-
portantly, aiming for a low-cost method, we make the method applicable into WSNs
in a distributed way, where the whole computation load is shared on the sensors with
a low communication cost for data collection. Distributed approaches are categorized
into data decomposition, process decomposition or data-and-process decomposition,
depending on how the algorithm is shared on different computers [1]. In this regard,
our system is designed for working in process and data decomposition manner whose
details are discussed in Sect. 4. Sensed data is preprocessed, compressed, and sent to
the base. The base computer decompresses the data and extracts the information of
ratios between the energies of each dominant frequency component (f-component)
using a clustering method on the frequency domain. These ratios are then used to
estimate the positions of all dominant f-components, and the source location estima-
tions are computed by clustering these f-component positions.

2 Related works

Technically, most current acoustic approaches which utilize passive sensors in WSNs
can only deal with one tracked object [2–6], and few works have studied multiple
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object tracking problem [7, 8]. Moreover, the mentioned methods are strongly based
on the techniques for one target tracking. The common focus of those techniques is
on the Direction of Arrival (DoA), or the relative angles between sound sources and
sensor arrays. After that, particle filter or hidden Markov model may be used to en-
hance the tracked routes of the sources [7, 9]. Except for the beamforming technique
[8] used in passive towed array sonar system, the numbers of tracked sources used
in previous works are small, two is common, and at most three [7, 10]. Towed array
sonar system is an array of sensors deployed along a tow which is usually consid-
ered to be straight. Based on delay times and linear phase differences recorded at
sensors, it gives proper directions of arrival signals if the sources are far from the
tow but it gives poor range estimation [8, 11]. Such sonar system, after all, is a well
developed DoA sensor array. In this work, we do not use the nodes each of which
has a sensor array because this kind of node also has the problem when being ran-
domly deployed. Instead we design an isotropic acoustic recorder for each node, so
randomly deploying sensors is not a problem and the load of sensed data is also re-
duced. The direction of arrival information is then not the feature for solving the
source localization because of the change of the input data. For the scenario where
a single source is monitored by several sensors, calculation of localization is usually
based on Time Differences Of Arrival (TDOA) directly [5] or indirectly by maximiz-
ing the cross correlation [6]. However, for a large number of sources to be located
with the isotropic sensors, we would intuitively consider some techniques that can
be applied to the problem, including Principal Component Analysis (PCA) and Inde-
pendent Component Analysis (ICA) techniques [12] which are capable of solving a
class of Blind Source Separation (BSS) problems [13]. When the sources are recov-
ered, the different time delays from sources to sensors can be obtained for location
estimating. Nevertheless, computing the delay from sources to sensors proves to be
difficult since the signal from a source takes different time delays to reach the sen-
sors, so the observed data is a set of convolved mixtures. Although convolved mixture
ICAs have been developed to deal with this kind of complex data, their disadvantages
include the excessive computation cost because the Finite Impulse Response (FIR)
Linear Algebra model must be used [14, 15]. The necessity of a centralized manner
makes the communication load become so big that it is difficult, if not impossible,
to apply convolved mixture ICAs to WSNs. Moreover, related works on BBS so far
cannot deal with the data that has Doppler effect, not to mention the interference of
high noise and Rayleigh multipath fading. Dealing with convolved mixtures under the
influence of Doppler effect and Rayleigh multipath fading for localization, which has
not mentioned before, will be discussed in this paper. We have introduced the early
version of the system design for source positioning based on ICA technique on the
frequency domain in order to eliminate the influence of time delays and to extract the
ratios between original source energies for position estimating [16]. Our preliminary
method can deal with convolved mixture data [14, 17] and avoid many drawbacks of
convolved mixture ICAs on both time and frequency domains [2, 9, 18]. Neverthe-
less, it can only be used for positioning still sources and does not adequately tolerate
the noise. It fails to recover the frequency images, or magnitude spectral images, of
moving sources when Doppler effect causes different spectral shifts on the frequency
domain especially when Rayleigh multipath fading is experienced. Using ICA on the
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data of frequency images, we observe that independent sources allow for replacing
the high-cost and low-reliability ICA techniques with clustering methods. The local-
ization can be solved relying on the information of magnitude ratios each of which is
calculated from energies of an f-component at different sensors. Localization method
based on this information has not appeared in any previous works before either and
will be presented in the following section.

3 Proposed method for multiobject tracking

3.1 Problem statement

Assume that there are M objects emitting continuous zero-mean acoustic signals and
N location-known sensors; these signals can be considered as sj (t), j = 1, . . . ,M . At
each sensor i, the received data is denoted as xi(t). The data received at each sensor
is the actual signal with continuous values of delay, similar to the model in [3], and
is calculated according to

xi(t) =
M∑

j=1

aij sj
(
t − τij (t)

)
, i = 1, . . . ,N (1)

where aij is a real positive number representing the amplitude gain of the signal from
source j measured at sensor i and τij (t) is the propagation time of this signal. When
the sources are fixed, the delays τij (t) are constants. However, if the sources move,
these parameters change at different time points,

τij (t) = dij (t)

vc

, (2)

where dij (t) is the immediate distance from sensor i to source j and vc is the veloc-
ity of acoustic propagation. Source j ’s movement with velocity vj causes τij (t) to
increase or decrease over time, resulting in a stretched or compressed image of the
source signal on the time domain at receiver i. As a result, different shifts are caused
to different f-components at the receivers. This phenomenon is known as Doppler
effect [19, Chap. 17] and is expressed as

fij =
(

vc

vc + vj cos(θij (t))

)
fj , (3)

where fj is some f-component of source j , fij is the shifted version of fj received
at sensor i, and θij (t) is the immediate angle between −→vj and

−→
ij .

The problem can be stated as: Without prior knowledge about the sources except
for the received data at the sensors and the information that delayed versions of the
sources are statistically independent of one another, the locations of sources must be
determined.

As mentioned before, the feature τij (t) is actually the best measurement, giving
good results of object location estimation. However, it is difficult to extract this fea-
ture and a big load of communication is required to transmit all of the data to the base



442 V.-H. Dang et al.

in order to perform the algorithm. In this work, we mainly focus on extracting the
relative information among the magnitudes of a source signal at different sensors.

3.2 Distance information extraction

Note that if there is only one active fixed source and the others are inactive, or emitting
no sound, applying Short Time Fourier Transformation (STFT) to the sampled data
si(tk) at this source and sampled data at each sensor, we obtain the same magnitude
spectral images. The different parts of the STFT results are the scalar coefficients
and the phase spectral images. Obviously, the time-delay τij only affects the phase
spectral image. Therefore, for multiple fixed and independent sources, if STFT is
applied at each sensor for each mixture, the result is:

Xi(ω) =
M∑

j=1

aijSj (ω)e−2πτij , i = 1, . . . ,N, (4)

∣∣Xi(ω)
∣∣ =

M∑

j=1

|aij |
∣∣Sj (ω)

∣∣, i = 1, . . . ,N. (5)

As usual, the continuous form of STFT is difficult to compute and store, so the
Discrete Fourier Transformation (DFT) form is the best choice of replacement. Equa-
tion (5) is rewritten in the discrete form as

∣∣Xi(ωk)
∣∣ =

M∑

j=1

|aij |
∣∣Sj (ωk)

∣∣, i = 1, . . . ,N. (6)

Evidently, the magnitude spectrum data takes the form of instantaneous mixtures.
The sound signals are zero-mean and mainly composed of sinusoid waves. Also, the
delayed versions of source signals are statistically independent of one another. That
leads to the fact that if an f-component is included in one source, it would not be
present in the others. As a result, the magnitude spectra of different |Sj (ωk)| are
orthogonal to each other or

∣∣Su(ωk)
∣∣T ∣∣Sv(ωk)

∣∣ = 0, u �= v. (7)

As a result, when the number of sources is less than or equal to the number of
sensors, |Sj (ωk)| in (6), or the magnitude spectral image of si(tn), can be restored
using a standard ICA [16]. Note that ICA cannot restore the magnitudes of the origi-
nal Independent Components (ICs). Instead of providing the exact |aiz||Sz(ωk)|, ICA
results in bz|Sz(ωk)|, bz ∈ R. |Xi(ωk)| is the linear combination of orthogonal vectors
|Sj (ωk)|, thus the inner product of each IC vector |bz||Sz(ωk)| and each magnitude
spectral image |Xi(ωk)| contains the information of energy of this IC observed by
sensor i.

(|bz|
∣∣Sz(ωk)

∣∣)T ∣∣Xi(ωk)
∣∣ = |bz|

∣∣Sz(ωk)
∣∣T

M∑

j=1

|aij |
∣∣Sj (ωk)

∣∣ or (8)
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(|bz|
∣∣Sz(ωk)

∣∣)T ∣∣Xi(ωk)
∣∣ = |bzaiz|

∣∣Sz(ωk)
∣∣T ∣∣Sz(ωk)

∣∣. (9)

Therefore, for each IC z, for each pair of magnitude spectral images of observed
data at sensors i and l, the ratio | aiz

alz
| can be achieved as

∣∣∣∣
aiz

alz

∣∣∣∣ = (|bz||Sz(ωk)|)T |Xi(ωk)|
(|bz||Sz(ωk)|)T |Xl(ωk)| . (10)

Meanwhile,

∣∣∣∣
aiz

alz

∣∣∣∣
2

= a2
iz|sj (tn)|T |sj (tn)|

a2
lz|sj (tn)|T |sj (tn)|

= Eiz

Elz

, (11)

where Eiz is the energy sent by source z and received by sensor i in an interval of
time. Since the absorption of gas molecules is insignificant, due to the inverse square
law, the energy of sound decreases proportionally to the inverse square of the distance
[19, Chap. 17]. In other words,

Eiz

Elz

=
( 1
diz

)2

( 1
dlz

)2
. (12)

From (10), (11), and (12), we have the relationships of all pairs of distances from any
tracked object j to all sensors,

rilz =
∣∣∣∣
aiz

alz

∣∣∣∣ = dlz

diz

= (|bz||Sz(ωk)|)T |Xi(ωk)|
(|bz||Sz(ωk)|)T |Xl(ωk)| , i �= l. (13)

Based on these relationships, the locations of all of the sources will be inferred.
However, it should be remarked that ICA achieves poor separation in the presence

of noise. Moreover, when the sources move, frequency shifts occur and ICA can no
longer produce ICs bz|Sz(ω)|. Therefore, we extend the meaning of “independent”
for sources to “being in the state in which a shifted major f-component of a source
does not overlap the shifted major f-components of other sources.” The interferences
of minor f-components among the sources are considered as noise. For this situation,
instead of using ICA, we apply a more robust method, the main idea of this study,
which involves less computation based on clustering techniques. Equation (6) then is
rewritten as

∣∣Xi(ωk)
∣∣ =

M∑

j=1

|aij |
∣∣Sij (ωk)

∣∣, i = 1, . . . ,N, (14)

where |Sij (ωk)| is the discrete frequency image of the signal emitted by source j

under the “view” of sensor i. Remark that for different sensors, Sj is not the same as
in (6) due to different frequency shifts caused by Doppler effect.

Now considering a specific segment on the frequency domain (ωa,ωb) containing
all shifted versions of some f-component of source z without any interference from
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other sources’ shiftedf-components, we have

∣∣Xi

(
ω

(m)
k

)∣∣ =
M∑

j=1

|aij |
∣∣Sij

(
ω

(m)
k

)∣∣

= |aiz|
∣∣Siz

(
ω

(m)
k

)∣∣, i = 1, . . . ,N, (15)

where ω
(m)
k ∈ (ωa,ωb) and m is the index of the f-component. Although this

f-component has different shifted versions, its energy is unchanged. The reason is
while a signal is stretched and compressed by Doppler effect on the time domain, its
amplitude at the source keeps unchanged, or

∣∣Siz

(
ω

(m)
k

)∣∣T ∣∣Siz

(
ω

(m)
k

)∣∣ = ∣∣Slz

(
ω

(m)
k

)∣∣T ∣∣Slz

(
ω

(m)
k

)∣∣, i �= l. (16)

Based on this fact, if an f-component belongs to source z, then all relative distance
relationships in (13) are computed according to

r
(m)
ilz =

∣∣∣∣
aiz

alz

∣∣∣∣ = dlz

diz

=
√√√√ |X̃i(ω

(m)
k )|T |X̃i(ω

(m)
k )|

|X̃l(ω
(m)
k )|T |X̃l(ω

(m)
k )|

, i �= l, (17)

where X̃i(ωk) is the result of noise filtering Xi(ωk) and X̃i(ω
(m)
k ) is the frequency

image of X̃i(ωk) on the segment (ωa,ωb) (see Fig. 1). This implies that, for each
f-component m of a source within the frequency segment, a set of relative distance
relations can be computed and the position of the source having these components can
be estimated. Therefore, there are necessarily two clustering stages, one for grouping
the shifted frequency components to determine the segment (ωa,ωb), and the other
for grouping f-component positions to calculate source locations after f-component
positions are computed. This is the main idea of the design which is described in
more details in the next section. The advantages of this system are: (a) it is more
robust than our previous system even when the sources are fixed, (b) it works well
with moving sources and tolerates the coexistence of Doppler effect and Rayleigh
multipath fading, (c) it is considered to be a distributed method since the computation
load is shared among the sensors and the communication cost is low, and (d) it is not
constrained by the condition that the sensor number is larger than the source number.

4 Multiobject tracking system architecture

The design of the system for acoustic tracking is depicted in Fig. 1 based on the key
idea mentioned in Sect. 3.2 about distance information. The figure describes both
acoustic sensor work flow and central base computer work flow. Because of the nature
of WSNs, the input data is already decomposed at the sensors and hence can be
utilized to build up a data decomposition algorithm. It also can be seen in the figure
that the source localization computing is decomposed into two different processes,
one at the sensors and the other at the central base. A powerful enough computer
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Fig. 1 Sensor architecture and Base architecture of the proposed system

is used at the base to solve its flow in a short time, not longer than the sum of the
computing time at the sensors and data transmission time. Then although the process
at the sensors must be executed before that at the base, with continuous input data,
these two processes function in a pipeline manner, or the system works with process
decomposition method. In other words, the design can be considered to be data-and-
process decomposition. Since the data is decomposed into portions at sensors and the
sensors have the same work flow, the process at the sensors obviously uses SIMD
(Single Instruction on Multiple Data stream) approach [1]. Details of the work flows
are following.

4.1 Acoustic sensor architecture

At the sensors, the acoustic signal is sampled and synchronically segmented into
half-overlapped frames in the “Sampling and Time Segmentation” stage. A frame at
sensor i is denoted by xi(tn) and the time length of the frame is also called time
segment, denoted by Tf .

Since our method is based on the energies within frequency intervals, we need to
minimize the spectral leakage effect [20] caused by limited length DFT transforma-
tion. Thus, each frame of sensed data with length L is multiplied by the Hamming
window whose weights are defined as [21]

wHamming(k) = 0.54 − 0.46 cos

(
2π(k − 1)

L − 1

)
, k = 1, . . . ,L. (18)

The input data from the recorders always includes additional Gaussian noise whose
spectrum is spread over the frequency domain. We can remove the noise by detect-
ing its level and forcing all low f-components to zero. Figure 2 demonstrates the
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Fig. 2 An example of data after filtering on Fourier domain

results after the filtering process. The filtered data may have some lost f-components
and may include redundant f-components; this is tolerated by the system as we will
see in later analysis. Filtering step allows for the retention of only several dominant
f-components, and as a result, the amount of data to be transmitted from a sensor
to the base computer is reduced considerably. Moreover, only half of the frequency
image length is needed owing to the symmetric property of the image. For example,
instead of sending 1638 values in every time segment of 0.2 s with sampling fre-
quency Fs = 16.384 KHz, each sensor sends only the compressed data containing
less than twenty f-components (pairs of values and indexes). This is one of the key
ideas for reducing the communication cost so that the method can be implemented
into WSNs.

As the trade-off to this low communication cost, the computation cost at the sen-
sors is high with DFT transformations of lengthy frames. However, as can be seen
in Fig. 2, a sensor can skip calculating the frequency bins where the probability of
major f-components’ existence is low due to the feedback from the base. Only the
frequency bins in the high energy ranges are computed. Therefore, the computation
cost at sensors are also reduced considerably.

4.2 Central base computer architecture

At the central base, the flow is straightforward and consistent with what we analyze
in Sect. 3. Data received from the sensors needs to be decompressed and fed into
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the “Frequency-Segmentation” process. This stage marks dominated f-components
as well as the segments that contain the components with the index m. Then the
process “Relative Distance Information Calculate” computes a set of r

(m)
il for each

component. These sets are then input into the “F-component Positioning” process
to estimate the output position of each dominant f-component �p(m). Ideally, the f-
components that belong to the same source j should have the same position �pj .
However, factors that affect the frequency images will influence the detection result
and make f-components belonging to the same source j not have the same position
but have the positions that are close to the real position of source j . Some factors
do not much influence the frequency image, like the measurement error due to sam-
pling resolution, the heat noise of the electric system and the DFT frequency leak.
DFT frequency leak, which depends on the length of frame (window length), obvi-
ously changes the frequency image but is reduced considerably by Hamming win-
dow multiplication. Others factors are more serious like setting noise, Doppler effect
and Rayleigh multipath fading effect. Setting noise, or background noise is usually
very high and affect much the measurements. Meanwhile, Doppler effect causes the
shifted f-component, which increases the probability of wrong grouping on frequency
domain. Rayleigh multipath fading is even more serious than background noise since
it affects directly on the regions that cover dominant f-components. With the same
level of noise, Rayleigh multipath fading gives more changes on the frequency im-
ages than other kinds of noise. How background noise, Doppler effect and Rayleigh
multipath fading effect influence the localization can be seen in simulation results of
Sect. 5. Due to those factors, f-components of a source have positions that are close to
the real source position. Therefore, the final stage “Source Positioning” is necessary
to cluster those �p(m) and estimate �pj using the averaging mechanism. Details of the
three main processes are described in the following subsections.

4.2.1 Frequency segmentation

“Frequency Segmentation” determines the frequency segments on which all shifted
components of a dominant f-component are included. As can be seen in Fig. 2,
data from the “Decompressing” block may have some missing and redundant
f-components. Frequency segmenting is actually a clustering task which groups
shifted components of an dominant f-component and determines the frequency seg-
ment based on the cluster. Doppler effect influences the f-components differently, the
higher is the frequencies, the larger is the shift. From (3), an f-component of source
j at f0 has shifted versions within ( vc

vc+vj
f0,

vc

vc−vj
f0). This frequency interval varies

depending on f0 on the frequency scale, however, it is fixed on the logarithmic scale.
Indeed,

�f (dB) = log10

(
vc

vc − vj

f0

)
− log10

(
vc

vc + vj

f0

)

= log10

(
vc + vj

vc − vj

)
, (19)

Therefore, clustering is performed on the log10(.) scale of the frequency image
according to the criteria: (a) the width of each segment is not larger than �f (dB) as
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defined in (19); (b) the number of nonzero f-components within the clustered interval
is greater than 2 so that the number of constraints is at least 3; and (c) the average en-
ergy of an f-component received at the sensors must be larger than the detected noise
level. A sliding window with the width �f (dB) is used here to detect the frequency
intervals that satisfy (b) and (c). With such a mechanism, the number of sources can
be larger than that of sensors. The total loss of some f-components due to filtering
is acceptable because a source can be positioned with only one of its f-components.
In addition, the redundant f-component will hardly be taken into account, and the
groups with missing data can still be considered for position estimating. The maxi-
mum number of sources now depends on the sampling frequency, the speeds of the
sources and the number of dominant f-components in each source. If the minimum
frequency of all f-components is fmin and the mean number of f-components in a
source is nf , then the possible number of sources can be up to

Mmax =
( log10

Fs
2 −log10 fmin
�f (dB)

)

nf

, (20)

where the numerator is the possible total number of f-components caused by all
sources. If the maximum source velocity decreases, then the maximum number of
sources increases. Obviously, the possible number of sources is not related to the
number of sensors since the locations of sources are determined by their dominant
f-components. The accuracy is improved with a large number of sensors but it is not
if the number of sources is changed, providing that the shifted versions of dominant
f-components of sources do not interfere with each other on the frequency domain.

4.2.2 F-component Positioning

All of the ratios rilz of different pairs of distances from a source to sensors are calcu-
lated (see (17)) in “Relative Distance Information Calculating” process before being
fed into the “F-component Positioning” process. Each ratio defines a constraint, or a
position curve to which the source belongs. As illustrated in Fig. 3, if r

(m)
ilj = 1, the

curve is the perpendicular bisector of the line segment connecting sensor i and sensor
l; otherwise, the curve is a circle.

The additional noise and spectral leakage always exist in the recorded data and
cannot be completely removed. Moreover, when a source is very close to a sensor, its
signal may dominate at this sensor but be at a level lower than noise level at other sen-
sors producing large errors in the constraints. Therefore, the error in the constraints
is unavoidable, and the solution for the position of f-component m should be a vector
�p(m), �p(m) ∈ �R2 that compromises the constraints. We propose an objective function
in a quadratic sum form for this compromise

Fj =
N∑

i

N−1∑

l,l �=i

(dij − rilj dlj )
2, 0 < rilj < ∞ (21)

and the solution for source j will be

�p(m) = arg
�p(m)

min Fj . (22)
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Fig. 3 An example of constraints obtained through a set of relative distance relations in which the number
of involved sensors is 3

In fact, the objective function in (21) is not the quadratic form with respect to p(m),
but each constraint gives a quadratic form with respect to the minimum distance from
p(m) to the curve that satisfies dij = rilj dlj . As depicted in Fig. 4, a combination of
constraints may cause a valley whose bottom is slightly sloped. This situation takes
the simple negative gradient method much time to converge because upon reaching
the bottom of the valley, the search process oscillates back and forth on the sides
with little progress to the optimum position. Based on the analysis in [22] (p. 149)
and the results in [23], we choose the Fletcher–Reeves conjugate-gradient method for
this optimization problem. The line search is performed using the Fibonacci segment
search [22] and the first-order derivative used in the optimization is

dFj

dp(m)
=

[
N∑

i

N−1∑

l,l �=i

(
2

(
(pjx − mix)

dij

− rilj (pjx − mlx)

dlj

)
(dij − rilj dlj )

)

×
N∑

i

N−1∑

l,l �=i

(
2

(
(pjy − miy)

dij

− rilj (pjy − mly)

dlj

)
(dij − rilj dlj )

)]
.

(23)



450 V.-H. Dang et al.

Fig. 4 Illustration of the rigid problem, one of the reasons that make gradient-based convergence slow

One remarkable note is that since our method is derived from the mutual informa-
tion from every pair of active sensors, when the sensor number is greater than 3, the
constraint number becomes much higher than the sensor number. For instance, if the
sensor number is 5, then the constraint number is 10. The more constraints are there,
the more accurate will be the results due to the averaging mechanism.

4.2.3 Source positioning

Data from the “F-component Positioning” stage includes the positions of the
f-components. The source to which a specific f-component belongs must be next
determined, and the answer can be found based on the estimated positions of these
f-components. This stage clusters f-component positions and computes the source co-
ordinates as the mean values of f-component groups. The nearest-neighbor clustering,
or d-min clustering technique [24] is used in this “Source Positioning” process with
some modification compared to the typical version. The reason for this modification
is that the resulted positions of different f-components have different levels of error
depending on their energy to noise ratios. The higher is the energy, the more reliable
is the resulted position. Therefore, each f-component position should be assigned
with a weight. Then, instead of being randomly chosen as an input of d-min cluster-
ing, the positions are considered in the order of their weights. Moreover, the weights
are also used to calculate the final source locations so that the computed f-component
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positions with higher energy play more important roles. The weight, w(m), is the
mean values of the f-component’s energies at the sensors. Equations (24) and (25)
estimate the position of a source that includes the f-components whose positions are
in the group j ′, denoted by Dj ′ :

p̂j ′ =
∑

p(m)∈Dj ′ w
(m)p(m)

∑
p(m)∈Dj ′ w

(m)
, (24)

where

w(m) = 1

N

N∑

i

E
(m)
i . (25)

E
(m)
i is the energy of the f-component m received at sensor i. The distance from an

f-component’s position to a current group j ′ is the distance from it to the current
estimated p̂j ′ .

5 Experiments and discussions

For the system working demonstration and the system evaluation, two main exper-
iment sets are conducted via simulations in this section. They will be presented in
details after we introduce the experiment setup and modeling in the next subsection.

5.1 Experiment setup and modeling

The monitored area is within [0 m,12 m] × [0 m,12 m]. We generate five simulated
sources (M = 5), four of which imitate the sounds of different vehicles and mo-
tors while the rest mimics the sound of a siren (see Fig. 6). They are parametrically
determined so that the received signals affected by Doppler effect can be generated
properly using (1). These continuous sources have equivalent power levels, none have
overlapped dominant f-components, and each is at least 5 meters from the others. It
is reasonable to consider a group of close sources as one sound source; thus in order
to illustrate how the system works, it is necessary for the sources to be distinct from
one another. If the system functions properly when the sources are separated, then
the source characteristics can be determined, memorized, and then used for future lo-
calization even when they are close to one another. The independence condition that
requires no overlapped f-components among the sources is an elastic requirement.
If the interference of other f-components is small, then it is considered as noise. In
order to illustrate this point, we let one source, the second one in Fig. 6, have a
wide spectrum which interferes into other frequency segments. The wave files of re-
ceived signals are available on the website [25] as examples where the source speed
is 40 km/h in 3 seconds at the highest noise level used in these simulation sets. Four
sensors (N = 4 < M) are deployed around the corners of the deployed area in which
the sources are set randomly (see Fig. 7). A source can move into and out of the
monitored area during the monitoring time. The energies of the line-of-sight signals
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propagating to the sensors decrease according to the inverse square law at the sound
speed of c = 343 m/s. The sampling frequency is Fs = 16.384 KHz and the time seg-
ment length is not less than 0.2 seconds. Because the sound signals of vehicles and
motors are mainly composed by low frequency components, Fs and time segment Tf

are set to be high so that different f-components can be separated as much as possible.
The background noise is considered to be produced by the surrounding environment
and the microphones, thus the noise is chosen to be Gaussian and its level is the same
at all sensors.

In reality, received acoustic data always includes the effects of shadowing and
fading due to multiple path reflections besides the received line-of-sight signals and
Doppler effect. Therefore, we examine the situation under the existence of a Rayleigh
fading channel and consider Rayleigh multipath signals as another kind of noise. Gen-
erating multiple paths for each source takes much computing time especially when
Doppler effect is present, due to: (a) for each source, a large number of random paths
are needed and for each path a new signal with respect to the direction of the path
has to be generated, and (b) for each sensor, we have to generate different sets of
simulated data as in (a). To reduce the simulation time for generating input data, the
Young model [26], which generates a Rayleigh channel with two arrays of Gaus-
sian random variables and the inverse-DFT (IDFT) technique, is applied. The model
in [26] is for single f-component signals whereas the signals in this simulation set are
multi f-component signals. Moreover, different f-components have different Doppler
shift ranges and the Rayleigh energy in a range must be statistically proportional to
the energy of the corresponding f-component. Therefore, in these simulations, after
the ranges of Doppler shifts are determined, for each frequency bin within the range,
a complex value is generated. The value’s real and imaginary parts are Gaussian
variables with the same standard deviation. If the ranges overlap, then the number
of generated complex values is the number of overlapped ranges, and the Rayleigh
noise at the bin is the sum of these values. In order for the result of IDFT to be real,
the array representing the Rayleigh fading effect on the frequency domain R(k) must
satisfy

{
R(0) = 0,

R(k) = R∗(N − k), k = 1, . . . ,N − 1,
(26)

where the asterisk denotes the conjugate of the complex number. This makes the
magnitude of the frequency frame |R(k)| symmetrical over the dash line at k = N/2
(see Fig. 5). Figure 5 illustrates the generated Rayleigh fading signal on the frequency
domain. The higher the frequency of the f-component, the wider is the Doppler shift
range and the smaller are the frequency magnitudes within the spread range.

We increase the level of the total noise and choose the parameter Signal to Noise
Ratio SNR for evaluating noise influence.

SNR = Emean

Enoise

= Emean

αRLERayleigh + (1 − αRL)EBackground
, (27)
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Fig. 5 Each bin within a Doppler shift range is generated with two Gaussian random variables to produce
Rayleigh fading effect

where Emean is the mean value of the average signal energies received at the four
sensors, Enoise is the sum noise energy of the background noise EBackground and the
Rayleigh noise ERayleigh, while αRL ∈ (0,1) represents the percentage of Rayleigh
noise energy in the total noise energy.

5.2 System working demonstration

Four sensors in the deployed area record the signals transmitted from fives sources,
as described in Sect. 5.1. The processing steps of the system are basically consistent
with those previously mentioned. The recorded data is sampled and segmented into
overlapped frames. In this paper, we do not concentrate on continuously monitoring
and refining the position estimations but only on positioning. Therefore, overlapped
frames are not meaningful in these simulations. Each frame is multiplied by a Ham-
ming window whose length is equal to the frame length (see (18)). DFT transfor-
mation is applied to convert data to the frequency domain in which the Gaussian
noise filtering occurs. The filtering task can be conducted by detecting the max-
imum value of the frequency magnitude in the high frequency region having no
f-components from the sources. Another simple method to detect Gaussian noise level
is to determine the maximum magnitude of f-component on the frequency domain in
advance when no sources are monitored. After the “F-component Positioning” stage,
each f-component’s position is determined and plotted with a circle. The radius of the
circle is proportional to the f-component’s weight or to the mean energy that the sen-
sors receive from that f-component. Those f-components whose estimated positions
are close to one another are grouped together as described in Sect. 4.2.3, in which
dmin = 3.5 m (new cluster is generated if an f-component’s location is more than dmin
from all others).

Figure 7 demonstrates the results of source positioning when the system tries to
localize five independent sources in the time segment Tf of 0.2 seconds and the
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Fig. 6 Signals of sources which are parametrically determined to imitate sounds of vehicles, motors and
a siren

Rayleigh fading noise energy contributes 20% of the total noise energy. The path
trails that the sources leaves within the time segment of 0.2 seconds are denoted
with the bold lines. The estimated positions of the sources are calculated based on
the groups’ f-component positions and their weights according to (24) and (25). Fig-
ure 7a shows the position estimation results when the speeds of the sources are zero,
so the path trails are the small dots. Meanwhile, Fig. 7b presents the position esti-
mation result when the speeds of the sources are all 40 km/h. It can be seen that the
system is able to locate the sources even when the source number is greater than the
sensor number. The Root Mean Square Errors (RMSEs) for the successful clustering
in both Figs. 7a and b are less than 1.6 meters, an acceptable level especially when
the speeds of the sources are high (in 0.2 s, the trail lengths are around 2.2 m). Obvi-
ously, positioning based on f-component localization is a good method to deal with
multiple acoustic source positioning in situations affected by high Gaussian noise,
multipath fading, and Doppler effect. The SNR here is 2.51, the highest level of all
simulations.

To demonstrate the results of clustering, Table 1 shows the percentages of the
group number resulted after f-component positions are clustered in the same condi-
tion as in the above example (Tf = 0.2 s, αRL = 0.2). This task is repeated for 1,000
trials for each pair of total noise level and source speed. Since we focus on statisti-
cally evaluating the performance of the system during positioning, we do not try to



A distributed design for multiple moving source positioning 455

Fig. 7 (a) and (b) are the estimation results of two examples using the highest level of noise in the
simulation set and αRL = 0.2. One (a) locates five sources with source speeds of zero and the other (b)
positions five sources with source speeds of 40 km/h

Table 1 Percentages (%) of resulting clusters when Tf = 0.2 s and αRL = 0.2

SNR Speed (km/h)

0 8 16 24 32 40

Percentages of resulting into 5 clusters

∞ (no noise) 91.7 85.9 86.8 84.3 84.1 86.8

40.21 89.5 83.2 80.6 83.5 85.1 81.6

10.05 86.5 79.3 77.7 74.4 79.0 76.8

4.46 72.6 71.5 67.1 67.5 67.8 69.4

2.51 66.3 64.8 63.7 62.6 63.2 64.8

Percentages of resulting into 4 clusters

∞ (no noise) 6.4 9.2 10.2 11.9 11.7 8.9

40.21 8.4 12.2 15.3 12.4 10.5 13.1

10.05 10.0 14.4 16.4 16.7 14.1 14.0

4.46 17.8 18.5 18.3 19.7 19.1 17.6

2.51 19.4 20.9 21.0 19.4 19.34 19.6

Percentages of resulting into 6 clusters

∞ (no noise) 1.9 4.9 2.7 3.6 4.1 4.2

40.21 2.1 4.6 3.9 3.8 4.1 4.8

10.05 2.9 5.0 4.8 7.2 6.4 8.2

4.46 9.1 8.8 13.5 11.4 11.0 11.5

2.51 12.6 13.0 13.7 16.3 15.1 14.2
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Fig. 8 RMSE error results of source locations under influences of speeds of sources, Gaussian noise, and
Rayleigh multipath fading when the time segment is 0.2 s

monitor the sources in sequences of frames or to refine the location estimations over
time. Instead, for each trial, we randomly set the positions and the moving directions
of the sources and let the system perform positioning with only one frame. As one
can expect, the percentages of exactly grouping into 5 sources decreases with the rise
of noise and source speed, while the percentages of resulting in 4 and 6 groups after
clustering increase. However, in the worst case, the percentage of clustering into 5
groups is still high, not less than 62%.

5.3 System performance evaluation

This simulation aims at examining the influences of time segment Tf , signal-noise
ratio SNR and speed vj on the results of positioning. The chosen Tf is either 0.2 s
or 0.25 s, while the speed value varies from 0 to 40 km/h in increments of 8 km/h.
The signal-noise ratios are generated based on the linear increment of the standard
deviation of Gaussian noise. The set of SNR values are maintained statistically the
same for the purpose of comparison, even when Tf and αRL vary.

Figure 8 shows the results of distance errors under influences of noise level SNR,
the percentage of Rayleigh multipath fading noise αRL and the speed of sources vj

when the time segment is 0.2 seconds. Meanwhile, Fig. 9 illustrates the results when
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Fig. 9 RMSE error results of source locations under influences of speeds of sources, Gaussian noise, and
Rayleigh multipath fading when the time segment is 0.25 s

the time segment is 0.25 seconds. Each plotted error is the average value of RMSEs of
1,000 trials. At each trial, the RMSE is computed from the shortest distances between
the estimated source positions and the actual source positions. When the number of
estimated positions is different from that of actual positions, the number of distance
pairs used to compute RMSE is the smaller number.

Table 2 shows the percentage results for clustering into 5 groups, 4 groups, and 6
groups at different conditions of noise levels and different source speeds. It is con-
structed when the Tf = 0.2 s and αRL = 0.8, corresponding to Fig. 8d. Meanwhile,
Table 3 shows the percentage results of clustering with the same format as in Tables 1
and 2 when the Tf = 0.25 s and αRL = 0.8, corresponding to Fig. 9d.

From the results, it can be seen that at any speed value, higher noise and higher ve-
locity lead to higher source positioning error. The higher noise level results in more
error in the f-component positions due to the increased error in the constraint ra-
tios, especially if the f-components have low magnitude. Meanwhile, higher speeds
lengthen the path trails, increasing the uncertainty of positions. Consequently, the er-
ror in the f-component positions affects the f-component clustering results, causing
error in the final source position estimations.

The relationships between vj and RMSE can be considered to be positive lin-
ear when vj is high (see Figs. 8 and 9). It is obvious since higher speed sources
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Table 2 Percentages (%) of resulting clusters when Tf = 0.2s and αRL = 0.8.

SNR Speed (km/h)

0 8 16 24 32 40

Percentages of resulting into 5 clusters

∞ (no noise) 91.7 86.3 85.7 85.0 84.9 86.1

40.19 86.8 84.1 81.3 82.1 81.7 83.2

10.05 73.4 75.4 74.0 73.8 74.0 76.6

4.47 58.1 65.1 61.9 66.3 67.0 65.2

2.51 52.5 55.3 58.5 60.3 61.1 58.4

Percentages of resulting into 4 clusters

∞ (no noise) 6.4 9.2 10.8 10.6 10.9 10.0

40.19 11.0 11.9 14.3 13.3 13.8 12.4

10.05 19.5 18.4 18.3 19.3 19.0 17.9

4.47 25.0 23.4 27.4 22.0 21.4 22.8

2.51 24.9 27.0 25.1 23.3 24.9 25.7

Percentages of resulting into 6 clusters

∞ (no noise) 1.9 4.3 3.3 4.2 3.7 3.6

40.19 2.0 3.6 3.7 4.5 4.3 4.2

10.05 5.9 5.1 6.7 5.7 6.4 4.5

4.47 13.1 9.5 8.2 9.7 8.9 9.7

2.51 16.7 13.6 13.0 12.9 10.6 11.7

leave longer path trails. In addition, Rayleigh multi-path fading caused by high vj

affects the accuracy less than that caused by low vj (compare the subfigures). The
accuracy of estimated f-component positions decreases when the source velocities
increase, leading to the increased error in the source location estimations. On the
other hand, when the SNR is high and vj is low, the accuracy decreases rapidly be-
cause of Rayleigh multi-path fading. In the case where SNR = 2.5 and αRL = 0.8,
the RMSE error is up to around 1.8m (see Figs. 8d and 9d). An f-component at a
low vj produces noise in a narrow and condensed Doppler shift range on the fre-
quency domain. As a result, at the same level of Rayleigh noise, the received energy
of an f-component through the line-of-sight path is corrupted more by a narrow shift
range than by a wide shift range, causing poor accuracy at low vj when there exists
Rayleigh fading. Meanwhile, when vj is high, the energy of Rayleigh fading noise is
spread wider and thinner on the frequency domain and less affects the line-of-sight
f-component. The fading noise can also be partly filtered by the Gaussian filtering
stage. Therefore, Rayleigh fading noise in high vj cases does not affect the accuracy
as much as it does when vj is low. Generally, the results in Figs. 8 and 9 show that
the more Rayleigh fading noise contributes to the total noise level, the worse result
the system achieves especially if the source speeds are low.

One can easily notice that the system could not give the ideal result when there
is no noise (SNR = ∞). The f-component location errors are caused by a limited
time segment of a frame which produces unavoidable spectral leakage. In addition,
there exists the influence of the second original source, whose f-components ap-



A distributed design for multiple moving source positioning 459

Table 3 Percentages (%) of resulting clusters when Tf = 0.25s and αRL = 0.8.

SNR Speed (km/h)

0 8 16 24 32 40

Percentages of resulting into 5 clusters

∞ (no noise) 94.3 85.3 86.7 87.1 88.4 89.7

39.71 90.2 82.3 86.0 84.8 86.1 87.7

9.93 70.3 75.8 77.5 76.5 78.6 77.7

4.42 60.4 67.3 67.2 68.6 69.2 68.2

2.48 50.1 57.5 59.4 61.0 63.4 65.0

Percentages of resulting into 4 clusters

∞ (no noise) 5.6 13.3 11.8 11 9.1 8.8

39.71 8.8 15.3 12.1 13.2 11.0 9.9

9.93 19.5 18.2 16.1 17.1 14.9 16.3

4.42 21.3 19.8 20.3 21.3 18.4 21.5

2.48 23.2 21.3 22.8 20.5 21.3 20.6

Percentages of resulting into 6 clusters

∞ (no noise) 0.1 1.2 1.3 1.7 2.1 1.4

39.71 1 1.9 1.7 1.4 2.8 2.3

9.93 8.2 5.6 5.6 5.5 5.2 5.7

4.42 14.5 10.6 10.8 8.7 10.4 9.3

2.48 22.6 17.7 14.9 15.7 12.1 10.9

pear and contribute interference all over the frequency domain, to other sources’
f-components. As a consequence, the errors in final estimations are unavoidable. Nev-
ertheless, when the noise level increases quickly, the system can tolerate the noise
well with little error increment. The estimation error increases an amount of 0.6 m in
average when the SNR decreases 16 times from around 40 to 2.5. Comparing subfig-
ures by pair from Figs. 8 and 9, we can see that a bigger time segment Tf improves
the accuracy when vj is low (including the ideal case). However, it decreases the ac-
curacy if vj is high. Obviously, although bigger Tf reduces the spectral leakage, this
improvement cannot compensate the increased error when the path trails are longer,
producing high error results when vj is high (>30 km/h).

Tables 2 and 3 show that f-component clustering relied on f-component locations
is closely associated with the estimation accuracy. An incorrect number of clusters is
caused by missing f-component locations due to noise filtering or by using too poor
the f-component position estimations. Higher percentage of grouping into exactly 5
clusters increases the estimation accuracy. Contrariwise, this percentage decreases at
high levels of noise and high source speeds.

Comparing Tables 1 and 2 both of which result from the same Tf of 0.2 s, one can
see that the higher is the contribution of Rayleigh fading noise to the same level of
total noise, the worse is the f-component clustering result. This is consistent with the
above analysis of Rayleigh fading influence on the RMSE. Meanwhile, comparing
Tables 2 and 3 shows that in most of the cases, longer monitoring time reveals higher
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Table 4 Total percentages (%) of clustering 4 groups, 5 groups and 6 groups

SNR Speed (km/h)

0 8 16 24 32 40

Tf = 0.2s; αRL = 0.2

∞ (no noise) 100.0 100.0 99.7 99.8 99.9 99.9

39.71 100.0 100.0 99.8 99.7 99.7 99.5

9.93 99.4 98.7 98.9 99.4 99.5 99.0

4.42 99.5 98.8 98.9 98.6 97.9 98.5

2.48 98.3 98.7 98.4 98.3 97.6 98.6

Tf = 0.2s; αRL = 0.8

∞ (no noise) 100.0 99.8 99.8 99.8 99.5 99.7

39.71 99.8 99.6 99.3 99.9 99.8 99.8

9.93 98.8 98.9 99.0 98.8 99.4 99.0

4.42 96.2 98.0 97.5 98.0 97.3 97.7

2.48 94.1 95.9 96.6 96.5 96.6 95.8

Tf = 0.25s; αRL = 0.8

∞ (no noise) 100.0 99.8 99.8 99.8 99.6 99.9

39.71 100.0 99.5 99.8 99.4 99.9 99.9

9.93 98.0 99.6 99.2 99.1 98.7 99.7

4.42 96.2 97.7 98.3 98.6 98.0 99.0

2.48 95.9 96.5 97.1 97.2 96.8 96.5

clustering accuracy and higher percentage of clustering into 5 groups. This is because
most f-components of vehicle and motor sources appear in the low frequency range,
so a longer time segment helps separate the f-components more clearly and decrease
the spectral leakage. However, increased Tf makes the final estimation results at high
source speeds not as good as those at low source speeds (see Figs. 8 and 9) since the
path trails at high vj are longer. This reflects the uncertainty law between time and
frequency: low frequency needs a long observation time to be indicated. Obviously,
there is a trade-off between f-component separation and the path trail length when Tf

varies.
Now we consider the harsh conditions, when data is collected from high speed

sources under serious noise and when low speed sources move in the setting where
Rayleigh fading noise accounts for most of the total noise. Although the percentage of
clustering into 5 groups is quite low (in the worse case, only 50.1%), the percentage
of clustering results for all 4, 5, and 6 groups are very high. Table 4 displays the
high values of total percentage of clustering for 4, 5, and 6 groups in three critical
conditions in this simulation set (the least is 94.1%, see Table 4), indicating that a
good inference mechanism module can be used in conjunction with this positioning
system to combine the information of cluster number and the relationships between f-
components and clusters. The continuous combination over time can better clustering
results, measure the velocities of the sources and refine the position estimations by
predicting their next positions. This module, however, requires much effort in both
analysis and design, and is beyond the scope of this article.
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6 Conclusions

This paper introduces a distributed system for independent acoustic source localiza-
tion in parallelism of data-and-process decomposition. The information for separa-
tion is the ratios of f-component energy values received at the sensors. In order to
obtain these ratios, the received signals are first segmented into frames and trans-
formed to frequency frames with DFT transformation at the sensors. The Gaussian
noise filtering and compressing also take place at the sensors before the preprocessed
data is sent to the base computer. At the base, after decompressed, the data is used
for f-component clustering, or determining the segments that contain the different
f-components. All of the relative distance ratios are computed in order to establish
an objective function for each f-component. Minimizing these objective functions re-
veals the location estimations of the f-components. A d-min clustering approach is
used to group close f-component positions and to compute the final source locations.
The simulations in the article have been made as realistic as possible with the coex-
istence of Doppler effect and Rayleigh multipath fading to illustrate how the system
solves the problem of multiple moving source positioning. The results show that the
method gives high accuracy and requires a very low communication cost for a large
data set. The proposed system can be considered as the acoustic source localization
design for the future generation of WSNs since it needs sensors with high comput-
ing ability in order to perform DFT on a long segment of data. However, powerful
computing ability is not crucial because using the feedback from the base, the sen-
sors only perform the full DFT once and then focus on calculating DFT at bins in
several frequency segments containing major f-components. The system is actually
more useful than just positioning multiple independent acoustic sources. It can also
provide characteristics of the acoustic sources which can be utilized for further po-
sition estimation refinement and for recognition or classification since most acoustic
features are related to the frequency domain. As the task of continuously positioning
and refining the estimations of source locations requires much effort in both analysis
and simulation, we let it be our next work in future.
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