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Abstract This paper addresses the issue of data governance in a cloud-based storage
system. To achieve fine-grained access control over the outsourced data, we propose
Self-Healing Attribute-based Privacy Aware Data Sharing in Cloud (SAPDS). The
proposed system delegates the key distribution and management process to a cloud
server without seeping out any confidential information. It facilitates data owner to re-
strain access of the user with whom data has been shared. User revocation is achieved
by merely changing one attribute associated with the decryption policy, instead of
modifying the entire access control policy. It enables authorized users to update their
decryption keys followed by each user revocation, making it self-healing, without
ever interacting with the data owner. Computation analysis of the proposed system
shows that data owner can revoke n′ users with the complexity of O(n′). Besides this,
legitimate users can update their decryption keys with the complexity of O(1).

Keywords Cloud storage · Data privacy · Remote storage

1 Introduction

Emergence of virtualization technologies, availability of high-speed Internet to popu-
lace and adoption of Service Oriented Architecture (SOA) has derived a new comput-
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ing paradigm known as cloud computing [1]. Benefits provided by this on-demand,
massive, and scalable computing facility can be primarily lumped into one category—
cost [2, 3]. Businesses seeking computing resources can tap into public cloud without
the need to build datacenter of their own [4, 5]. Similarly, enterprises can utilize their
computing resources in efficient manner endorsing green computing through private
cloud [6, 7]. Annually Gartner publishes a list of organizational strategic technolo-
gies; for the past two years it has rated cloud computing as one of the core technolo-
gies, which organizations must consider during their strategic planning for the next
ten years [8].

Although materialization of cloud computing is seeded by comparatively mature
technologies like virtualization, and distributed processing/storage, still it faces re-
search challenges that are yet to be answered [9]. In a cloud based data sharing sys-
tem data owner owns the data. It utilizes storage facility provided by a cloud service
provider to share the outsourced data with the legitimate user(s). Privacy and data
confidentiality are at the top of the most concerned research issues of cloud storage
system, which can impend its adoption with overwhelming consequences [10]. This
is because the cloud service provider resides outside the federated and trusted domain
of the data owner, thus circumscribing his control over the outsourced data [11–14].

Migrating from federated domain (desktop computers, corporate servers) to an
un-federated domain (cloud server) raises privacy concerns, which entail the protec-
tion and appropriate use of personal information of the customers, and meeting their
expectations about its usage [15]. Security requirements of Personally Identifiable In-
formation (PII), especially healthcare information, dramatically changes when stored
on the un-trusted servers [16, 38]. One feasible solution to these problems would be,
encrypting the outsourced data and handing over the decryption key to the legitimate
users with whom data need to be shared. Similar type of solutions exists in the domain
of Private Information Retrieval (PIR), which store and share the encrypted data in
remote storage services [17]. However, these methodologies face issues of scalability
and realism when applied to emerging epitome of virtualized computing to achieve
fine-grained access control over the outsourced data.

To achieve desire level of access control, mainly two methodologies are adopted,
i.e., file based [18, 19], and file-group based access control list [20–22]. Although,
these schemes manages to restrain illicit data access; however, their feasibly is ques-
tioned rigorously with system scalability. As for file based scheme, the complexity
would be equal to number of users in the system, whereas file-group based method-
ology only provides coarse-grained data access control. Furthermore, applying these
methodologies raise concerns of user revocation, increased complexity of key man-
agement, and dependency on a trusted entity to disseminate appropriate decryption
keys. Restricting users from accessing the data, which they have been accessing pre-
viously (user revocation) is one of the prime concern in the realization of fine-grained
access over the outsourced data. The intensity of this issue escalates with the fact that
the data owner possesses no control over that outsourced data and does not want to
exclusively rely on the cloud provider [13, 14].

Since, encryption is the only way to conceal the confidential data (i.e., PII), it
requires exchange of decryption key among the involved entities. However, it is not
feasible for the data owner to remain always online to provide decryption key to the
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individual users. This leaves data owner with limited number of options; either, rely
on trusted third party (TTP), or delegate decryption key distribution to the storage
provider. On one side reliance on TTP increases additional privacy concern—how
to ensure that third parties protect the data and do not use it for their own purposes.
On the other hand, risk of privacy infringement escalates when decryption keys are
distributed via the storage provider. In either case, the usual practice is to conceal
decryption key with public key of the individual user, and then transmit it to the
respective legitimate user. The obvious problem with this solution is scalability. As
the number of legitimate users increases so does the load of asymmetric encryption
on the data owner.

In order to address the issue of data governance in cloud-based storage system, we
propose SAPDS, enabling the data owner in maintaining fine-grained access control
over the outsourced data. With SAPDS, data owner generates single decryption key
for similar interest group, whilst limiting the interaction between the data owner and
the cloud provider. Furthermore, SAPDS evades the need of data owner’s availability
for the dissemination of data decryption key. The notion of fine-grained access control
is realized by modeling the access control policy in a tree structure, called access tree.
Leaf node of the access tree stores an attribute value and intermediate node defines
the logical operation (threshold gates) on multiple leaf nodes. Data that needs to be
shared is encrypted in such a way that combination of attributes and threshold gates
reveals the decryption key.

To achieve fine-grained data governance in a cloud-based storage system SAPDS
combines Cipher-Text Policy Attribute Based Encryption (CP-ABE) [23], along with
Proxy Re-encryption (PRE) [24] and Key Derivation (KD) methodologies. CP-ABE
ensures the compliance of access control policy, whereas PRE eliminates the need of
direct interaction between the data owner and the users for decryption key dissemi-
nation. KD assists legitimate users in updating their decryption keys, besides this KD
ensures that legitimate users prior to the current revocation continue their access to the
outsourced data, without the need to interact with the data owner. By uniquely com-
bining these cryptographic methodologies SAPDS realizes a cloud based data sharing
system which delegates decryption key distribution and management to an un-trusted
cloud service provider. Consequently, it eliminates the need of trusted third party to
manage decryption keys for authorized user access and guaranteed user revocation.

SAPDS exhibits that the data sharing complexity is not more than the number of
leaf nodes in the access control policy (i.e., O(numberOfLeaf (τ )) where τ is access
structure). Furthermore, it can revoke the user(s) with the complexity of O(n′) (where
n′ is the number of revoked users). For the cloud user the complexity is always O(1).
SAPDS inherits the computational complexity of CP-ABE and PRE, for Chosen-
Plaintext-Attach (CPA) and Chosen-Ciphertext-Attack (CCA) [23].

The rest of the paper is organized as follows. Section 2 discusses the related
work. Section 3 outlines models and assumptions of the proposed scheme. Section 4
presents SAPDS. Section 5 examines the performance of SAPDS. Section 6 presents
the security analysis of SAPDS. Section 7 provides the computation and commu-
nication assessment of CP-ABE in the context of SAPDS. Section 8 compares the
performance of SAPDS with existing methodologies; finally, Sect. 9 concludes the
paper along with the future directions.
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2 Related work

The most recent work addressing the privacy issues in a cloud-based storage is carried
out by Shucheng Yu et al. [25]. They proposed a KP-ABE [26] based cloud storage
system, which utilizes lazy re-encryption along with proxy re-encryption for user re-
vocation. Their work mainly focuses on restricting revoked user in regaining access
to the confidential data. In order to revoke a particular user, their proposed technique
relies on outlining the access structure that can not be satisfied by the revoked user.
They achieve this by identifying the minimum set of attributes without which de-
cryption of the shared content cannot be carried out successfully. The problem with
this type of technique is obvious, its dependency on the access control mechanism.
On each user revocation, a new access policy is defined to prohibit access to the out-
sourced data, which would eventually lead to a situation where it is not possible to
construct further more access structure. Apart from that, on each user revocation in-
dividual user’s master and public key components of user secret key are redefined,
requiring resource intensive computation after each revocation.

SiRiUS is a secure file systems designed to layer over insecure network and P2P
file system [18]. It works by maintaining an access structure in a meta data file (md).
Each entry in md contains a file encryption key (FEK) and a signature key (FSK),
encrypted with user’s public key. Each legitimate user can decrypt the respective
entry in md by using his private key. This type of solution works well when data
is shared among smaller groups; however, for collaboration among bigger groups
SiRiUS proves to be inefficient. Since, the size of md is directly proportional to the
number of legitimate users, scalability of SiRiUS is greatly threatened as number
of legitimate user increases. Another important consideration, which is overlooked
during its design is user revocation. Whenever, user is revoked, FEK and FSK are
updated and new keys are encrypted with public key of the individual user, making it
impracticable for dynamic user sets.

Key Regression [20] is a key generation scheme, which addresses the pseudoran-
dom issue of key rotation proposed in [27]. In their construction instead of handing
over the encryption keys, member states (stmi ) are given to the legitimate users. They
can then generate their encryption key Ki for i-th time period, using Keyder(stmi )

function. Separating the encryption keys from the member states ensures that encryp-
tion key Ki is pseudorandom for the member possessing stml , where l < i. However,
keys generated by Keyder are limited to maximum-wind MW . This leads to the prob-
lem that after certain number of revocations Keyder will not be able to generate the
new member states, thus reducing its practicability to a limited number of revoca-
tions.

In [21], Backes et al. proposed a key updating system for Lazy Revocation. En-
cryption keys are updated merely on the file access, which is followed by a user
revocation. In their proposed system, files are maintained in groups of identical ac-
cess permissions. Organizing keys in groups has an obvious advantage i.e., key of a
particular group is updated from which user is revoked. However, important point that
is overlooked during its design is key distribution process; owner himself distributes
updated keys to the legitimate users. On one hand, this type of distribution certainly
avoids trusted third party, but on the other hand, it requires guaranteed availability of
the data owner until all of the legitimate users update their keys.
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CRUST [19] is a cryptographic remote storage system, which avoids the use of
public key encryption for the purpose of speed and efficiency in cryptographic oper-
ations. CRUST assumes the availability of a trusted agent (i.e., trusted third party),
responsible for key management. For each new user, trusted agent generates an en-
cryption key by using system master key stored locally on it. CRUST maintains file
in blocks each encrypted with a separate key. Apart from that, it utilizes lazy re-
encryption strategy which ensure that only the updated block of a file is re-encrypted
to avoid unnecessary cryptographic operations. Methodology adopted by CRUST
uses trusted agent, thus making it highly dependent on the trusted third party. It also
suffers from key management problem. Separate encryption key for each block of a
file increases key management burden on each user as well as on the trusted agent,
thus making it unfeasible for the practical deployment.

Patient Controlled Encryption, PCE [22] is a privacy preserving medical health
record system. In PCE data is stored as a hierarchical structure on a remote loca-
tion which is not under the control of patient. However, PCE facilitates sharing and
searching of the encrypted data. According to the authors, the proposed scheme can
be realized using symmetric and asymmetric encryption, with their inherited bene-
fits and limitations. For both strategies, they proposed a generalized key revocation
scheme in which data is re-encrypted on each revocation, and decryption key is dis-
tributed to the legitimate users, personally by the data owner. Keeping in view the
sensitivity of the involved data PCE uses a simple revocation scheme whose com-
plexity is directly proportional to the number of legitimate users.

3 Models, design goals and assumptions

3.1 System model

To realize a cloud-based storage system: Data Provider, Data Consumer, and Cloud
Service Provider are considered as the involved entities; for brevity, we shall be us-
ing owner, user, and cloud server respectively. Owner harnesses the storage facility
provided by the cloud server by uploading the encrypted data he wants to share (e.g.,
pictures, text and multimedia files). User obtains a copy of data from the cloud server
and decrypts it (if allowed) by using his decryption key. Neither the owner nor the
user is always online; only the cloud server’s availability is assured which can be ef-
fortlessly guaranteed by signing service level agreement [28]. This model represents
a typical cloud storage business model in which owner goes offline after uploading
the data and user only interacts with the cloud server to access the outsourced data.

3.2 Security model

In the proposed system we assume that cloud server is “honest but curious”, similar to
that of [29, 30]. Consequently, cloud server will honestly execute the task delegated
by the owner, however cloud server will try to find out the data contents for some
business needs i.e., related ad serving, or understanding the access patterns. This
leads to the situation where cloud server can team up with the revoked user(s) to
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decrypt the encrypted data for some wicked motives. In addition to that, multiple
users revoked at ti and tj time intervals (where i < j ) can work together to gain
access of the outsourced data otherwise not allowed. The proposed technique focuses
on fine-grained access control in a cloud-based storage system, we believe that there
exists a secure channel (i.e., SSL) between the involved entities though which data is
exchanged.

3.3 Design goal

The pivotal design goal of the proposed system is to achieve fine-grained access con-
trol in a cloud-based storage system, with negligible execution overhead on both the
owner and the user, whist allowing guaranteed user revocation. More importantly,
the proposed system should not involve any trusted third party for key management.
Trusted third party provides centralized key management. However, it is hard to find
a common trustable entity when owner and user belongs from different administra-
tive domains i.e., organizations, countries, having their own data exchange policies.
Additionally, relying on a trusted party would incur extra cost to pay for the data
decryption key management and distribution services. Thus, it would increase the
subscription cost of a cloud based data sharing system. Besides all that, the proposed
system should provide counter measures for key abuses, i.e., reconstructing a valid
decryption key ∂(Ki) → Kj , from a revoked key Ki , where ∂ is a specialized key
reconstruction function. Furthermore, from security perspective the proposed system
should affirm the following properties.

1. Decryption key1 should be update after each user revocation.
2. Owner should not remain always online to distribute new decryption key among

the legitimate users.
3. Legitimate user should be allowed to update their secret key, after each user revo-

cation without interacting with the owner.
4. Cloud server should not be able to learn any information about the contents of the

outsourced data.

4 SAPDS: self-healing attribute-based privacy aware data sharing in cloud

SAPDS realizes data sharing in a cloud-based storage system with privacy consider-
ations, and devoid of relying on any trusted third party. Considerations described in
system design goal escort the fundamental properties of a cloud-based storage sys-
tem in which owner has limited control over the storage system [11–14]. However,
owner can govern data access policies and key management protocol(s). To develop a
privacy aware data-sharing scheme with said properties, we combine; CP-ABE [23],
PRE [24] along with KD. The combination of CP-ABE, PRE and KD assists the
owners in harnessing the cloud resources whilst maintaining the same level of data
security they enjoy in standalone storage systems [31].

1Throughout this text, we shall be using “decryption key” to represent symmetric encryption key, “secret
key” to symbolize CP-ABE decryption key (user’s key), and “pre key” as Proxy Re-Encryption transfor-
mation key.
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4.1 Main idea

Suppose, Alice is a professional photographer and has subscribed to a cloud storage
facility owned by Eve. She wants to share some photographs with Bob who is run-
ning a publishing business. Prior to uploading the photographs to the cloud-based
storage, Alice informs Bob about the address (URL) of the cloud storage, along with
his secret key and transformation key. She then encrypts the pictures with symmetric
encryption algorithm. The decryption key is then encrypted with CP-ABE under the
policy that can be satisfied by the attributes attached to Bob’s secret key. In the end
encrypted photographs and CP-ABE encrypted decryption key are uploaded to the
cloud server. Now Bob can access the file, by simply requesting the encrypted file
along with the decryption key. Cloud server replies back with encrypted photographs
along with the concealed decryption key. On receiving the response Bob uses his se-
cret key to decipher the decryption key. At the end he uses decryption key to decipher
the photographs shared by Alice. At anytime if Alice wants to revoke Bob, she up-
dates the policy with which decryption key was encrypted; without ever relying on
cloud server. Instead of altering the entire access control policy, only one attribute
(legitimacy attribute) is updated, restraining Bob’s secret key to satisfy the decryp-
tion policy. To revoke multiple users e.g., Bob and Mallory, Alice simply updates
the single legitimacy attribute, and restrains revoked users to update their set key by
using KD. Figure 1 illustrates SAPDS enabled data sharing in a cloud-based storage
system.

By coalescing CP-ABE, PRE, and KD, SAPDS leverages owner to ensure fine-
grained access control over the outsourced data without relying on cloud server. Ad-
ditionally, SAPDS delegates the key distribution task to the cloud server without seep-
ing out any confidential information. Nevertheless, legitimate users can re-gain their
accessibility by merely updating single attribute (legitimacy attribute) of their secret
key.

Before getting into the details of SAPDS, we mention some of the assumptions
considered during its design.

1. We assume that legitimate users behave honestly, by which we mean that they
never share their decryption key with the revoked users.2

2. We believe that cloud server performs his duty honestly as dictated by the owner.
However, can team-up with revoked user to access the shared data.

4.2 Proposed scheme

SAPDS uses amalgam of cryptographic primitives to overcome the problem of user
revocation in an un-trusted domain. Table 1 explain the notation used in the descrip-
tive detail of SAPDS.

Throughout this text, superscript used on these abbreviations represents the en-
cryption algorithm applied to conceal the secret information e.g., F se symbolizes a

2Decryption key is protected with an access control policy which can only be satisfied by a legitimate
and authorized user. Thus sharing decryption key is equivalent to delegating access privileges without the
consent of data owner.
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Fig. 1 SAPDS enabled cloud-based storage system

Table 1 Abbreviations used in proposed technique

Notation Description

F Data file shared on cloud-based storage system

PK,MK Public and master keys for CP-ABE

SK User secret key for CP-ABE encrypted cipher text

DEKi
Data decryption key

Lnum Random legitimacy number

Latti Legitimacy attribute

Veratti Version number of legitimacy attribute

ρatti+1 Public key component of the user secret key

H One way hash function

ω Cipher text transformation key for the owner

θ Cipher text transformation key for the user

ψ Cipher text transformation key for the cloud server

τ\Urvk
Access structure in which revoked user is not allowed to decrypt cipher text

Urvk Revoked user identity

skatt Attribute associated with SK

file encrypted with symmetric encryption algorithm. Similarly, D
cp_abe
EKi

represents
the data decryption key encrypted with CP-ABE.

Each F is encrypted with DEKi
. Since cloud server is not a trustable entity, and

it is not feasible for the owner to remain always online to handover the decryption
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Fig. 2 Self-healing attribute-based privacy aware data sharing in cloud

key to the individual user(s), DEKi
is encrypted with the access policy (τ ) such that

attributes associated with SK would be able to decipher it. To avoid generating the
decryption key for individual user by owner himself; single DEKi

is generated for

similar interest group. Finally, F se and D
cp_abe
EKi

are uploaded to the cloud-based stor-
age. Individual user in possession of SK along with θ , requests the cloud server to
access F se , cloud server then replies back with the encrypted outsourced data along
with the concealed decryption key. Legitimate user, then uses skatt associated to his
SK to reveal the hidden value with which D

cp_abe
EKi

is encrypted. After that DEKi
is

utilized to decipher F se. At any time if there is a need to revoke a user, decryption
policy of D

cp_abe
EKi

is updated by simply changing Latti . With Lnum legitimate users
can update their SK confirming to the new decryption policy. SAPDS component
model is shown in Fig. 2.

4.2.1 Data preparation

It is the first step in SAPDS enabled cloud-based storage system. It encrypts the data
in such a way that it can be managed according to the security requirements specified
in the system design goals. Owner selects the data encryption key DEKi

from his
local key pool K. DEKi

is used to encrypt the confidential data with an arbitrary
symmetric encryption algorithm. The rationale of encrypting data with symmetric
encryption algorithm is obvious—with symmetric encryption, data is encrypted for
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similar interest group and decryption key is distributed among the legitimate users of
that particular group.

4.2.2 Initialization

This step is prerequisite of data sharing on the cloud-based storage system, it initial-
izes CP-ABE algorithm. It takes ϕ as a security parameter and outputs PK and MK. ϕ
specifies the order of Bilinear Group G. SK is derived form MK while PK is used to
encrypt DEKi

. For more detail on CP-ABE initialization, please refer to Appendix A.

4.2.3 File creation

Once F is encrypted (i.e., F se), next step is to upload it to the cloud-based storage
along with DEKi

. To avoid dependency on TTP and storage provider; DEKi
is se-

cured by utilizing attribute base encryption (CP-ABE). Owner specifies the set of
attributes for access structure τ , it then encrypts DEKi

with CP-ABE (i.e., D
cp_abe
EKi

).

τ enumerates the attributes which are required for the decryption of D
cp_abe
EKi

, these
attributes are associated with the SK of a legitimate user. Appendix A illustrates the
encryption process of CP-ABE in more detail. Finally, owner uploads both Fse , and
D

cp_abe
EKi

to the cloud-based storage system.

4.2.4 Key generation

Key generation process generates SK to decrypt D
cp_abe
EKi

. Keys are generated by uti-
lizing MK and τ . SK represents the attributes (skatt ) involved in τ along with Latti .
skatt are computed to represent the secret value used in the encryption process, and
then during decryption process these attributes are interpolated to reveal the secret
value. Please refer to KeyGen in Appendix A, for more details.

4.2.5 Key distribution

In SAPDS we are dealing with three different kinds of keys, i.e., data decryption key
(DEKi

), secret key (SK), and transformation key. Legitimate user must possess each
of them to access the outsourced data. According to the security model DEKi

is sub-
ject to change on each user revocation. However, SK is partially updated (legitimacy
attribute) on each user revocation.

D
cp_abe
EKi

is uploaded to the cloud server along with F se, each outsourced F se has
its own DEKi

. Secret key and transformation key are handed over to each user during
the subscription process. We are following the usual subscription process in which
confirmation code is send to the individual user through an email to complete the
subscription process. Similarly, secret and transformation keys are sent to individ-
ual user through the email, once owner approve their subscription. This is the only
exchange of confidential information between the owner and the user. Decryption
key and secret key are updated via cloud server utilizing proxy re-encryption. For
mathematical proof of proxy re-encryption please refer to Appendix B.
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Fig. 3 Legitimacy attribute
generation

4.2.6 File access

User requests the outsourced data, and in response cloud server replies with F se,
and D

cp_abe
EKi

. Legitimate user possessing SK, can decrypt D
cp_abe
EKi

, and ultimately
can gain access to the shared contents by decrypting F se with DEKi

. We believe
that there exists a mechanism through which legitimate users are intimated about the
newly outsourced data. For simplicity, we are intentionally overlooking these details.

4.2.7 User revocation

User revocation is executed whenever there is a need to restrict the user from access-
ing the outsourced data, which was previously accessible to him. Encrypting DEKi

with static set of attributes associated with SK creates problem during user revoca-
tion. On each revocation owner needs to redefine τ , so that revoked user can not
decrypt D

cp_abe
EKi

. To overcome the issue of increased complexity of redefining τ we
introduce the concept of legitimacy attribute Latti , it specifies whether user should

be able to decrypt D
cp_abe
EKi

. Latti is append to the root of access structure τ with an

AND gate making it mandatory field in decryption of D
cp_abe
EKi

. Instead of modify the
entire access structure to revoke a particular user, Latti is updated to Latti+1 , and only
legitimate users are allowed to update legitimacy attribute. On each user revocation,
owner generates a new decryption key (DEKi+1 ) and uploads the newly encrypted file
to the cloud server. Next owner derives Latti+1 , by randomly generating a legitimacy
number Lnum, and computing XOR of Latti with hash value of Lnum as shown in
Fig. 3.

Once Latti+1 is derived, DEKi+1 is encrypted with CP-ABE under access structure
τ substituting the value of Latti with Latti+1 . Legitimate user must possess Lnum to
update the existing legitimacy attribute, as illustrated in Fig. 3. Since, cloud server can
team up with the revoked user to decrypt the outsourced data, to overcome this prob-
lem, Lnum is not directly sent to the cloud server. Instead of that, owner constructs a
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new access policy τ\Urvk
, encrypts Lnum with CP-ABE under τ\Urvk

, and uploads it
to the cloud server. τ\Urvk

specifies that legitimate user can decrypt Lnum except from
the recently revoked user(s). Owner then sends the PRE encrypted public key com-
ponent ρ

preω
atti+1

of the legitimacy attribute, along with L
cp_abe
num ,H(Latti+1),D

cp_abe
EKi+1

to
the cloud server. Availability of the owner is no longer required, from onward cloud
server can manage the key update process without compromising data privacy. Algo-
rithm 1 illustrates the process of updating the secret component of the SK.

Algorithm 1 Owner: upload secret component to cloud server
1: Update data symmetric key K → DEKi+1

2: F se ← symmetric_encryption(F,DEKi+1)

3: Compute new legitimacy attribute

a: Generate random number Lnum

b: Latti+1 ← Latti ⊕ H(Lnum)

c: Compute public key component ρatti+1 of Latti+1

4: ρ
preω
atti+1

← pre_encrypt(ρatti+1,ω)

5: Upload F
DEKi+1 to cloud server

6: Construct new access structure τ\Urvk

7: L
cp_abe
num ← cp_encrypt(Lnum, τ\Urvk

)

8: Send L
cp_abe
num ,ρ

preω
atti+1

,H(Latti+1),D
cp_abe
EKi+1

to cloud server

Cloud server stores D
cp_abe
EKi+1

, public key component (ρ
preω
atti+1

), CP-ABE encrypted

legitimacy number L
cp_abe
num , along with the hash value of Latti+1 . Besides this, it also

archives the older version of these newly transmitted values. The archived values
ensure that the user who missed the previous update revocation cycle, manages to
update his secret key. On receiving the user’s request cloud server checks the version
of legitimacy attribute Veratti , if user possesses the older version of Latti a challenge

is offered to him by sending L
cp_abe
num . The challenge requires to successfully com-

pute the hash value of newly generated legitimacy attribute. L
cp_abe
num encryption pol-

icy enforces that revoked user should not be able to decrypt it, thus obstructing him
to generate the new legitimacy attribute. Contrary, legitimate user decrypts L

cp_abe
num ,

computes H(Latti+1) and sends the resultant value to the cloud server, which vali-
dates it; if succeeded ρ

preθ
atti+1

is send to the user. Algorithm 2 elaborates the delegated
responsibility of secret key update process to the cloud server.

In order to get DEKi+1 , user needs to prove his legitimacy, by decrypting L
cp_abe
num ,

and computing Latti+1 as illustrated in Fig. 3. After that hash value of Latti+1 is sent to
the cloud server, it compares the hash value provided by the owner and the value sent
by the user, if matches it replies back with (ρ

preθ
atti+1

). On receiving (ρ
preθ
atti+1

) user reverts
the transformation using θ and update his SK, thus manages to continue his access to
the outsourced data. Algorithm 3 illustrates the user secret key update process.
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Algorithm 2 Cloud server: manage secret key on cloud server

1: Replace(FDEKi ,F
DEKi+1 )

2: Replace(Dcp_abe
EKi

,D
cp_abe
EKi+1

)

3: Store L
cp_abe
num ,ρ

preω
atti+1

,H(Latti+1)

4: Respond with L
cp_abe
num to user possessing older Veratti

5: Send ρ
preθ
atti+1

if user successfully computes H(Latti+1)

Algorithm 3 User: update secret key
1: Generate data request with Veratti

2: Lnum ← cp_dencrypt(Lcp_abe
num ,Uidd)

3: Latti+1 ← Latti ⊕ H(Lnum)

4: Send H(Latti+1) to cloud server
5: Get updated ρ

preθ
atti+1

6: ρatti+1 ← pre_decrypt(ρpreθ
atti+1

, θ)

7: Update secret key, to decrypt D
cp_abe
EKi+1

5 Performance analysis

This section evaluates the computational complexity and communication overhead
that SAPDS exerts on each involved entity. In the following analysis, we are not
considering the complexity of initializing the SAPDS, since it is only executed once
and depends on the size of ϕ. For more detail on complexity of initialization, please
refer to [32].

5.1 Data preparation

As discussed earlier, this step is prerequisite for transferring data from a trusted do-
main to an un-trusted domain, executed exclusively by the owner. It involves the
selection of symmetric encryption key DEKi

from K. The computation cost of this
step is directly proportional to the size of data (M), where selection of DEKi

can
be carried out in constant time. Thus, the complexity of data perpetration would be
O(sizeOf (M)).

5.2 File creation

This step involves both the owner and the cloud server, complexity of the former
entity is higher than that of the later one. From owner’s point of view, this step can
be divided into two sub steps, (a) creation of legitimacy attribute and (b) encoding
access policy through collating polynomials of each involved attribute. Creation of
legitimacy attribute consists of calculating the hash value of Lnum followed by an
XOR between hashed value with previous legitimacy attribute (see Fig. 3). Complex-
ity of defining polynomials is directly proportional to the number of leaf nodes in
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τ including legitimacy attribute. Thus, the complexity of this step can be measure
as O(sizeOfLeaf (τ )). For cloud server the overhead is equivalent to the signature
verification of the transmitted data, which can be computed as O(1).

5.3 Key generation

Key generation engages the owner and the cloud server. The complexity for the owner
mainly constitutes of selection of skatt that can satisfy τ . This step is similar to the
CP-ABE KeyGen, except from the fact that in SAPDS, the selected attributes must
contain a Latti . We consider its complexity to be directly proportional to the num-
ber of access attributes in τ , thus complexity can be computed as O(|skatt |), where
|skatt | represents the number of selected attributes along with the legitimacy attribute.
Similar, to the previous step cloud server only verifies the signature of the transmitted
data, thus its complexity is equivalent to O(1).

5.4 Key distribution

Key distribution assists the data owner to overcome the problem of guaranteed avail-
ability. As DEKi

is subject to change after each user revocation, it is distributed to the
legitimate users via cloud server. Considering n legitimate users, the computational
complexity of key distribution for the cloud server would be O(n). Once key is re-
ceived user verifies the signature of response, making its complexity O(1). Secret and
transformation keys are transmitted to the individual users on successful completion
of the subscription process, thus marking its complexity O(n) for owner. However,
one important point which must be considered that secret and transformation keys are
exchanged only once. After that secret key is updated via cloud server.

5.5 File access

In order to access the outsourced data legitimate user need to carry out series of step.
First, it needs to get the outsourced data along with its decryption key, after that
it decrypts D

cp_abe
EKi

to get DEKi
, in the end it deciphers the outsourced data (i.e.,

F se). Since we are dealing with fine-grained access control, we are not considering
the complexity of gaining access to the outsourced data from the cloud server. Simi-
larly, decryption of outsourced data depends on the symmetric encryption algorithm.
SAPDS does not specify any symmetric encryption algorithm, it depends on owner’s
choice. Instead, our main concern is to reduce the computational complexity of de-
cryption key management in an un-trusted storage system. As DEKi

is encrypted
with attribute based encryption, the complexity of decrypting it would be equivalent
to interpolating the attributes associated to SK, which is O(|τ |).

5.6 User revocation

All three entities are involved in this step. Owner executes this set into two phases;
in the first phase new symmetric key DEKi+1 is derived from K and data is encrypted
with DEKi+1 , making it similar to data preparation step. For the second phase new
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Table 2 Computational complexity of SAPDS

Involved entities

Operation Owner Cloud server User

Data Perpetration O(sizeOf (M)) – –

File Creation O(numberOfLeaf (τ )) O(1) –

Key Generation O(|skatt |) O(1) –

Key Distribution O(n) O(n) O(1)

File Access – – O(|τ |)
User Revocation O(n′) O(n − n′) O(1)

legitimacy number is generated which is encrypted with CP-ABE under τ\Urvk
spec-

ifying the revoked user id, prohibiting him to decrypt L
cp_abe
num . As described earlier,

applying CP-ABE is directly proportional to the number of leaf nodes in τ . Consid-
ering n′ users are revoked, overhead of computing L

cp_abe
num would be O(n′) where

n′ < n (in worst case all of the user can be revoked increasing number of leaf node
in τ\Urvk

). Computing ρ
preω
atti+1

, and H(Latti+1) are considered to be constant and con-
sequently can be ignored, thus complexity for the owner is O(n′).

Complexity for the cloud server involves signature verification of the transmitted
data, along with the transformation of ρ

preω
atti+1

to ρ
preθ
atti+1

, for n − n′ legitimate users.
Additional step that can be ignored is verification of H(Latti+1). Thus, the complexity
of user revocation on cloud server is O(n − n′).

Each legitimate user needs to generate new legitimacy attribute Latti+1 and reply
back the hashed value of Latti+1 to the cloud sever. On successfully computing the
new legitimacy attribute user needs to decrypt the public key component of legitimacy
attribute (ρ

preθ
atti+1

) sent by the cloud server. Both the legitimacy attribute calculation
and decryption of ρ

preθ
atti+1

can be carried out in constant time, thus we consider com-
plexity for user is O(1).

SAPDS is designed with the consideration that every request executed on the cloud
server cost money. Having massive computation capacity does not mean that we can
delegate every task to the cloud server. At the same time we do not want to escalate
the processing load on the owner or on the user as well, to avoid the situation where
migrating to cloud does not seem to be a lucrative option. Table 2 summaries the
computation complexity SAPDS for each involved entities.

SAPDS reduces the dependency between each entity by utilizing proxy re-
encryption, enabling owner to go offline after each revocation, and delegating secret
key update task to the cloud server. Majority of the overheard experienced by the
owner is during initial steps (encrypting data before uploading it to cloud-based stor-
age), which is inevitable, as data need to be encrypted before it can be outsourced.
Whereas, cloud server experiences the maximum execution overhead during Key Dis-
tribution and User Revocation. Overhead on cloud server is obvious as the design goal
of SAPDS is to avoid dependency on the trusted third party and on the cloud server as
well. However, at any step the execution complexity for user is always O(1), except
form file access which is O(|τ |).
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6 Security analysis

This section examines the security aspect of SAPDS. Our analysis investigates the
possibility of privacy breach when attackers team up each other or with the cloud
service provider to gain access to the outsourced data otherwise not allowed. The
security analysis investigates the robustness of SAPDS on each of its fundamental
steps. However, as Data initialization and Key generation are similar to Setup and
KeyGen of CP-ABE reader may refer to [23] for their cryptographic analysis.

6.1 Data preparation

Outsourced data is encrypted with symmetric encryption to restrain any illicit data
access by the revoked users or by the cloud service provider. SAPDS does not im-
pose any restriction on the choice of symmetric encryption algorithm. Data owner
can choose encryption algorithm according to the sensitivity of the outsourced data
and computational capabilities of the users with whom data is shared. The confiden-
tiality of the outsourced data is directly related to the computational effort required to
attack the symmetric encryption algorithm chosen by the data owner. As SAPDS uses
symmetric encryption to conceal outsourced data, it inherits all of the cryptographic
properties of the chosen encryption algorithm.

6.2 File creation

This step starts the actual interaction between the data owner and cloud server
provider. Data owner stores encrypted outsourced data (F se) along with the attribute
based encrypted decryption key (Dcp_abe

EKi
). In order to illicitly gain access to the out-

sourced data attacker would need DEKi
. However, as DEKi

is encrypted with the
access control policy (τ ) it would further require CP-ABE secret key (SK) that can
satisfy τ . Since, SK is only shared with the legitimate users by the data owner, the
computational complexity for an attacker would be equal to deciphering CP-ABE
without SK. Even if multiple attackers (i.e., revoked users) combine their revoked
secret keys to compromise privacy of the outsourced data, they would not succeed as
they do not have access to the updated legitimacy number (Lcp_abe

num ), along with the
updated public key component (ρ

preω
atti+1

) of SK.

6.3 Key distribution

SAPDS uses three different types of keys to achieve fine-grained access control over
the outsourced data. Data encryption key (DEKi

) is outsourced to the cloud server,
whereas user secret key (SK) and transformation key (θ ) are disseminated to the
legitimate users during the subscription process. Both of these keys are concealed
with legitimate user’s public key by the data owner. User possessing the respective
private key can decipher them and can gain access to the outsourced data, if required
set of attributes associated with SK can satisfy τ . Thus for any attacker either revoked
user or even cloud service provider the computational complexity to gain access to
SK and θ would be equal of reverting asymmetric encryption without valid private
key. For the cryptographic proof of public key infrastructure readers may refer to
[33].
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6.4 File access

SAPDS does not rely on cloud service provider to govern data access. On each user
request cloud service provider replies back with the requested outsourced data (F se)
along with its respective decryption key (Dcp_abe

EKi
). Outsourced data and decryption

key are concealed to assure authorized data access. To illicitly gain access attacker
would need to decipher DEKi

without valid secret key (SK). Even if attacker teams
up with each other (i.e., revoked users working together to illicitly gain access), still
they would not able to retrieve DEKi

as it is encrypted under the access control policy
(τ ). In order to satisfy τ valid set of attributes along with updated legitimacy number
(Lnum) are required. Since, attacker does not possess the valid set of attributes and
even does not have access to Lnum, D

cp_abe
EKi

cannot be deciphered, thus privacy of the
outsourced data is preserved.

6.5 User revocation

SAPDS does not rely on any trusted third party for key management. It utilizes cloud
service provider to disseminate the updated decryption key (DEKi+1 ) to the legitimate
users after each user revocation. On each user revocation a new legitimacy attribute
(Latti+1 ) is generated by using a randomly selected legitimacy number (Lnum) in
association with the current legitimacy attribute (Latti ), see Fig. 3. To ensure that
legitimate users continue their access to the outsourced data a PRE encrypted public
key component (ρpreω

atti+1
) of the user’s secret key is outsourced to the cloud service

provider. Each legitimate user needs Lnum to update his secret key (SK). In order
to prevent revoked users from updating their SK, Lnum is concealed with the access
control policy (τ\Urvk

). For a revoked user to access the outsourced data, ρ
preω
atti+1

is
required. However, as Lnum is encrypted with τ\Urvk

, it would not be able to learn
Lnum, thus restraining revoked user to update his secret key.

Even if multiple users, revoked at different time intervals (i.e., h and i where h < i)
team up with each other to learn Lnum, it will be of no use. As for each revoked user
the computational complexity would be equal to XOR of Lnumj

and Lattj , where j

is the time interval in which user is revoked. User revoked earlier then the current
revocation would have to overcome the computational complexity of all revocation
till the current time interval.

7 Results and evaluation

In this section, we provide the performance assessment of the proposed scheme. Par-
ticularly, our assessment focuses on the computation and communication overhead
exerted by SAPDS on each entity (owner, user, and cloud server).

7.1 Performance and evaluation setup

To assess SAPDS’s performance for the owner and user, evaluation process is carried
out on 32-bit Pentium IV, Ubuntu 9.10 with a 2.60 GHz Dual-Core processor and
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3.0 GB RAM. We evaluated SAPDS on three different encryption algorithms, Data
Encryption Standard (DES), Triple DES, and Advance Encryption Standard (AES).3

To evaluate SAPDS’s performance on a cloud server we chose GoogleApp Engine
[34] as a cloud service provider. Cloud server is only responsible for data storage
and key management. The evaluation process measures the computational overhead
of Proxy Re-encryption on GoogleApp Engine, by realizing a service which assist
legitimate users to update their secret key.

Through this evaluation process, we highlight the feasibility of SAPDS. For that
particular reason, we use computing power, which we believe is accessible to average
cloud user (owner). We have shown that complexity of getting secret key is O(1),
whereas decryption of D

cp_abe
EKi

depends on number of skatt associated to SK, thus
user can access cloud storage from devices having limited computation power (i.e.,
Smartphone). In the underlying evaluation process, we exhibit computation and com-
munication overhead of SAPDS on each entity. For evaluation, each step of SAPDS
is executed 5,000 times and then average values are plotted as final verdict. For en-
cryption and decryption of CP-ABE, we use the library available at [32].

7.2 Computation overhead

The very first step in SAPDS is defining the access policy τ under which DEKi
is con-

cealed. CP-ABE implementation [32] supports two kinds of policy generation mainly
due to the type of attributes (skatt ) associated with the SK. First one associates simple
literal attributes with the leaf nodes of τ e.g., System Administrator, IT Department.
The second one associates complex attributes with logical conditions e.g., Age > 24
years, EmployeeRank < 10. Figure 4 illustrates that generation of SK with ten dif-
ferent simple attributes would take maximum 0.2 seconds. However, it would take
at most 14 seconds to generate a secret key associated with ten complex attributes.
Current implementation of CP-ABE utilizes Bison and YACC parser languages to
convert the access policy into a machine-readable format. Each token generated by
the parser is stored into GSList data structure, that results in consuming more CPU
cycles in parsing the complex policy as compared to the simple policy.

In SAPDS user executes CP-ABE decryption process to retrieve DEKi
. Decryp-

tion is primarily required when user gets the D
cp_abe
EKi

for the very first time, and

during the decryption of L
cp_abe
num . As CP-ABE support two types of policies, Fig. 5(a)

and (b) show the computation overhead of CP-ABE decryption process over 56-bit,
128-bit, and 256-bit keys of DES, Triple DES and AES respectively.

CP-ABE [32] exhibits same decryption time for different sizes of cipher text, en-
crypted under similar policies. However, type of attribute do effect the complexity
of decryption process. Shown in Fig. 6, cipher text associated with the complex at-
tributes tends to consume slightly more CPU cycles as compared to the simple at-
tributes. Furthermore, CP-ABE shows linear decryption overhead with the increase
in number of associated attributes.

3The rationale of evaluating SAPDS on different configurations is obvious, as it does not impose any
restriction on underlying symmetric encryption algorithm. One can choose the encryption algorithm he/she
desires, to conceal PII then utilize SAPDS to achieve fine-grained access control over the outsourced data.
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Fig. 4 Computation overhead
of secret key generation process
of CP-ABE

Table 3 Performance assessment of user secret key update on GoogleApp Engine

Data size (bytes) GoogleApp Engine

Computation time (ms) Response time (ms) Cost ($)

8 1.4 32.2 0.000873

16 1.4 32.2 0.000874

32 1.8 32.8 0.000875

64 2.6 33.0 0.000876

128 4.4 35.4 0.000878

Complex attributes certainly provide more expressivity of access policy. However,
they tend to exert more computation overhead on the owner during secret key genera-
tion. However, CP-ABE decryption is not affected by the choice of attributes made by
the owner. Moreover, as illustrated in Fig. 6 increase in size of access policy increase
the decryption time, nevertheless it shows the linear behavior in the increase of time
required to decrypted cipher text, for both simple and complex attributes.

SAPDS achieves user revocation by updating the legitimacy attribute (Latti+1 ) as-
sociated with the access control policy (τ ) which conceals the data decryption key
(Dcp_abe

EKi
). User secret key (SK) update task is delegated to cloud server by out-

sourcing the public key component of legitimacy attribute encrypted with Proxy Re-
encryption i.e., ρ

preω
atti+1

. Cloud server transforms ρ
preω
atti+1

to ρ
preθ
atti+1

by using the trans-
formation key (ψ ). To evaluate the computational complexity of Proxy Re-encryption
we realized a secret key update service on GoogleApp Engine which transforms the
public key component of varied sizes. Table 3 presents the computational over head
of GoogleApp Engine to transform the public key component.

Computational complexity to transform ρ
preω
atti+1

is measured by analyzing the CPU
Time (execution time on physical CPU) and estimated CPU usage cost of 1000 re-
quests of similar computational complexity. Our evaluation result shows that to trans-
form public key component of size 8 to 128 bytes, secret key update service takes 1.4
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Fig. 5 Computation overhead
of CP-ABE decryption process

to 4.4 milliseconds, with an average response time of 32.2 to 35.4 milliseconds re-
spectively. Whereas, it only costs between 0.000873 to 0.000878 dollar for every
1000 requests of secret key update. In short, if data is shared between 1001 users and
data owner updates the legitimacy attribute of size 8 bytes to revoke a single user,
then data owner only has to pay 0.000873 dollar to let rest of 1000 legitimate users
to update their secret keys.

The evaluation result highlights the fact that delegating key management to cloud
server has multifaceted benefits. First, data owner does not need to rely on any trusted
third party to disseminate data decryption to the legitimate users. Second, the cost of
decryption key dissemination is reasonably low. Thus assisting data owner to achieve
fine-grained access control over the outsourced data with minimal expenses of key
management.
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Fig. 6 Comparison of CP-ABE
decryption overhead for simple
and complex attributes

7.3 Communication overhead

With the adoption of cloud computing, new-fangled business models are coming
forth, which consider the amount of data exchanged between the cloud server and its
users. The decryption keys streaming between entities can greatly affect the invoice
which owner will receive from cloud provider. In this context, for communication
overhead we measure the size of encrypted data flowing between the entities except
from the encrypted file; as SAPDS does not impose any restriction on symmetric
encryption algorithm.

Other than the encrypted file, DEKi
is stored on the cloud server. CP-ABE can

greatly reduce the amount of data exchanged between the entities in order to achieve
fine-grained access control, if policies are defined for groups instead of individual
users. However, for the fairness of evolution process we consider that decryption keys
are generated for individual users rather than groups. Figure 7 shows that the size of
secret key is in direct proportion to the number of attributes associated with it. For
complex policy CP-ABE outputs bigger sized keys as compared to the simple policy.
The primary reason for the difference in size is, CP-ABE assign a 64 Bit integer value
to each of the token generated by the Bison and YACC parsers.

CP-ABE is applied to different size of symmetric encryption algorithm decryp-
tion keys. Figure 8 depicts the difference between cipher text size when DEKi

is en-
crypted with simple and complex attributes. However, the difference between cipher
text size is relatively low, since only the access policy is associated with the cipher
text, whereas attribute values are associated with the SK. The difference between the
size of cipher text is due to the fact that complex policy includes logical operators,
whereas in simple policy no logical operator is used.
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Fig. 7 CP-ABE user secret key
size with different attributes

Fig. 8 Encrypted file size

8 Discussion

SAPDS elegantly enables the owner to migrate their data to an un-trusted domain
without compromising privacy. In addition, it enables the owner to a maintain fine-
grained access control over the outsourced data even if owner is not in command of
the underlying computing resources and infrastructure. With SAPDS, it is possible
for the owner to revoke a particular user or a group of users, with O(n′) complexity
and without ever disseminating updating decryption key to the legitimate users by
himself. Through the proposed scheme, owner delegates the key management task
to the cloud server devoid of revealing any confidential information, which could
impend the privacy of the outsourced data.

Similarly, from user’s point of view SAPDS enables legitimate user to seamlessly
obtain updated decryption keys with minimum number of interactions with the cloud
server. It does not rely on any trusted third party to govern the key update protocol; in
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fact, it utilizes attribute-based encryption to ensure that only the legitimate user can
derive a new decryption key from his previous key.

Through SAPDS, cloud server not only provisions the outsourced data it also
works a proxy for the owner to disseminate the decryption keys. Although, cloud
server provides the decryption key, nevertheless the key is encrypted with attribute-
based encryption to guarantee data confidentiality. Access policy associated with de-
cryption key governs the decryption process, according to the access control policy
defined by the owner.

As the core purpose of SAPDS is to ensure fine-grained access control over the
cloud-based storage system, which ensures that at any quantum of time all of the keys
circulating among users must confirm the policy associated with the hosted data. This
policy enforcement requires that as soon as user is revoked all of the legitimate users
must update their decryption keys cornering off the revoked user.

Through experiments, we demonstrated that SAPDS can affect the bill which
owner would receive from the cloud server. Selecting the correct combinations of at-
tributes for the access control policy is very important. On one had complex attributes
assist the owner to define more comprehensive access policy, on the other hand they
tend to consume more processing power and bandwidth. Whilst simple attributes pro-
vide fewer comprehensibility; however, they are more resource friendly in terms of
using computation and bandwidth usage requirements. Nevertheless, CP-ABE used
with either of the policies provides the same level of security against chosen-plain
text, and chosen-ciphertext attack with the assumption of Decisional Bilinear Diffie
Hellman Assumption (DBDH); which states that no polynomial algorithm β can dis-
tinguish between (1) and (2) with more than a negligible advantage.

A = ga, B = gb, C = gc, e(g, g)abc (1)

A = ga, B = gb, C = gc, e(g, g)z (2)

The advantage of β is can modeled as (3)

∣
∣Pr

(

βr,
(

A,B,C, e(g, g)abc
) = 0

) − Pr
(

βr,
(

A,B,C, e(g, g)z
) = 0

)∣
∣ (3)

The probability is taken over the random choice of the generator g, the random
choice of a, b, c in Zp and the random bits consumed by βr [26].

Existing system providing privacy aware data sharing tends to add complexity and
does not consider the computation and bandwidth cost. Fine-grained access control
over the outsourced data achieved by SAPDS, exhibits far less computation complex-
ity as compared to the existing ones.

Shucheng Yu et al. [25] proposed a technique that utilizes KP-ABE to protect
the data hosted in the cloud server. Their technique utilizes Lazy re-encryption to
eliminate unnecessary cryptographic overhead after each user revocation. With con-
fidential information hosted in the un-trusted domain, lazy re-encryption could create
serious privacy issues. Imagine the medical record of a person who does not visit doc-
tor frequently as he is living a healthy life, would be available to the revoked users of
a cloud based EHR, just for the reason that it is not being modified.
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For user revocation complexity of Shucheng Yu et al. [25] scheme is O(n), where
n is total number of legitimate users, besides this each user needs to update every
public component of his secret key making it O(sizeOf (τ )). Whereas, SAPDS ex-
hibits complexity O(n′), where n′ is total number of revoked users at current annul-
ment without considering the previously revoked user, besides this user only need to
update their legitimacy attribute making its complexity O(1). In [25] on each user
revocation a new access control policy is defined which is then used to conceal the
file encryption key. While defining new access control policy, owner has to make sure
that users revoked at previous time interval are not able to access data. In contrast to
that SAPDS only requires to update a single legitimacy attribute without considering
revoked users at previous time intervals. This is because it is computationally infeasi-
ble for the revoked users to learn all the legitimacy values till the current revocation.

Key Regression [20] is similar to key rotation scheme, except it introduces the con-
cept of member state which assists in generating the decryption keys for accessing
current as well as for the historical data. However, it lacks scalability, as during the
initialization phase maximum-wind (maximum rotation) is provided as the security
parameter, restricting the maximum number of decryption keys that can be generated.
In contrast to that, SAPDS does not specify any number that restricts number of secret
keys that can be produced, making it scalable with dynamic user set. Key Regression
provides the capabilities to access the historical data encrypted with different decryp-
tion key than the current one. However, to share the updated member state it does
not specify any methodology. To enable legitimate users to continue their access to
the outsourced data, owner has to adopt outbound methods to share member states
with the respective users. In contrast to that SAPDS utilizes cloud service provider to
disseminate the updated data decryption key.

SiRiUS [18], also claim to provide secure remote storage system in an un-trusted
domain by defining an access structure that contains the file decryption and signature
keys. It also suffers from the issue of scalability, as number of users increase so does
the size of access structure. Whereas, SAPDS maintains an access control policy
with the outsourced data, instead of maintaining the decryption key. Since, keys are
distributed to the individual users, number of users do not affect the size of outsourced
data. Whereas, in case of SiRiUS increase in number of users tend to grow the size
of outsourced data. To ensure data confidentiality SiRiUS stores the asymmetrically
encrypted file decryption key on remote storage. Each legitimate user has its own
copy of concealed file decryption key, which only he can decrypt by using his private
key. SiRiUS provides perfect secrecy with the computational complexity of public
key cryptography in case of an attack. However, in case of user revocation owner
has to encrypt the newly generated file decryption key for all the legitimate users
by their respective public keys. Contrary to that, SAPDS provides user revocation
which only requires owner to update the data decryption key and outsourced it to the
cloud service provider by encrypting it under the access control policy with updated
legitimacy attribute.

CRUST [19] proposed a cryptographic remote system which utilizes symmetric
encryption to conceal the data. For key management CRUST assumes the availability
of a trusted agent to disseminate the decryption keys on the behalf of owner. Dis-
similar to CRUST, SAPDS does not rely on any trusted third party for decryption
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key distribution. In fact, SAPDS utilizes CP-ABE for the delegated responsibilities
of key distribution without compromising privacy of the outsourced data. To avoid
unnecessary cryptographic operations in case of file update, CRUST divides file into
blocks each encrypted with a separate key. This methodology ensures that only mod-
ified blocks are re-encrypted during the file update process. However, in case of user
revocation it increases the number of keys trusted agent has to update, in order to en-
sure that legitimate users continue their access to the outsourced data. SAPDS does
not support this type of block encryption which is useful in case of large files. How-
ever, SAPDS does provide a more robust user revocation in term of decryption key
update and dissemination, by utilizing CP-ABE to conceal the updated data decryp-
tion key. Most importantly SAPDS does not rely on any trusted third party or agent
for decryption key management.

PCE [22] proposed a hierarchical data sharing system for electronic health record,
by encrypting each level of hierarchy PCE can share the decryption keys among ap-
propriate users. This strategy works well when shared data contains diverse informa-
tion which needs to be shared among variant users. Since PCE utilizes symmetric
and asymmetric encryption it suffers from the problem of user revocation, in which
each legitimate user needs to obtain the new decryption key from owner or by the
trusted third party. This type of hierarchical data sharing is not supported by SAPDS;
however, it can be easily realized by encrypting each portion of the outsourced data
with a different access policy, and then distributing the decryption keys to the appro-
priate users via cloud server. For the user revocation PCE suffers from the problem
of key update and dissemination similar to CRUST. Whereas, SAPDS provides user
revocation which exerts reasonable computational load on owner and on user as well,
without the intervention of trusted third party. Thus, to achieve fine-grained access
control over the outsourced data SAPDS provides more realistic data sharing capa-
bilities than PCE.

SAPDS is a privacy aware fine-grained access control scheme for the data hosted
in the cloud-based storage system. It exhibits fewer computation and bandwidth con-
sumption on each involved entity as compared to the existing methodologies. Further-
more, it does not rely on any trusted thirty party to disseminate the updated decryption
keys, additionally it leverages the users to update their decryption keys without even
interacting with the owner.

9 Conclusion and future directions

Cloud computing promises to reduce costs and increase the on-demand availability of
compute resources. However, data privacy issues are slowing down adoption of this
lucrative computing paradigm. In this paper, we proposed SAPDS, a novel privacy
aware data-sharing scheme, whilst achieving fine-grained access over the outsourced
data hosted in the cloud. SAPDS uniquely combines the attribute-based encryption
along with proxy re-encryption and user secret key updating capability without rely-
ing on any trusted third party. It leverages data owner in availing multi-faceted ben-
efits of cloud computing architecture, without compromising the privacy of the out-
sourced data. It enables data owner to delegate the toiled work of key management to
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the cloud server, while remains himself offline. SAPDS exhibits less computing and
communication complexity as compared to the existing privacy aware data sharing
schemes. With SAPDS data owner can revoke a user with the computation complex-
ity of O(n′). Whilst, cloud server can disseminate the updated decryption keys with
the complexity of O(n − n′), and complexity of O(1) is exhibited by the user during
secret key derivation.

Smartphone combined with collaborative software provide the ultimate com-
puting experience while on the move [35]. Sharing data for collaborative purpose
by different owners would require a multiple authority framework that can gov-
ern consent of involved authorities. Deploying SAPDS in a multiple authority do-
main would require modification in access policy modeling. Nevertheless, its un-
derlying principle would remain the same making it feasible where there is a need
to avoid reliance on a trusted third party and to achieve delegated responsibili-
ties.

Acknowledgements This research was supported by Next-Generation Information Computing Devel-
opment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology (2011-0020515).

Appendix A: Cipher-text attribute based encryption (CP-ABE)

CP-ABE is a cryptographic primitive in which cipher text is associated with an access
policy defined over the set of attributes. These attributes are associated with the user
secret key which can decrypt the cipher text, if conforms to the access control policy.
CP-ABE is a relatively new cryptosystem as compared to PKI [35] and secret sharing
schemes [36], which address the issues related to private information retrieval [17].
One of the primary objective of CP-ABE is to ensure access control policy of the
data residing in a domain over which owner possesses no control. CP-ABE leverages
the owner to govern data access without relying on any trusted third party. CP-ABE
consists of four fundamental algorithms: SETUP, ENCRYPT, KEYGEN, and DE-
CRYPT.

A.1 SETUP

This algorithm initializes CP-ABE by selecting a Bilinear Group G of prime order
p with g generator. Once selection of G is finalized two random numbers Zp are
selected which constitute the Public Key (PK) and Master Key (MK) as

PK = (

g,h = gβ, e(g, g)α
)

(4)

MK = (β, g)α (5)

A.2 ENCRYPT

In CP-ABE access control policy is modeled in the form of access tree τ . Each leaf
node of τ represents an attribute y ∈ Y , where Y is a set of attributes involved in the



SAPDS: self-healing attribute-based privacy aware data sharing 457

access control policy. The encryption algorithm encrypts the plain text M under τ by
selecting a random number s ∈ Zp and defining a polynomial for each leaf and non-
leaf node, starting from root node R. The degree dx of each polynomial is set one
less than its threshold value. If node is non-leaf node having “AND” logical gate then
its threshold value is set equal to its number of children, in case of “OR” logical gate
it will be one. Polynomial for the root is defined as qR(0) = s. Encryption algorithm
outputs the cipher text as

CT = (

τ, Ĉ,C = hs,∀y ∈ Y : Cy = gqy(0),C′
y = H

(

att(y)qy(0)
))

(6)

where C = M.e(g,g)αs . As polynomials are selected in top down approach starting
for the root node, each polynomial of a node (excluding the root node) is calculated
as qx(0 = qparent (x)(index(x))), where parent(x) represents the parent of node x and
index(x) stands for unique index number assigned to each node of τ .

A.3 KEYGEN

It takes input a set of attributes S along with the system master key and generates the
user Secret Key (SK), which possess the ability to decrypt the cipher text.

SK = (

D = g(α+r)/β,∀j ∈ S : Dj .H(j)rj ,D′
j = grj

)

(7)

A.4 DECRYPT

CP-ABE decryption algorithm decrypts the cipher text using polynomial interpola-
tion [37]. Cipher text along with user secret key SK is provided as input to decryption
algorithm. For each leaf node x in τ it computes the value

Decrypt(CT,SK, x) = e(Dj ,Cx)

e(D′
j ,C

′
x)

(8)

After computing the value of Decrypt(CT,SK, x) function for each leaf node, it exe-
cutes polynomial interpolation to estimate the value of hidden factor. For polynomial

interpolation, it uses Lagrange Coefficient �i,s(x) = ∏
j ∈ s, j �= i

x−j
i−j

; applying
polynomial interpolation will reveal the hidden factor e(g, g)αs , which was used to
encrypt the fact.

Appendix B: Proxy re-encryption (PRE)

Proxy Re-Encrypt is a cryptographic primitive, which transforms the cipher text from
one secret key to another without revealing the secret key to a semi-trusted party.
Through PRE, cipher text encrypted with Alice secret key can be transformed to
another cipher text, which Bob can decrypt without revealing any information to
the intermediary (semi-trusted server). PRE consists of four fundamental steps, Key
Generation, Encryption, Re-Encryption, and Decryption algorithm. Suppose Alice
wants to send a message m to Bob through an intermediary server by using PRE,
following are the steps, which will be executed.
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B.1 Key generation

Alice first selects a Bilinear Group G of prime order q with g generator. Two ran-
dom numbers a and b of order q are generated. a and b are then use to generate
secret respective keys SKa = a and SKb = b, consequently public key are produced
as PKa = ga and PKb = gb . Once public key are defined Alice will select a random
number r ∈ Z

∗
p , along with a Bilinear Map of G as Z = e(g, g). Finally, proxy-

key is generated as RKa→b = (gb)1/a and is handed over to the semi-trusted server
responsible for cipher text transformation.

B.2 Encryption

In order to encrypt message m, with Alice public key, cipher text is computed as
Ca = (Zr .m,gra).

B.3 Re-encryption

This step is executed by a semi-trusted server. Cipher text is transformed from Ca →
Cb by using proxy-key RKa→b

Cb = (

Zr.m, e
(

gra,RKa→b

))

(9)

Cb = (

Zr.m, e
(

gra, gb/a
))

(10)

Cb = (

Zr.m,Zrb
)

(11)

B.4 Decryption

To decrypt the cipher Cb , Bob uses his secret key SKb , communicated to him by
Alice through secure means i.e., SSL. Message m can be obtained as m = Zr .m

(Zrb)1/b .

Appendix C: Key derivation (KD)

Key derivation is a process through which new encryption keys can be derived using
the old keys. To ensure authorized access of resources, encryption keys are updated
periodically or on each user revocation, which leads to the problem of key manage-
ment. Each time user(s) is revoked, owner needs to update the encryption keys of
entire legitimate user set, and distribute them either through email or through central-
ized secure repository. To overcome this problem, many key derivation techniques
have been proposed by research community. The notion behind key derivation is to
delegate the arduous task of key generation to the respective client devoid of legit-
imate user’s dependency on the owner (key distribution, guaranteed availability of
owner after each user revocation).
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