

number is not small, the time for waiting the data being transmitted from the ends of chain to the head

may be very long.

To solve the problems of the above two methods, a Backbone Tree for the data gathering application

in sensor networks is proposed in this paper. The Backbone tree is a special kind of spanning tree.

There are two kinds of nodes in the tree: bone nodes which connect to each other to form a chain-like

backbone, and child nodes which connect themselves to some bone node (Figure 1(b)). The bone nodes

are in charge of collecting the raw data from all their children and transporting the packed message

along the backbone chain to the head which is one of the bone nodes. The head duty shifts on the

backbone by turns.

The advantage of constructing a backbone in a tree is that the network can rotate the head duty

without reconstructing the whole tree every round. On the other hand, the backbone tree shorten the

length of „chain‟ by allowing bone nodes to recruit children, on which the nodes can parallel transmit

data so as ease the long latency problem.

Because the bone nodes take more responsibility than the child nodes, there are some energy

threshold requirements for the bone node candidate during the backbone construction. During the

backbone growing, the bone nodes take the greedy rule to recruit as many as possible children in its

searching area. When the backbone stops growing and if there are still some nodes that are not

connected to the tree, these nodes try to connect themselves to the nearest node which is already

connected to the backbone. In the tree, each bone node is only allowed to have at most two layers of

child nodes, which is to guarantee the dominating role of backbone and shorten the network latency. In

each turn, after the head collects all information and sends them out, the head duty will shift to the next

node on the backbone chain.

Figure 1. Demonstration of three topologies. (Dashed circled node means the current head duty

location).

2.2. Construction of Backbone Tree

Some preconditions are stated here:

1) Each node in the network has a unique identification number ID.

2) Each node can adjust its transmission range power level.

3) Each node keeps a neighbor table Tnbr to store the IDs of all its neighboring nodes located within the

transmission range r. The content of this table is obtained from the BS message or constructed

according to the nodes mutually informing messages. Once the Tnbr of each node is constructed, unless

some nodes die, the content will not change.

Figure 2. Structure of neighbor table Tnbr and dynamic child table Td_cld.

Backbone Tree based Data Gathering protocol for Wireless Sensor Networks
Yu Niu, Jin Wang, Sungyoung Lee, Young-Koo Lee

352

4) Each node also keeps a dynamic child table Td_cld. Each time, before constructing the new Backbone

tree, the node loads the content of neighbor table Tnbr into the child table Td_cld. During the tree

constructing procedure, the content of table Td_cld is updated from time to time, until the node is

connected to the tree. Figure 2 shows the structures of two tables and their loading relationship.

5) Each node records the energy threshold of being a bone node, which is refreshed termly by the BS

broadcasting.

The following are the construction steps of the Backbone tree:

Initialization: All node load new child table Td_cld from their neighboring table Tnbr, and reset their

„Status‟ field as Unconnected, „Role‟ as 1 which means normal child node.

Step 1 Randomly select one energy qualified and unconnected node as the initial root and change its

„Role‟ field as 1 which means the root node. The root also works as the first bone node (B0) of the

backbone.

Step 2 For each new determined bone node, check if there are entries in its child table Td_cld. If it has,

then go to Step 3; if hasn‟t, wait until the time out then go to Step 4.

Step 3 For each bone node Bi that has child, determine the next bone node Bi+1. If current bone node

is root node, then determine two bone nodes from B0. Return to Step 2.

Step 4 For all unconnected nodes, broadcast connecting request to all nodes in its neighboring table

Tnbr. If the first acknowledgement message comes from node j, change its „Status‟ field as Connected,

„Parent‟ filed as node j‟s ID and „Role‟ field as 2 which means it is the second level child node. For

any node who receives this connecting request, if its residual energy higher than the current threshold

value, send acknowledgement message to the request node.

Step 5 If the unconnected node in Step 4 didn‟t receive any acknowledgement message, then enlarge

its transmission radius meanwhile decrease the threshold requirement and rebroadcast the request

message. This time, only the node whose „Role‟ field value is less than 2 reacts to this request. The

receiving node who meets the both new threshold and „Role‟ requirement sends back the

acknowledgement message.

Repeat Step 5, until all nodes‟ status become Connected. Then terminate the algorithm.

To show how the current bone node Bi decides the next bone node Bi+1 in Step 3. Here lists the

detail actions of the bone nodes and the related normal nodes respectively.

For the current bone node Bi

1) Bi receives the appointment message and changes its „Role‟ field as 0 which means normal bone

node, „Parent‟ field as the sending node ID;

2) Assuming Bi has mi entries in its current Td_cld. Bi sends the grandchildren number inquiry request

to all these mi children.

3) Bi waits for all the mi children‟s reply messages within the valid waiting time (VWT) and picks

up the one who has the most grandchildren number.

4) Bi sends the appointment message to the picked up child and affirms it as the next bone node Bi+1.

For each node in the bone node Bi‟s Td_cld table:

1) After receiving the grandchildren number inquiry from Bi, mark its „Parent‟ field as Bi.

2) Broadcast the updating message to all nodes in its Td_cld table, which claims it has been recruited

and asks all the receivers to delete its entry in their Td_cld tables.

3) Meanwhile, wait for the updating messages from other child nodes and delete the corresponding

entries in its Td_cld until the valid waiting time (VWT) ends.

4) After the waiting time ends, clean up its Td_cld and count the new child number. If the node‟s

residual energy is higher than the energy threshold value, then send the reply message to its parent

node.

5) Change the „Status‟ field as Connected. Unless receiving the bone node appointment message or

latter connecting request in Step 4 and 5, the node no longer receives any updating or inquiry requests.

2.3. Time and Message exchange Complexity

In above algorithm, the Step 4 and 5 mean to connect the residual nodes to the tree. To connect one

isolated node, it may request all the other nodes in network, which costs O(n) time. However, the

unconnected node number is constant, so the total processing time to connect all the residual nodes is

at worst O(n). In the algorithm, Step 3 is the most time consuming part, in which each node will be

Backbone Tree based Data Gathering protocol for Wireless Sensor Networks
Yu Niu, Jin Wang, Sungyoung Lee, Young-Koo Lee

353

inquired at most once. To reply the inquiry, it has to communicate with all its neighbors. So the

processing time for arbitrating the bone nodes is at most O(n) for each node and O(n
2
) for the whole

network.

Next, the energy cost and message numbers used in Step 3 are analyzed. For each child of Bi, to

make it connected, there cost one receiving from its parent node, one reply to its parent, one broadcast

to all nodes in its Td_cld table, and at most mi times receiving from the updating messages. Among them,

for the chosen new bone node, besides the above mentioned cost, it also needs one receiving of the

appointment message; one new appointment message sending; one inquiry request broadcast to all

nodes in Td_cld; and mi times reply message receiving from each child. For the nodes that are not the

children of Bi but receive the updating messages from the children of Bi, they just delete the

corresponding entries in their Td_cld tables, but do not reply anything.

During this procedure, the system uses four types of control messages: (1) Bone node appointment

message, (2) Grandchildren number inquiry message, (3) Table updating message, and (4) Child

number reply message. Among these, (1) and (4) are uni-cast that have specific destination ID; (2) and

(3) can be whole transmission area broadcasts or multi-casts with multiple destination IDs. The

following describes a general network message format (Figure 3).

Figure 3. The format of system general control messages.

The „Type‟ designates the property of message which is either control message or data message.

Only if it is control message, the following „Subtype‟ and „Type related data‟ fields have meanings.

The „Subtype‟ specifies the kind of control message which could be one of the above four or the

connecting request or acknowledgement message used in Step 4 and 5. And the „Type related data‟

field content is related to the „Subtype‟ field value. Whatever the control message type is, the packet

length is short and small amount of energy is needed. If it is data message with long data length, more

energy is necessary and the data information is attached in the latter part of message structure.

2.4. Reconstruction and Threshold Refresh

As the data collecting topology of the network, the energy consumption on each Backbone tree node

is not equilibrious. To balance the network energy consumption and extend the lifetime, the tree needs

to be reconstructed in some frequency. In addition, before each reconstruction, the energy threshold

value „ths‟ for selecting the new generation of bone node should also be dynamically updated to suit

the current network situation.

In each round of data gathering, bone nodes piggyback their residual energy information in the data

packets and transport them to the head. As a part of the final head packet, the energy information of all

bone nodes is also reported to the base station. Since the bone nodes usually consume more energy

than the normal ones, based on that base station could estimate the possible lowest current energy level

in the network. By setting the new energy threshold value higher than that in the next construction, the

system could avoid always choosing the same group of nodes as the bone nodes. This method

effectively balances the network node energy consumption, which is also proved in our later simulation

results.

Therefore, before each reconstruction, base station calculates the new bone node energy threshold

value „ths‟ and broadcasts it to the whole network. Once nodes receive the new threshold value „ths‟,

they enter the new constructing stage. The reconstruction could be launched after all the current bone

nodes having taken the head duty once. In this case the reconstruction period is dependent on the chain

length of the tree. The reconstruction also could be activated by the Base Station, and then the

reconstruction period is uncertain.

3. Implementation

This part gives out the implementation pseudo-codes of Backbone tree on individual node, which

demonstrate the different operations and message transmission on either root node (Algorithm 1) or

normal node (Algorithm 2).

Backbone Tree based Data Gathering protocol for Wireless Sensor Networks
Yu Niu, Jin Wang, Sungyoung Lee, Young-Koo Lee

354

Algorithm 1 Root ()

1. if (Receive Threshold_refresh message) then

2. Root_Competition ()

3. if (root) then

4. S.root Ã 1

5. Broadcast Grandchild_number_inquiry (RootID)

6. repeat

7. Receive Grandchil_report () message

8. until Time out

9. Choose two most popular child nodes a and b

10. Bonenode_assignment (RootID, a)

11. Bonenode_assignment (RootID, b)

12. else

13. Node ()

14. end if

Algorithm 2 Node ()

1. if (Receive Bonenode_assignment (BnodeID, NodeID)) then

2. S.parent Ã BnodeID

3. S.bone Ã 1

4. Broadcast Grandchild_number_inquiry (NodeID)

5. repeat

6. Receive Grandchild_report (mi, NodeID)

7. until Time out

8. Choose the most popular child nodes a

9. Bonenode_assignment (NodeID, a)

10. end if

11. if (Receive Grandchild_number_inquiry (BnodeID)) then

12. S.parent Ã BnodeID

13. S.connect Ã 1

14. Collect child node number m

15. Send back Grandchild_report (m, BnodeID)

16. end if

17. while (Time Out) AND (S.connect == 0) do

18. Broadcast Connecting_request (NodeID, ths, r)

19. if (Receive Ack (ID, NodeID)) then

20. S.parent Ã ID

Backbone Tree based Data Gathering protocol for Wireless Sensor Networks
Yu Niu, Jin Wang, Sungyoung Lee, Young-Koo Lee

355

21. S.connect Ã 2

22. end if

23. ths Ã ths-△ths

24. r Ã r+△r

25. end while

26. if (Receive Connecting_request (ID, ths, r)) then

27. if (S.erg > ths) AND (S.connect < 2) then

28. Send back Ack (NodeID, ID)

29. end if

30. end if

4. Simulation Results

In this section, we check the performance of the Backbone tree from the transmission latency

(system reacting speed) and the network lifetime aspects, respectively. First, an example is described

that consists of a Backbone tree topology in a general sensor network in which 100 nodes are randomly

deployed in a 50×50 m
2
 sized field, and the initial transmission radius uses r=16 (Figure 4).

Figure 4. Backbone tree in a 50×50 m
2
 network field (n=100, r=16).

4.1. Transmission Latency

During the data gathering, data information is transmitted in a multi-hop way. Except for the

propagation delays in air, each relay node also need time to receive, repack and transmit the

data package. All these cause the latency in the whole gathering procedure. Therefore, network

hops are used to measure the transmission latency.

The transmission latency should be measured by the worst case that could happen during the

data gathering. In PEGASIS, all member nodes are constructed into one chain. For chain-liked

topology, all the receiving and transmitting is serial on the chain. The best case is when the

head duty flows to the midpoint of chain that the latency is around the half length of chain; the

worst case is when the head duty flows to one end of the chain that the latency would be the

whole length of the chain. Also, the latency on a linear chain is not related with the

transmission radius. So the transmission latency of PEGASIS is the number of node in the

network and will not change until some node dies early. In the Backbone tree, the bone nodes at

most have two layers of child nodes, so the longest latency of the Backbone tree topology is the

length of backbone chain plus one. For Breadth First Spanning (BFS) tree, the latency is the

layer number of the deepest leaf nodes in the tree. For both Backbone and BFS tree, the final

Backbone Tree based Data Gathering protocol for Wireless Sensor Networks
Yu Niu, Jin Wang, Sungyoung Lee, Young-Koo Lee

356

tree topology is influenced by the transmission radius.

Figure 5 shows the transmission latency comparison of three algorithms under different

transmission radii. All the data in this figure are averaged from 100 times network distribution.

Compare to the other two, the latency value of PEGASIS is very high, which always equals the

node number. BFS tree has the shortest latency time because of its breadth first constructing

rule. The Backbone tree‟s latency is a little longer than BFS tree but still much shorter than

PEGASIS.

Figure 5. Latency comparison of three algorithms. (n=100 in 100×100 m
2
 field).

4.2. Network Lifetime

In this part, we compare the lifetime of the three algorithms’ topology. The

working round number is used to measure the network lifetime. Energy

consumption of sensor nodes is calculated using the common first order radio

model [10, 11] in wireless sensor network. The parameters and network settings

are listed in Table 1.

Table 1. Simulation environment

Type Parameter Value

Network

Network grid area [x,y]

Base Station

Initial energy

Head file length

Message length

From (0,0) to (100,100) m
2

(200,200)

1 J/battery

25 byte

2000 bits

Backbone Tree based Data Gathering protocol for Wireless Sensor Networks
Yu Niu, Jin Wang, Sungyoung Lee, Young-Koo Lee

357

Figure 6. Lifetime of all nodes in three algorithms. (n=300, r=16).

Figure 6 shows the working round numbers of a network lifetime performance and the energy

consuming trend of the three algorithms. In the figure, the later the first node dies, the better load

balancing the algorithm has. And, the later the last node dies, the better „survival ability‟ the algorithm

has. Backbone tree shows good load and energy consuming balancing. From the first to the early 30%

of died node, their lifetimes in Backbone tree are much longer than in BFS tree. Also the early 16.7%

of died nodes‟ lifetimes in Backbone tree are longer or similar to PEGASIS. In Backbone tree, after the

first node dies, the whole network also dies rather quickly. This property is preferred by some

applications which require the whole network work cooperatively. On the other hand, although the first

node dies early, BFS tree shows longer whole network lifetime than the other two. After a portion of

nodes die, the remainder nodes can continue work for a rather long time with relatively high energy

levels. Choosing what kind of property depends on the application requirement. From the above two

criteria, PEGASIS achieve a relative best performance among the three. It has later died first node than

BFS tree and longer whole network lifetime than Backbone tree. However, its long latency is fatal

and restricts its applicability.
After knowing the energy depletion trends of the three algorithms, we discuss their lifetime

performance under different node densities (Figure 7) and transmission radii (Figure 8). Here we

mainly focus on the situation before the first node dies. All the data in these two figures are averaged

from 100 times network distribution.

In Figure 7, PEGASIS and Backbone tree‟s lifetime are shorter in sparse network. This is because a

sparse network usually requires longer transmission distance between two nodes on the chain. The

node density has not much influence on BFS tree. In Figure 8, for Backbone tree, when the

transmission radius r≤24, the lifetime keeps almost similar level. But after r>24, the lifetime decrease

with the transmission radius‟s increase. This is because in backbone tree, with the increase of

transmission radius, the neighboring nodes also increased. Increased neighboring nodes in a sparse

network (like in Figure 7) helps to rotate and distribute the bone node duty to more nodes so as to

prolong the whole network lifetime. However, continue adding neighboring nodes (like enlarging

transmission radius in Figure 8) will cause the bone nodes to become overburdened in one

reconstruction period. Because the backbone tree is not reconstructed every round like BFS tree, the

bone node may die before the next reconstruction happened. So the large transmission radius does not

influence BFS tree as much as Backbone tree. Combine the above discussion and the results in Figure

7 and Figure 8, we conjecture there exists a local extreme for Backbone tree‟s first node die lifetime

under some certain neighboring number nodes (in Figure 7 and 8‟s network setting, we calculate the

maximum neighboring node is around 50). And this extreme gives a clue to the network‟s node

saturation for obtaining the Backbone tree‟s best performance.

Figure 7. Lifetime comparison of three algorithms under different node density before the first node

die (r=17).

Backbone Tree based Data Gathering protocol for Wireless Sensor Networks
Yu Niu, Jin Wang, Sungyoung Lee, Young-Koo Lee

358

Figure 8. Lifetime comparison of three algorithms under different transmission radius before the

first node die (n=200).

6. Conclusion

In this paper, a novel Backbone tree idea and its constructing algorithm was proposed. The

Backbone tree topology shows good performance in data gathering application. It shortened the chain

length by allowing the chain node to have child nodes, which greatly decreases the processing latency

and helps to increase the network responding speed. Meanwhile the head duty rotating on the chain-

like Backbone decreases the reconstruction frequency, so as to decrease the node energy consumption

per round. Integrating with the bone node energy threshold control scheme, Backbone tree achieved

good load balancing property.

7. Acknowledgment

This research was supported by Basic Science Research Program Through the National Research

Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-

0016042).

8. References

[1] K.Ramanan, E.Baburaj “Data Gathering Algorithms for Wireless Sensor Networks: A Survey”,

International Journal of Ad hoc, Sensor & Ubiquitous Computing, IJASUC, vol.1, no.4, pp. 102-114,

2010

[2] Ossama Younis, Sonia Fahmy, “HEED: A hybrid, energy-efficient, distributed clustering approach

for ad hoc sensor networks,” IEEE Transactions on Mobile Computing, IEEE, vol. 3, no. 4, pp.

366–379, Oct 2004.

[3] Fabian Kuhn, Thomas Moscibroda, Roger Wattenhofer, “Initializing newly deployed ad hoc and

sensor networks,” In Proceedings of the 10th annual international conference on Mobile

computing and networking (MOBICOM), pp. 260–274, 2004.

[4] Alan D. Amis, Ravi Prakash, Thai.H.P. Vuong, Dung T. Huynh, “Max-Min D-cluster formation in

wireless ad hoc networks,” In Proceedings IEEE Conference on Computer Communications

INFOCOM 2000, vol. 1, pp. 32-41, 2000.

[5] HaoWen Chan, Adrian Perrig, “ACE: An emergent algorithm for highly uniform cluster

formation,” In Proceedings First European Workshop Sensor Networks (EWSN), pp. 154–171,

2004.

[6] Mainak Chatterjee, Sajal K. Das, Damla Turgut, “WCA: A weighted clustering algorithm for

mobile ad hoc networks,” Cluster Computing. Springer, vol. 5, no. 2, pp. 193–204, 2002.

Backbone Tree based Data Gathering protocol for Wireless Sensor Networks
Yu Niu, Jin Wang, Sungyoung Lee, Young-Koo Lee

359

[7] Ming Zhang, “An Novel Energy Balanced Dynamic Routing Protocol Based on Probability in

Wireless Sensor Networks”, Journal of Convergence Information Technology, AICIT, vol. 6, no.

3. pp.10-17, 2011

[8] Qi Yang, Yuxiang Zhuang, Hui Li, “An Multi-hop Cluster Based Routing Protocol for Wireless

Sensor Networks” Journal of Convergence Information Technology, AICIT, vol. 6, no. 3, pp. 318-

325, 2011.

[9] Stephanie Lindsey, Cauligi S. Raghavendra, “PEGASIS: Power-efficient gathering in sensor

information systems,” In Proceedings of Aerospace Conference, IEEE, pp. 3–1125–3–1130, 2002.

[10] Wendi Heinzelman, Anantha Chandrakasan, Hari Balakrishnan, “Energy-efficient communication

protocol for wireless sensor networks” In Proceedings of the 33th Hawaii International

Conference on System Sciences, IEEE, pp. 10, 2000.

[11] Wendi Heinzelman, Anantha Chandrakasan, Hari Balakrishnan, “An application-specific protocol

architecture for wireless micro-sensor networks,” IEEE Transactions on wireless communications,

IEEE, vol. 1, no. 4, pp. 660–670, 2002.

Backbone Tree based Data Gathering protocol for Wireless Sensor Networks
Yu Niu, Jin Wang, Sungyoung Lee, Young-Koo Lee

360

