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Abstract Synchronization/desynchronization and clustering are important tech-
niques in multi-node computing systems, especially for sensor networks (SN) which
is broadly considered to be a type of multi-node computing environment. However,
most of the existing algorithms’ clustering criteria are limited to the node location
information and ignore the nature and characteristics of the nodes as well as the
requirements of the applications. In this paper, an autonomic concurrent General
Criteria-based Clustering (GCC) method is proposed for multi-node computing sys-
tems. The GCC method is based on the neuron oscillator pulse-coupling model and
its clustering criteria can come from any node-related data or properties. The cluster
member nodes share similar physical or logical properties and represent those rela-
tionships in the form of Logical Clusters (LCs). Due to the neuron dynamic system
basis of the method, there is concurrency that exists both on the whole network and
on each individual node. The simulation shows that the GCC method can generate
diverse logical clusters and synchronization/desynchronization coexistence results
with acceptable time and energy usage.

Keywords Clustering · Pulse-coupling oscillator · Multi-node computing system

1 Introduction

Multi-node computing in general refers to a wide range of distributed systems com-
prised of autonomous computing nodes communicating via some network. It includes
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the network computing/ cloud computing, parallel computing, distributed computing,
mobile ad hoc systems, etc. It may also include sensor networks especially in cases
where the sensor nodes provide limited computational capabilities such as data ag-
gregation and data clustering. In many cases, synchronization/desynchronization and
clustering are useful for multi-node applications among the important aspects.

In this paper, we emphasize these techniques in sensor networks (SN) which we
consider broadly to be a multi-node computing environment: such consists of multi-
ple spatially distributed autonomous sensor nodes often with a limited processing unit
where all nodes interact locally and some nodes interact with gateways-termed base
stations, the latter often having more computational energy and communication re-
sources. Synchronization and desynchronization are two basic primitives [1] for such
multi-node sensor environments. Synchronization usually implies time synchroniza-
tion and provides the time baseline for all the nodes and events in the network. Desyn-
chronization makes the nodes active in different time intervals to avoid transmission
collision or balance the working load more evenly amongst group nodes [2–4]. In ad-
dition, node clustering, which aims to increase scalability and reduce the complexity
of network management, is common in sensor networks. However, most of the exist-
ing clustering algorithms group the nodes by applying some simple criteria, such as
node location and communication costs, etc. These often used clustering criteria ig-
nore the nature and characteristics of the sensor nodes as well as the requirements of
the application level. Moreover, many existing algorithms require additional assistant
techniques for communication in cluster networks. For example, some need a central
node for controlling or special coding methods (Direct-Sequence Spread Spectrum
(DSSS) in LEACH [5]) to avoid the collision among the nodes and clusters. And
some others need additional time synchronization algorithms for data aggregation or
other data recording functions.

In this paper, we propose a General Criteria-based Clustering (GCC) method
which is generally suitable for multi-node computing environments, in particular
wireless environments, and emphasize its application for sensor networks. The GCC
method is based on neuron oscillators’ interactive coupling (i.e. pulse-coupling os-
cillators) whereby the activity is imitated to produce independent clusters based on
the oscillators’ initial phase distribution. Because the phase is an abstract concept
derived from mathematical system, practically its initial value can be mapped from
any node-related data or properties: which means that any node-related characteristic
data can be used as the clustering criteria. The GCC method consists of two levels of
concurrency: the upper-level derived from a neuron dynamic system consists of all
of the computing nodes in the environment that the nodes self-autonomously cooper-
ate via pulse-coupling communications to effect a global clustering; the lower-level
is specific to each node and consists of asynchronous node-to-node communication
support, asynchronous and shared memory internal communication.

The GCC overcomes the limitations in the existing clustering techniques by con-
sidering the nature and characteristics of computing nodes. In particular, application
level requirements can be used to influence the results of clustering. The use of the
application level requirements leads to a connection between applications and clus-
tering. On demand and dynamic changes in the applications may also be reflected
in re-clustering. We believe that this is the first method to perform clustering based
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on general application information. Besides, our method allows capturing the log-
ical relationships that exist in distributed computing nodes and representing those
relationships in the form of Logical Clusters (LCs). In addition to the clustering, the
GCC method also produces an advantageous result that the nodes within a cluster are
phase-synchronized and phase-desynchronized among different clusters. If needed,
these synchronized/desynchronized phases can also be reversely mapped as the sen-
sor nodes’ logical clock, which enables applications that need time synchronization
or desynchronization without requiring any additional algorithms or procedures.

The paper is organized as follows. Section 2 introduces the applications and clas-
sification of the existing clustering algorithms and neuron models as prior work. The
inhibitive pulse-coupling model and clustering results are detailed in Sect. 3. After
describing the basic physical requirements for networks in Sect. 4, the GCC method
is listed step by step in Sect. 5. Section 6 focuses on the analysis and simulation of
the proposed GCC method and Sect. 7 summarizes the work and discusses some of
the future work.

2 Prior work

One of the most classical paradigms of distributed computing is the clustering [6].
Clustering in wireless sensor network has been studied a lot because it is very useful
for network scaling, routing, and energy saving. Scaling involves large numbers of
nodes being grouped into smaller number of clusters; the head node in each cluster
serves as the manager, which makes the management of a large scale sensor network
much easier. Routing involves member nodes sending the data to their head nodes;
the data packets are transmitted only by head nodes hop by hop to the base station,
which can avoid the high energy cost and serious interference caused by directly
transmitting. Energy saving involves, when there is no transmission needs, the clus-
ters that can sleep alternatively and save energy. In traditional clustering algorithms,
the cluster divisions and formations are led by the cluster head. Nodes which have
closer distance to the designated head node are grouped together. The only criterion
for deciding which cluster a node belongs to is its distance to the head node or the
communication cost. The main work in traditional clustering algorithms is to choos-
ing proper cluster head. Some algorithms choose cluster head based on the residual
energy [7], some are based on node degree [8–11] and some are based on the combine
weights of several critical factors [12]. All of these algorithms partition the network
area geometrically and the correlation between clusters formations and the sensing
environment or sensing data are not considered.

The work in [13] architects sensor networks as virtual databases such that each
sensor node is a ‘living’ data tuple source. Therefore, the node clustering problem
can be solvable by the data clustering method. Although they already have numerous
mature data clustering algorithms, most of them need large amounts of data recipro-
cation, complex calculation and long iteration times, which are not suitable for the
energy and computing ability constrained sensor network. The pulse-coupling oscil-
lator model inspired from the mutual interaction among neurons can be considered a
data clustering method. Its calculation is simple, and there need not be complex data
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Table 1 Different converging results of pulse-coupling oscillator model

Concave down

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Instant coupling

{
Excit → Sync

Inhi → Async

Delay coupling

{
Excit → Unstable clustered

Inhi → Stable clustered

Concave up

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Instant coupling

{
Excit

Inhi → Clustered and degrade

Delay coupling

{
Excit

Inhi

communication but simple signal and finite iteration rounds. All these factors suggest
its suitability to the multi-node computing system.

Recently, the pulse-coupling oscillator models are studied and introduced in the
field of sensor networks. However, most of the works focus the applications on time
synchronization. Mirollo and Strogatz [14] prove that through very simple reactive
adjustments of the node phase after hearing the fire pulse, the phases of all oscil-
lators would converge to a global synchronicity, regardless of the number of nodes
and their initial states. Lucarelli and Wang [15] lift the all-to-all communication re-
quirements indicated in [14] and prove that the convergence can be achieved by local
coupling. Hong and Scaglione [16] show that when the coupling strength and node
density are big enough, there will be some avalanche effects and the whole network
locks to synchronicity immediately because of the continuous firing. Our previous
work [17] gets rid of the swing actions in the coupling procedure by predicting the fi-
nal converging direction and improves the synchronizing speed and energy efficiency.
References [18] and [19] take into account more realistic factors of the wireless envi-
ronment. Instead of responding individually and instantaneously, nodes in [18] accu-
mulate the incoming pulses in the past period and do the phase adjustment once in all
at the beginning point of the next period, while [19] enlarges the period from 1T to
2T . When the node gets a pulse at some point of the first T , it will react to the pulse
at the same point of the second T . The extended T is used to buffer the transmission
delay.

All of the above-mentioned works use the same Integrate-and-Fire (IF) oscillat-
ing function and coupling form, which is monotonically increasing, concave down,
excitatory adjusted and instantly coupling. Actually, in dynamic systems and brain
neuron systems, there are many variations on IF and coupling forms. The integrating
function curve can be concave down or concave up. When doing coupling, the phase
can jump forward (excitatory) or backward (inhibitory). The node coupling dynamics
activity can either include delay or not. Table 1 lists the different results along with
different choice of these basic elements.
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3 Mathematical model

Considering the transmission delay and final stability, we choose the concave down,
delay coupling scheme with inhibitory coupling as the core model.

3.1 Delayed inhibitory pulse-coupling model

Although there are many variants of oscillator models for different research pur-
poses [20, 21], here the basic Leaky IF model is used because it is a widely used,
simple yet effective model. The ‘IF’ means the potential xi accumulates by inte-
grating until up to some threshold xth. Then, the oscillator fires and emits a pulse
signal δ(t). After firing, the potential falls down to zero and starts to integrate again
in the next cycle.

The presentation of the following mathematical discussion follows the literature
and adds additional clarity about the equation’s characteristics.

The integrating speed of the potential is presented by the following differential
equation:

dxi(t)

dt
= −xi + I0 +

N∑

j=1,j �=i

JijPj (t) (1)

The change of potential is decided by the regular integrating speed and the instant
leaps caused by the incoming pulses.

The first part of (1),

dxi(t)

dt
= −xi + I0

shows that when the oscillator is isolated, the potential integrating speed is decreased
as the potential value increases. Here I0 > xth controls the natural period of the oscil-
lator. dxi (t)

dt
> 0 and d(

dxi (t)
dt

)/dt < 0 mean the curve of the potential value is mono-
tonically increasing and concave down.

When oscillator i is in a network and can receive fire signals from neighboring
oscillators (j ), its potential instant speed is adjusted by

N∑

j=1,j �=i

JijPj (t)

Here Jij is the coupling strength between nodes i and j .

Pj (t) =
∑

m

δ
(
t − τ

[m]
j

)

represents all pulse signals from node j in the past, in which δ(t) is the Dirac delta
pulse function and τ

[m]
j is the mth fire time of oscillator j .

Figure 1 shows the curve of an oscillator potential (Y axis) along with its phase
(X axis) in an IF model. The potential is written as a function of phase φ:

xi(t) = f
(
φi(t)

)
(2)
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Fig. 1 Potential f (φ) and
phase φ adjustment during
excitatory/inhibitory coupling

in which phase is defined in the range of [0,1] and the function f meets all the
requirements of potential (f ′ > 0, f ′′ < 0). Here, set xth = 1 so f (φ) ∈ [0,1] and
f (0) = 0, f (1) = 1. Because of the continuity and monotonicity of f in [0,1], the
oscillator potential and its phase are affine one-by-one. The variable phase can re-
flect the characteristics of the oscillators potential, so in the rest of the paper we use
phase φ as the main measurement to investigate the dynamics of the oscillators in the
networks.

3.2 Clustering in delayed inhibitory coupling

When there is no coupling, the phase moves at the speed

dφi

dt
= 1

T
(3)

when at time t oscillator i fires, all its neighboring nodes will react to the fire signal
at time t ′ = t + τ0. Here τ0 is the delay time between firing and reacting. And their
phases will adjust according to

φj (t
′+) =

{
f −1(f (φj (t

′)) + εt ) = B, if 0 < B < 1

0, otherwise
(4)

in which

εt = n0(t)

n
ε

Because the phases are bounded in [0,1], if B’s value is less than 0 or greater than
1, it should be regarded as 0. n is the network node number and n0(t) is the num-
ber of nodes which fire simultaneously at time t . As converging degree increases, n0
will increase from small value (1 or 2) to its maximum value, which is the number
of nodes in each cluster under the totally converged state. ε is the coupling strength.
Factor 0 <

n0(t)
n

< 1 controls the amount of phase adjusting and helps to get the clus-
tered result. When ε > 0, the potential will jump up by εt amount. When phase jumps
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Fig. 2 The converging procedure and clustered result under delayed inhibitive coupling

forward a step, the integrating period will be shortened. The coupling is excitatory.
When ε < 0, the potential falls down, the phase jumps backwards and the period is
elongated. The coupling is inhibitory (Fig. 1).

References [22] and [23] observed that when the coupling is inhibitive and always
has τ delay after firing, the oscillators in the whole network will converge to several
clusters. All members in one cluster share the same phase. Between clusters, each
pair of the clusters have a fixed phase offset. They are phase-desynchronized (Fig. 2).
And this sync/desync state is stable because either the outside noises or minor phase
deviations cannot break down the clustered state. Besides, empirical data show that
the number of converged clusters m is approximately inversely proportional to the
twice the length of delay τ :

m ≈ 1/2τ (5)

Regarding the converging reason why the clusters are of a size 2τ , Ref. [24] gave out
a heuristical proof of two nodes’ absorbtion and repulsion: whenever two oscillators’
phase difference |�φ| is less than delay τ , after finite iterations, they will for sure
end up with synchrony state; when τ < |�φ| < 1 − τ , their phase lag will lock onto
some fixed distance which equals �φ0 ∈ [τ,1 − τ ] and they will never synchronize,
which is called the antiphase stable state. When there are more than two oscillators,
Ernst et al. [23] explained that the system fixed point’s attractive radius is around τ

size. So “. . . the phase axis is partitioned into intervals of size ≈ 2τ , each of which
being a basin of attraction for one cluster.” Although numerous simulations confirmed
this phenomenon, until now there is no strict mathematical proof on the convergence
when the number of nodes is greater than 2.
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The above discussion leads to two significant properties: (1) oscillators are clus-
tered in phase, and (2) synchronization and desynchronization can be achieved at the
same time. These are two attractive characteristics for distributed networks.

4 Physical requirements of a network

Before formally introducing the new clustering method, we first point out the physical
requirements on system nodes and distributed networks.

(1) Each related node in the computer systems is equipped with hardware or software
oscillator with fixed frequency. All oscillators should have the same oscillating
frequency but different initial phases are allowed.

(2) There is no limitation on transmission media. The coupling signal can communi-
cate in either wired or wireless networks. However, due to existing mature time
synchronization protocols in wired networks together with the current emphasis
on wireless networks, the remainder of this section is devoted to wireless tech-
nology.

(3) The firing signal used for causing coupling among nodes should be short, fast and
low-cost. The only purpose of the signal is to inform other nodes about their firing
time point, so the signals need not to contain any source or target information.
At the first stage of converging, the signal fires chaotically and frequently, so the
firing signal should be fast and low-cost for the energy and channel interference
considerations.

Several options are available. One option is based on Ultra Wide-Band (UWB)
pulse radio [25, 26], which can be configured in a low bit rate long-range trans-
mission configuration [27, 28] to meet the requirements of the firing signal.
A second option is based on Free Space Optical (FSO) pulse communication
system, which supports long-distance point-to-point node communication and
moreover can be configured to support broadcast [29]. In addition, since Ra-
dio Frequency (RF) systems are common, a more practical option is to use the
short message supported by the existing transmission protocol, such as a 56-bit
short-term synchronization head file in IEEE 802.11g [30]. The detection of a
pulse message is dependent on which technique is deployed: for example, in op-
tical pulse systems the detector (e.g. photodiode) can be used to detect multiple
pulses [31, 32].

(4) All nodes locate in a single cell. To guarantee the convergence of the oscillators to
the clusters, the system requires that the coupling is of the all-to-all form, which
means that when one node fires and emits a signal, all nodes in the network
should receive it and react to it. Simple broadcast in single cell is sufficient for
all-to-all coupling. When the network scale is beyond one hop, relay broadcasting
of the firing signal is required at the peripheral of the cell. This relay will increase
the transmission delay. The more relay times, the lager indetermination there will
be on delay value, which is caused by the message lost or interference, etc. A key
requirement for stable clustering result is that all nodes should have the same
length of delay. The increase of indeterminate delay will make the τ ’s setting
and adjusting more complex. As this is beyond the scope of this paper, only the
single cell case will be discussed.
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Although in this paper some examples and simulations are given in the wire-
less sensor network environment, the GCC method is not only limited to it. All the
multi-node computing systems which meet these requirements are applicable by this
method.

5 General Criteria-based Clustering (GCC) method

In properly equipped networks, the GCC method can self-organize the system nodes
into expected number of clusters. This section gives the detailed steps of the method.

Step 1. Clustering criteria selection and mapping
The significance of the GCC method is that its clustering criteria is general and appli-
cation dependent. This means that any node-related data or properties may be selected
as the clustering criteria (e.g., in WSN, the node’s geography information, identifica-
tion number or connecting degree, etc.). The selection is dependent on the purpose
for the cluster formation, which is often associated with the application. Multiple cri-
teria may be chosen for different reasons thereby enabling different possible cluster
re-formation. The GCC builds a connection between application requirements and
clustering construction due to the criteria selection. Such a connection means that a
known objective may lead to a criterion selection, or a criterion can be firstly selected
that results in some benefit. For example in WSN, for the objective of network work
load balancing, the node’s residual energy amount can be worked as the clustering
criterion. Nodes with similar residual energy level are thus grouped, and according to
the different energy levels, the cluster members can adjust the sampling and report-
ing rate so as to balance the load and extend the network lifetime. Or conversely, if
using node sensed content as the clustering criteria, then it may be easier to perform
data aggregation inside clusters whose members have similar content data. The final
condensed information would be shorter and cost less transmission energy.

There are some constraints on the selection. The criteria properties should be nu-
merable and the value be bounded in some range, because the final selected criterion
is mapped as the node initial phase which is a one-dimensional scalar variable in the
domain of [0,1]. However, in the case when the selected criterion consists of non-
scalar data (like X,Y -coordinates), a data dimension transformation is required. Re-
cently there is some mathematical work on multi-dimension phase convergence [33];
however, at this time it may not be suitable for practical system uses.

All the qualified node data or properties form a criteria candidate set C =
{C1,C2,C3, . . .}. From the set, one or several candidates may be appropriately chosen
by a user or automatically in an automatic application. When mapping the selected
criterion as the initial phase φ, the network should be “aware” of the possible mini-
mum and maximum values of the criterion as boundaries. The values in [min,max]
are normalized into [0,1] (see row 1 in Table 2). These boundary values are calcu-
lated prior to the deployment or obtained from the broadcast message before cluster-
ing starts.

Step 2. Parameter setting
After choosing the appropriate clustering criteria, the next step is to set parameters in
both the physical and mathematical systems.
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After obtaining the initial phases, in order to calculate the consequent phase values
at some specific time, the moving speed of the phase is needed. As described in
Sect. 3.2, the ordinary moving speed of the phase without coupling is decided by
the oscillating period T (see (3)). The oscillating period T takes the same value T0
in both the physical system and the mathematical model. The value of T0 can be
set rather freely under the constraint of the system delay and the expected cluster
number m, which is discussed in the following paragraphs. Similarly, the length of
T0 will influence the whole system converging time and the corresponding energy
consumption. The latter Step 4 will discuss this influence.

Delays are inevitable in most real networks, especially in wireless networks. The
delayed inhibitory coupling model considers the transmission delay directly, in which
after some nodes fires, instead of reacting instantaneously, receivers wait for some
time and then react. In real networks, the transmission delay mainly includes: trans-
mitting delay ttx in the sender, propagation delay tpg in the air and decoding delay
tdec in the receiver [19]. Compared to the ttx and tdec, the propagation time is small
enough to neglect. On the other hand, tdec is measured by the receiver itself and thus
is known. The only unknown item is ttx. If the exact value of ttx for every signal
is needed, then the exact timestamps can piggyback on the signal message like in
Ref. [34]. However, in the GCC method, all the fire messages are the same short,
pulse-like signals. Their emitting and receiving can be done by hardware or firmware
using almost the same time. If the precision requirement is not very high, for sim-
plicity, the transmission delay of all nodes are considered the same. t0 = ttx + tdec
represents the total delay for a firing signal between its emission and reception. t0 is
the minimum allowed delay length and the real delay value tτ should not be shorter
than t0: tτ ≥ t0. Normalize the time delay for system model:

τ = tτ

T0
(6)

Considering τ ∈ [0,0.5] and the relation in (5), the delay value also sets the floor
boundary of the real oscillating period T0.

T0 ≈ 2mtτ ≥ 2mt0 (7)

The coupling strength coefficient ε measures the inhibitory phase adjustment
amount when receiving a firing signal. The desynchronized grouping phenomena and
the relationship of (5) are only tenable below some coupling strength threshold. The
coupling strength is also critical for the converging speed and final cluster number
veracity. We will discuss the empirical choice of the value of coupling strength in the
simulation Sect. 6.2.

Table 2 shows the initial phase mapping and the relationship between the physical
parameters and the system parameters.

Step 3. Logical clustering
After regarding every computing node as an oscillator and mapping the selected cri-
terion property as the oscillator’s initial phase value, based on the theoretic results
and analysis in Sect. 3, if the oscillators’ potential and phase variables follow the
preset oscillating function and execute the inhibitive coupling with the same delay
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Table 2 Mapping from Physical to System parameter

Physical parameter System parameter

Criteria property [min,max] Phase φ [0,1]

Oscillating period T0 T0, dφ
dt

= 1
T0

tdelay = ttx + tpg + tdec ≈ ttx + tdec = t0, tτ ≥ t0 τ = tτ
T0

∈ [0,0.5]
Cluster number m m ≈ 1

2τ

Coupling strength ε

Fig. 3 Two level concurrency
among nodes and inside each
node

length, after finite iterations, the nodes will be grouped into several clusters by their
self-converged phase values (Fig. 2). The following presents the clustering algorithm
operated on each computing node.

During the whole clustering procedure, each node mainly executes two operations:
periodical self-oscillating and coupling with other nodes. The couplings among the
nodes are mutually triggered by the same anonymous pulse-like signals, so each node
also operates two assistant signal-receiving and broadcasting processes. Whether
the self-oscillating or coupling, the operation results are embodied on the node’s
phase value φ. There are four processes concurrently executed on each computing
node: A, channel listening; B, periodical phase value self-increasing and resetting;
C, signal receiving; and D, coupling-caused phase value adjustment. Processes A
and C are asynchronous communication processes; the B and D perform concur-
rent read/write computations on the shared node phase φ, that is, the φ is stored
in a shared memory which is accessible by these processes. In addition, due to the
delayed coupling model, the node uses a queue structure Q to store the waiting
signals between processes C and D (Fig. 3). The node’s local clock time is used
by all the processes. Figure 3 illustrates the four processes working function in-
side each node, and Algorithm 1 gives specific details about the required calcula-
tions.
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Algorithm 1 Logical Clustering()
Require: Each node have the same f , ε, τ , T0, t0 value and different initial phase

value φi

Ensure: System stable clustered
1. repeat
2. (Process A) Listen to the public wireless channel
3. (Process B) Increase the phase value φ at the speed of: dφ

dt
= 1

T0
4. if (φ = 1) then
5. Broadcast Firing_signal()
6. Reset φ = 0
7. end if
8. (Process C)
9. if (Heard firing signals) then

10. Record current local clock time tk and calculate the expected
reacting time trk = tk + (τ × T0 − t0)

11. Estimate the firing number n0(tk)

12. Add trk and n0(tk) into the waiting Queue
13. end if
14. (Process D)
15. if (The Queue is not empty) then
16. Read the first item in the Queue
17. Obtain the upcoming reacting time trk′ and associated n0(tk′)
18. if (t = trk′ ) then
19. Read the current phase value φ(t)

20. Adjust the phase value using (4) with φ(t) and
n0(tk′)

21. end if
22. end if
23. until Detect fixed number and strength of fire signals sequence in continuous

periods

When not performing the coupling, process B in real-time updates φ at the speed
of dφ

dt
= 1

T0
, which is an instance of (3). When process B observes the phase value

arrives at the threshold value of φ ≥ 1, it broadcasts a firing signal to the whole
network, meanwhile updates phase as zero φ = 0. Process A continues listening to
the public wireless channel and detects if there are any firing signals, and its detected
results are only reported to process C. When the node detects firing signals, process
C is activated. It records the current node local clock time tk and estimates the firing
numbers of the signal n0(tk). The expected reacting time trk = tk + (τ × T0 − t0) and
the firing number n0(tk) are added to the end of the reacting queue Q of this node.
After that, process C is suspended until the next firing signal is reported. Once the
queue is not empty, process D reads the first item in Q and obtains the next expected
reacting time trk′ and associated n0(tk′). Process D waits until the local clock time
t = trk′ , then it reads the current phase value φ(t); using (4) and n0(tk′), it calculates
the new phase value φ(t+) after the coupling and updates this new value into the
shared memory φ storage. Termination of all processes occurs when a sequence of
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firing signals with fixed number and fixed strength are repeatedly reported to process
D (via the queue) for continuous several clock periods.

Both processes B and D can access the φ memory exclusively, which means that
when process B is increasing or resetting the φ, process D cannot do the adjust-
ment on φ, and vice versa. The read&write in both processes (Algorithm 1, lines
3, 6 for process B; lines 19–20 for process D) should be transaction operations.
Because the speed of phase self-increasing is quick (simple adding or resetting),
process B’s memory holding does not influence process D much. However, pro-
cess D’s processing time is relatively longer than B’s; here we set that the phase
self-increase updating interval of B is always longer than D’s accessing time for φ.
Giving this criterion valid, the whole concurrency works. Due to the fact that phase
self-increasing and resetting are regular actions for the node, under the same circum-
stance, process D always has higher accessing priority than process B: specifically,
Coupling_adjust > Normal_shift > Reset.

From Algorithm 1 and Fig. 3 we can see there is a high-level concurrency among
the network computing nodes too. All the nodes operate individually and there is
no central control message or data flow. The operations on the computing nodes are
parallel and their phase variables’ interactions are mutually triggered by each node’s
firing signal. The algorithm is distributed and the whole system is totally autonomic.

The clusters are divided based on the initial phase which is also the criteria prop-
erties distribution. The produced cluster members share the similar criterion property
values, but their physical location may or may not be near as those in common tra-
ditional clustering approaches. The cluster members are logically related and so the
formed clusters are called Logical Clusters (LCs). Because the clustering is totally
self-organized, there are no cluster head nodes either before or during the cluster-
ing procedure. The logical clusters’ physical shapes are also more diverse than the
normal ones from the existing algorithms.

Step 4. Period elongation and reverse mapping
After the system converges, each cluster acts as a whole and m clusters fire alter-
nately in one period. The firing pulse number decreases substantively. The superposed
pulses from simultaneous firing cluster members are used to maintain the clustering
topology of the network and keep it stable. Because of the independence of the clus-
tering method, the cluster head election or rotation inside will not influence the macro
network cluster distribution. Without special requirements, the network re-clustering
interval can be very long.

During the procedures of converging, a small period is preferred. With the smaller
period, the coupling happens more frequently and the system converges more quickly,
but after the converging becomes stable, if the system still keeps the short period, the
emitting of maintenance pulse will be too frequent. Besides, the computing nodes
also need sufficient time to fulfill their other duties between fires. Therefore, the ideal
situation is to use small T0 during the converging procedures, increase the converging
speed and decrease the time cost, and use an appropriate longer T0 after converging
becomes stable, firing occasionally to maintain the clusters, decreasing the mainte-
nance cost. This needs to elongate the period T0 after converging smoothly without
disturbing the stable network state. To obtain this, there are two points to note. First,
the new period should be integer multiples of the old period, like 2T0, 5T0, . . . , etc.
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Second, the system precision should be high enough so as not to split the already con-
verged clusters. This period enlarged function will be tested in the simulation section
(Sect. 6.3).

As mentioned in the Introduction part, the members are phase-synchronized inside
a cluster. If the application requires time synchronization among nodes, the phases
can be reversely mapped to some accumulated time variables. Because the member
nodes’ phase and frequency are all the same, the transformed timescale must be the
same as well, so all these computing nodes are time-synchronized.

6 Simulation results and discussion

The simulation is divided into three parts. First we check the feasibility of GCC
method and demonstrate the produced novel logical clusters. Then we discuss the
cost of GCC method. Finally, the stability of the clustering results under enlarged
period is verified.

The basic simulation environment is set to meet the requirement in Sect. 4. Three
hundred nodes are randomly deployed in a 100 × 100 meter size field. Each node
uses the uniform oscillating function f (φ) = 1

b
ln[(eb −1)φ +1] [14], in which b = 3

measures the extent to which f is concave down. Here we assume the transmission
media is wireless. And the firing signal is chosen to be the 802.11g short preamble—
a specific sequence of pulses which has the length of 56-bits. The field is set as a
single cell where firing signals are directly broadcasted and received and no relay
work used. If needed, there will be other environmental parameters given in each
part.

6.1 General-criteria clustering

To check the generality of the GCC criteria, here we choose three kinds of represen-
tative criteria as examples.

(1) The location data of each node.
In Fig. 4, the geography data criteria is the angle to the base line of a polar coordi-
nate (defined by point (20,40) and line y = 40). The produced polygon clusters
are similar to the normal ones except that there is no predesignated head nodes.
This example shows that the GCC method is compatible with the traditional clus-
tering algorithms. Figures 5 and 6 select the distance to the field point (50,50)

and the outside field line y = 1/2x + 200, respectively, as the criteria and map
the distance values as their initial phases. The formed cluster shapes are circles
and strips respectively. As discussed in Step 1, the physical borderline of each
cluster is clear and these kinds of clusters are suitable for hotspot surveillance
applications. Inside the cluster, head centric star topology may not be suitable
any more. Instead a chain topology like in Power-Efficient Gathering in Sensor
Information Systems (PEGASIS) [35] is more practical for strip shaped clusters.
The duty of the head node can shift along the chain for each round.
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Fig. 4 Normal polygon-shaped clusters based on angle to (20, 40) and y = 40

(2) Content-based clustering criteria.
In a 702.5 × 310 × 470 cm3 size room, 80 observing points, which form a
4 × 4 × 5 three-dimensional grid of sensors, are set to measure the indoor air
temperature of different places. At the right corner of room ((690, 5, 275), star
mark in Fig. 7), there stands an air conditioner blowing out cold air. The nearer to
the air conditioner, the lower the air temperature is. The temperature values are
determined from a simulation using a simple linear distribution. The temperature
values are mapped to the initial phase and system parameters (ε = 0.3, τ = 0.1)
are set as discussed in Sect. 5 steps. The 80 nodes are converged into 4 clusters.
Figure 7 shows the three-dimensional clusters based on the node sensed content,
in which the contour surfaces are shown to highlight the clusters.

(3) The unique node ID.
This produces scatter clusters as shown in Fig. 8. The scatter cluster shows the
key idea of logical cluster. The clusters are overlapped in a physical field and
cluster members are scattered everywhere. Intuitionally, these clusters have no
physical meanings, but they are logical related and share some common points
among cluster members. This concept is similar with an online social network.
The virtual social group share the same interests and based on that new ideas may
come up.

From Figs. 6 and 7 we notice that some of the highest phase nodes and lowest
phase nodes are clustered into one group. This is because the node phase is a modu-
lar variable in the oscillator model: the phase value near 1 also means near 0. Given
the phases of nodes whose criterion property values near minimum or maximum are
close, there is the possibility to be clustered into one group. This will not be a problem
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Fig. 5 Concentric clusters based on distance to point (50, 50)

Fig. 6 Strip clusters based on distance to line y = 1/2x + 200
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Fig. 7 Three-dimensional clusters based on indoor temperature

Fig. 8 Scattered logical clusters based on node ID

when the logical cluster is also modular (like the example of life-surviving temper-
ature clustering, both the highest and lowest temperatures are not suitable for life to
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survive, clustering them into one group is reasonable). However, in other situations,
these two contradictory classes may cause confusion. They will need to be subdivided
inside the cluster. In some cases, with the help of physical base parameters, it would
be easy to differentiate the two class nodes (like in Fig. 6, the physical location is
substantial different between the two class nodes). A more general way is based on
each node’s firing times. Based on the property of the oscillating function f and the
phase coupling formula (4), the firing order of nodes never changes during the system
converging procedure. So although the two classes of nodes may converge and they
fire together, the higher phase nodes always fire one more time than the lower nodes
due to their different initial phase values. By comparing their firing times, the nodes
can subdivide themselves.

6.2 Parameter and cost analysis

The previous discussion was focused on the possible cluster results. Now the clus-
tering costs are given in greater detail. Here cost refers to the time and energy con-
sumed during the procedures from random initial distributed network status to the
completely clustered state.

The time for all nodes in a network fire once are defined as one convergence itera-
tion (I ), and it is an important merit to measure the algorithm’s time and computing
complexity. The length of one iteration I is a little longer than one oscillating period
T because of the backward jump of phases in the inhibitive coupling. For the all-to-all
coupling scheme, in one round every node fires once and reacts to the firing signal at
most n times. It is because the signals that emit simultaneously are only received and
reacted once. Assuming the system converged in I0 iterations, then it costs around
I0 ×T0 time to accomplish the clustering, and during that every node on average fires
I0 times and reacts less than I0 × n times.

There are several factors that may influence the converging speed: the initial phase
distribution, the coupling strength ε, the extent to f ’s concavity b and the node num-
ber n. The initial phase distribution is determined by the clustering criteria. f ’s con-
cavity b has the same effect with coupling strength ε, both of which influence the
phase jump amplitude in the coupling. Figure 9 shows the relationship between con-
verging iteration number I and coupling strength ε under the different node num-
bers n. In Fig. 9, the four lines take the randomly uniform initial phase distribution
and the resulted data on them are averaged over 500 times initial phase realizations.
As predicted, the stronger the coupling strength is, the faster the system converges.
The node number has little influence on converging speed, because the lines with
different node numbers almost superpose. Therefore, we suppose the converging it-
eration number I is independent to the system node number n, and the computing
complexity of GCC is O(n).

As is shown in Fig. 9, when the coupling strength is strong, it costs less rounds
and the associated energy for each node to achieve convergence. However, too strong
on adjustment in each step may combine the neighboring clusters which should have
been separated. This brings the control precision lapses of the expected cluster num-
ber. Therefore, the value of ε is critical to converging speed, energy consumption
and the cluster number veracity. Next we will show how to decide a proper coupling
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Fig. 9 Converging round with respect to coupling strength under different node number

strength ε in a network to meet the high veracity of the clustering number with possi-
ble low energy consumption at the same time. To calculate the energy consumption,
the first order radio model [5, 36] is used. Each senor node will consume the follow-
ing ET x amount of energy to transmit an l-bits message over distance d :

ET x(l, d) = ET x-elec(l) + ET x-amp(l, d)

=
{

lEelec + lεf sd
2, d < d0

lEelec + lεmpd4, d > d0

ERx is an amount of energy to receive this message:

ERx(l) = ERx-elec(l) = lEelec

In the model, the radio dissipates Eelec to run the transmitter or receiver circuitry
and Eamp for the transmitting amplifier. If the distance is less than a threshold d0, the
free space model (εf s and d2 power loss) is used; otherwise the multipath (εmp and
d4 power loss) is used. The values of these variables are labeled in Table 3, and here
l = 56 bits for GCC.

Here we use two ratio values to measure the node consumption situation and clus-
ter number veracity. ECT denotes the energy consumption ratio which is the rate that
average energy cost for each node to its maximum energy (2J ). ERT denotes the
cluster number error rate which is defined as ERT = |m′ − m|/m. m is the expected
final cluster number according to (5) and m′ is the real cluster number obtained from
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Table 3 Simulation environment

Type Parameter Value

Network Network grid From (0, 0) to (100, 100)

Initial energy 2 J /battery

Radio model Eelec 50 nJ/bit

εf s 10 pJ/bit/m2

εmp 0.0013 pJ/bit/m4

Threshold distance (d0)
√

εf s
εmp

≈ 87.7 m

Fig. 10 GCC energy consumption and cluster number error rate with respect to coupling strength ε

the simulation. Figure 10 shows the ECT and ERT of 300 nodes with different de-
lay values τ under different coupling strength ε. All the resulting data appearing in
this figure and Fig. 11 are averaged over 500 network topologies and initial phase
realizations.

In Fig. 10, dashed lines show that the energy cost ratio decreases with the increase
of the coupling strength. When ε > 0.3, the energy consumption ratio keeps under
0.1% (right axis), and the difference in cluster numbers have little influence on the
energy cost. Solid lines show that the cluster number error rate increases with the
increase of ε. Roughly, when ε < 0.4, the error rate can be kept under 30% (left axis).
When the cluster number is big (τ = 0.01,0.02), choosing the coupling strength as
small as possible is preferred for obtaining expected m. While the cluster number is
not big (τ = 0.05,0.1), choosing some proper strength (ε = 0.3) can obtain the most
exact m. According to the empirical data and results in Fig. 10, energy cost ratio for
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Fig. 11 Energy cost ratio comparison under different node density. (GCC ε = 0.4; LEACH 5% nodes as
head)

clustering below 0.1% is proper. So ε chosen inside the range [0.3,0.4] is suitable
for both energy cost and cluster number veracity in this environment.

Next we compare the energy consumption situation of the GCC method and
the traditional clustering algorithms. Two representative distributive clustering al-
gorithms HEED (Hybrid, Energy-Efficient, Distributed Clustering) approach [7] and
LEACH (Low Energy Adaptive Clustering Hierarchy) protocol in sensor networks
are selected for comparison purposes. For HEED and LEACH, the broadcast packet
used in the clustering procedures usually takes the size of 25 bytes = 200 bits. Fig-
ure 11 shows the comparison of ECT of the three clustering algorithms from sparse to
dense network environment. For HEED, the fixed power level is used for intra-cluster
communication and choosing min-degree as the second clustering parameter [7]. In
GCC, the coupling strength uses the empirical ε = 0.4.

For GCC, the energy cost increases with the node density and the different delay
values almost have no influence. While for HEED, energy cost linearly increases
with the node density, and bigger transmission radius r costs more energy. This is
because HEED chooses the best suitable node (highest residual energy, minimum
cost) as head node from its neighbors. So when the density increases or neighborhood
enlarges, it has to communicate and check more neighboring nodes to decide the head
node and this costs more energy. Comparing HEED with GCC, when transmission
radius r = 30 and τ = 0.05, HEED and GCC both produce around 10 clusters. Every
node in GCC costs more energy than in HEED. At r = 40 and τ = 0.1, they both
produce around 5 clusters. In sparse network, GCC still costs more than HEED, but
as the node density increases, GCC’s ECT gets closer to HEED and becomes lower
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Fig. 12 Fire strength along converging time and extended period after stable. (ε = 0.35, τ = 0.1)

than HEED when n > 300. This is because at the latter stage of converging, the
times of receiving action decrease because of more and more converged nodes. The
GCC’s computing complexity is slower than linearly increasing. Therefore, the trend
is when the network becomes more dense, the GCC’s energy performance becomes
better. Here we use the most simple version of LEACH, in which the cluster head
nodes are chosen based only on the rotation probability. Neither the residual energy
nor other requirements are taken into consideration. It costs the least energy among
the three algorithms and increases mildly with the increase of the node density. In
reality, it will cost more than that but from the energy perspective, LEACH is still
superior to HEED and GCC because of its simplicity.

GCC has an acceptable energy cost for clustering, and it can be improved further
by the period adjustment stated in Sect. 5 Step 4.

6.3 Stability for period elongation

In Sect. 5 Step 4, we discussed the period elongation. Here we will consider its fea-
sibility and its stability.

Figure 12 shows the system converging procedures and the stability of clustering
results when the oscillating period is enlarged. The Y axis records the numbers of
superposed firing signals and the X axis represents time. The higher a line means
that the more signals are emitted at this time point. The same gray degree (color)
lines in the figure represent the same round fires. From the figure we can see that,
at first, nodes fire almost all the time in one round. Gradually, there become less
fire spots but meanwhile the fire numbers at these spots become bigger. Until the 9th
round (t = 11.6861), the whole system converges into 5 clusters which fire alternately
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with approximately the same strength and intervals in one period. Once the system
is converged, it will keep the stable clustering status periodically. After three periods
(t = 16.4859), we extend the system period to 5 times the length (5T ) by slowing
the oscillator phase forward speed by 5 times (the original 5 ticks can be regarded
as one). Each cluster keeps the same members and they are still phase-synchronized
while their fire intervals are 5 times enlarged. This testifies the stability of GCC and
shows that the period elongation is a feasible way to accommodate the different re-
quirements between constructing and utilizing stages.

7 Conclusion and future work

By treating the physical computing nodes as homogeneous oscillators with fixed pe-
riod, our proposed General Criteria-based Clustering (GCC) method can cluster the
computing nodes in both physical and logical ways according to their initial phase
values. The oscillator’s initial phase value is mapped from some property value of
the node, and the selected property data works as the criteria of the clustering. In the
GCC method, the criteria can come from any numeric node-related data or properties
and its selection also can be influenced by the application level requirements. The
method can generate similar physical clusters as those obtained from the existing tra-
ditional clustering algorithms and also generate logical related clusters according to
selected application requirements. This broad choice of clustering criteria indicates
the generality of the method that results in new cluster formations not otherwise ex-
isting. We believe that new perceptions about clustering are enabled and hence the
GCC method demonstrates broadly applicable potential in future multi-node com-
puting system.

During the course of this research, observations about the performance of GCC
are made, some of which have been pointed out in this paper. These include in part
the system converging speed, the fine tuning of the control parameters and alternative
pulse signal techniques. The further investigation on these items forms the future
work.
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