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Most healthcare data are available in XML format, which mainly focuses on the structure level and
lacks support for data representation. Therefore, a variety of medical applications and medical semantic
search engines have difficulty understanding and integrating healthcare data in a highly heterogeneous
environment. OWL (Web Ontology Language) and Semantic Web technologies provide an infrastructure
that can solve these problems. The aim of our study is to present a mechanism to ease the interpreta-
tion and automate the semantic transformation of XML healthcare data into the OWL ontology (S-
Trans), which allows an easier and better semantic communication among hospital information sys-
tems. On the basis of the XML schemas (XSD or DTD), we extract the document structure and add more
descriptions for XML elements. Moreover, to classify the semantic level of duplicate elements in an
XML schema, we propose novel metrics to measure the similarity between them. Experimental results
show that the proposed method reliably predicts semantic similarity of duplicates and produces a bet-
ter-quality OWL ontology.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The rise of XML (eXtensible Markup Language) in patient care
has been driven by the needs for communication among health
professionals and between healthcare organizations such as hospi-
tals and health insurance companies [1,2]. The main advantage of
XML is its flexibility, as it allows creators to describe any content
easily by generating their own tags. However, this freedom can
cause a lack of understanding and confusion for applications. Be-
cause an object can be described by different vocabularies or a
vocabulary can express many objects, it is difficult for computers
to recognize and differentiate the meaning of given data. Moreover,
XML is at a disadvantage when it comes to the semantic interoper-
ability because it focuses primarily on syntax, with no way to de-
scribe the semantics of the data [3]. This lack of description
creates problems when semantic medical agents seek to under-
stand and reason about these XML healthcare data.

To solve this problem, there is high interest in mapping or
transforming XML [4] healthcare data into a semantic supporting
language, such as OWL [5]. Furthermore, because DTD (Docu-
ment Type Definition) and XSD (XML Schema Definition) are
syntactic specifications used as models for XML documents, it
is necessary to map DTD or XSD to an OWL model to harvest
a general structure for the resulting ontology. Although some
approaches have been developed to transform XSD or DTD into
ll rights reserved.
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the OWL ontology, several problems must be resolved. One is
the problem of duplicate elements in an XSD or DTD document.
Most transforming approaches provide a unique identifier for
each schema (XSD or DTD) element by adding a new key ele-
ment or changing the source element’s name [6–10]. However,
this solution may lead to data redundancy because duplicate ele-
ments may represent the same information. The perfect XML
transformation should create a correct, complete, and unique
representation of every concept. To obtain this data quality, a
similarity computation of duplicate elements is used. In this
computation, if two elements have highly similar semantics, they
are transformed into one representation.

This paper presents novel metrics to measure the similarity
between duplicate elements in an XML schema (XSD or DTD)
and proposes a transforming strategy for each similarity level.
Compare with the previous studies on transforming XSD or DTD
into the OWL ontology, our method is a new technique that
solves the duplicate problem efficiently and reliably. Furthermore,
the proposed method produces a syntactically legal OWL ontol-
ogy, which is easily processed and interpreted by semantic
applications.

The remainder of the paper is organized as follows. Section 2
presents an overview of the related approaches for transforming
XML data into the OWL ontology and measuring the similarity be-
tween concepts. Section 3 describes the details of S-Trans method,
including the semantic similarity measurement for duplicate ele-
ments and the transformation of XML schema into the OWL ontol-
ogy. Section 4 presents the experimental setup and results. Finally,
Section 5 concludes the paper.
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2. Related work

In this section, we present two research trends that are related
to our paper: (1) transforming XML data into OWL, including solu-
tions for the duplicate problem and (2) measuring concept similar-
ity within a single document and computing the element
similarities between two different documents.

Several approaches related to schema mapping and transforma-
tion from XML data into the OWL ontology have been proposed.
Ferdinand et al. [6] described mappings from XML to RDF as well
as from XSD to OWL. However, the OWL instances could not suit
the OWL model because elements in XML documents were
mapped to different OWL concepts depending on the users’ judg-
ment. Hannes et al. [7] and Tsinaraki et al. [8] employed XSLT to
interpret XSD as OWL ontology. Hannes prevented the duplicate
problem by adding prefixes such as has and dtp before class and
property elements, respectively, whereas Chrisa concatenated the
ancestor names with the current element name. Similarly, Bernd
et al. [9] attached the key paths to each nested element, whereas
Toni et al. [10] and Cruz et al. [11] used XPath expressions to ex-
press the XSD elements. These techniques prevented XML dupli-
cates from occurring in the OWL ontology, but they altered most
of the XML element names. Our previous approach [12] only chan-
ged the name of duplicate elements by adding their corresponding
ancestor name, but we did not consider the duplicate similarity.

Some methods have been introduced to measure the similarity
between concepts within a document. Two traditional methods in
calculating this similarity were proposed by Rada et al. [16] and
Wu & Palmer [17]. They used conceptual distance to measure the
length of the shortest path that connects concepts in the taxon-
omy. Leacock and Chodorow [18] and Li et al. [19] also considered
degrees of similarity between concepts based on the path length
between them, and if two concepts had the same name, their sim-
ilarity value was 1. By contrast, in our approach, duplicate concepts
may have different semantics depending on their cardinality
constraints and outside relationships. On the other hand, some ap-
proaches measure the element similarity of two different schemas.
Do et al. [13] and COMA++ [14] proposed a method to compute the
similarity of two XSD elements or between an XSD element and an
OWL concept with string matching. Yang and Powers [20] used
linguistic taxonomy based on concept definitions in WordNet
[21] to gain the most accurate semantics for element names.
Recently, some researchers [22–24] have employed additional
functions to calculate the similarity of a particular feature of a
given schema, such as the similarities of leaf nodes, root nodes,
data types, and constraints. All of the partial results are then com-
bined into a final similarity value using a weighted sum function.

In general, approaches in the first category avoid the problem of
duplicates by giving a unique identifier to each element, whereas
most approaches in the second category assume that the duplicate
elements are similar to each other. The S-Trans method has the
same purpose as the first category by transforming XML into
OWL, but we apply the semantic similarity computation to assess
the similarity values of XML duplicate elements before transforma-
tion. This computation is also different from the second category
because our computation focuses on duplicates within a single
schema, and all the similarity values are determined by our pro-
posed metrics without any user intervention.
3. S-Trans

3.1. Semantic similarity of duplicate elements

To illustrate the S-Trans method, we will first restrict ourselves
to the hierarchical schemas. The XML schema is displayed as a
graph, where the nodes represent the schema elements. We moti-
vate S-Trans with the real XML data set, prescription.dtd [15]. The
DTD document and its corresponding XSD are displayed in Table 1.

Assuming that all forms of XML data, such as XSD, DTD, and
XML instances, can be represented as a tree, we draw a tree of pre-
scription.dtd as in Fig. 1. As presented in Fig. 1, the element name of
the physician is similar to the element name of the patient and is
different from the element name of the drug because name of the
drug contains two children, and the siblings of name of the drug
are slightly different from those of name of the physician and name
of the patient elements. In contrast, two duplicate elements, phone
of the physician and phone of the patient, do not contain any chil-
dren, but they are different in their cardinality constraint. The first
phone element is declared with ‘ + ‘, whereas the second one is de-
fined with ‘�’. Furthermore, month, date, and year of prescribed.date
are repeated in the DOB (Date Of Birth) element. These elements
have the same cardinality constraint, the same siblings, and chil-
dren, but they have different parents.

On the basis of the above mentioned observations, we can con-
clude that there are four main factors that affect the similarity be-
tween duplicate elements: the children, the siblings, the parent,
and the cardinality constraint. Therefore, our S-Trans similarity
measure is the combination of these four factors using a weighted
function, which is determined by Definition 1.

Definition 1. The duplicate similarity (DupSim) between duplicate
elements, e1 and e2, in XSD or DTD document is defined as the
weighted sum of their parent similarity (PrSim), their child
similarity (ChSim), their sibling similarity (SbSim), and their
cardinality constraint similarity (CaSim):

DupSimðe1; e2Þ ¼ a�1PrSimðe1; e2Þ þ a�2ChSimðe1; e2Þ
a�3SbSimðe1; e2Þ þ a�4CaSimðe1; e2Þ

ð1Þ

where ai (i = 1, . . . , 4) is the weight of the ith property, and

X4

i¼1

ai ¼ 1 ð2Þ

If the PrSim property contributes more than the other properties to
the similarity of duplicates, then the weight a1 of the PrSim is great-
er than the other weights. Without loss of generality, in our demon-
stration, we assume that all similarity properties have an equivalent
role; thus, the weights are a1 = a2 = a3 = a4 = 0.25.

Because the parent similarity between elements depends not
only on the parent name and cardinality constraint but also on
the distance of the parent to the root node, the parent similarity
is determined by the following definition.

Definition 2. Given that the parent name of the element E1 is e1,
the parent name of the element E2 is e2, then the parent similarity
(PrSim) between two duplicate elements E1 and E2 is defined as the
weighted sum of the name similarity (NaSim) of the parent, the
parent cardinality constraint similarity (CaSim), and the distance
similarity of two parents to the root node (DtSim):

PrSimðE1; E2Þ ¼ b�1NaSimðe1; e2Þ þ b�2 � CaSimðe1; e2Þ
þ b�3DtSimðe1; e2Þ ð3Þ

where b1, b2, and b3 are the weight parameters and are similar to
the Eq. (2). In this paper, 0.34 is assigned to b1 and 0.33 is assigned
to both b2 and b3.

The name similarity (NaSim) computes the string similarity be-
tween two elements within a schema. If the element name is de-
clared as a set of words or the short form of some words, the
normalization and tokenization steps are required. These steps re-
move genitives, punctuation, capitalization, stop words (such as, of,



Table 1
Example of a DTD document and a part of its corresponding XSD document.

<!ELEMENT prescription <?xml version=‘‘1.0’’ encoding=‘‘UTF-8’’ ?>
(prescribed.date, patient, drug, physician, interchange?)> <xs:schema xmlns:xs=‘‘http://www.w3.org/2001/XMLSchema’’>
<!ELEMENT prescribed.date (month, day, year)> <xs:element name=‘‘prescription’’>
<!ELEMENT patient <xs:complexType><xs:sequence>
(name, id+, gender, DOB, address+, phone⁄)> <xs:element ref=‘‘prescribed.date’’/> <xs:element ref=‘‘patient’’/>
<!ELEMENT drug (drug.name, strength, quantity, sig)> <xs:element ref=‘‘drug’’/> <xs:element ref=‘‘physician’’/>
<!ELEMENT name (#PCDATA)> <xs:element ref=‘‘interchange’’ minOccurs=‘‘0’’ maxOccurs=‘‘1’’/>
<!ATTLIST name liquid NMTOKEN #IMPLIED> </xs:sequence></xs:complexType>
<!ATTLIST name tablet NMTOKEN #IMPLIED> </xs:element>
<!ELEMENT id (SSN|DEA)> <xs:element name=‘‘patient’’>
<!ELEMENT SSN (#PCDATA)> <xs:complexType><xs:sequence><xs:element ref=‘‘name’’/>
<!ELEMENT DEA (#PCDATA)> <xs:element ref=‘‘id’’ minOccurs=‘‘1’’ maxOccurs=‘‘unbounded’’/>
<!ELEMENT gender (#PCDATA)> <xs:element ref=‘‘gender’’/> <xs:element ref=‘‘DOB’’/>
<!ELEMENT DOB (month, day, year)> <xs:element ref=‘‘address’’ ‘‘minOccurs=‘‘1’’ maxOccurs=‘‘unbounded’’/>
<!ELEMENT address (#PCDATA)> <xs:element ref=‘‘phone’’ minOccurs=‘‘0’’ maxOccurs=‘‘unbounded’’/>
<!ELEMENT phone (#PCDATA)> </xs:sequence></xs:complexType></xs:element>
<!ELEMENT physician (name, address+, phone+, id+)> <xs:element name=‘‘name’’>
<!ELEMENT month (#PCDATA)> <xs:complexType mixed=‘‘true’’>
<!ELEMENT day (#PCDATA)> <xs:attribute name=‘‘liquid’’ type=‘‘xs:NMTOKEN’’ use=‘‘optional’’/>
<!ELEMENT year (#PCDATA)> <xs:attribute name=‘‘tablet’’ type=‘‘xs:NMTOKEN’’ use=‘‘optional’’/>
<!ELEMENT interchange (#PCDATA)> </xs:complexType></xs:element>. . .

</xs:schema>

Fig. 1. The corresponding tree of XML schema (XSD/DTD) for Table 1.
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and, with, for, to, in, by, on, and the), and inflection (plurals and verb
conjugations), and replace the short word by its full name. For
example, prescribed.date becomes prescribed and date; DOB be-
comes date, of, and birth. The name similarity between two ele-
ments e1 and e2 is:

NaSimðe1; e2Þ ¼
ne1\e2

maxðne1 ;ne2 Þ
ð4Þ

where ne1\e2 is the number of matching characters between ele-
ments e1 and e2; max is the maximum value; ne1 and ne2 are the
lengths of the elements e1 and e2, respectively. For example,

NaSimðcure; curedÞ ¼ ncure\cured

maxðncure;ncuredÞ
¼ 4

5
¼ 0:8

In the case that one of the two elements is processed by the tok-
enization step, then the name similarity of these two elements is
presented as in matrices (5) and (6):

NaSimðE1; E2Þ ¼

NaSimðe11 ; e21 Þ � � � NaSimðe11 ; e2nÞ

..

. . .
. ..

.

NaSimðe1m ; e21 Þ � � � NaSimðe1m ; e2n Þ

2
664

3
775; m P n

ð5Þ

NaSimðE2; E1Þ ¼

NaSimðe21 ; e11 Þ � � � NaSimðe21 ; e1m Þ

..

. . .
. ..

.

NaSimðe2n ; e11 Þ � � � NaSimðe2n ; e1m Þ

2
664

3
775; m < n

ð6Þ

where m and n are the number of words in the token sets of the ele-
ments E1 and E2, respectively; NaSim(e1, e2) is the name similarity
between elements e1 and e2, determined by Eq. (4). The name sim-
ilarities of two elements E1 and E2 in the matrices (5) and (6) are
determined by the following Eqs. (7) and (8), respectively:

NaSimðE1; E2Þ ¼
Pm

i¼1maxn
j¼1ðNaSimðe1i

; e2j
ÞÞ

m
ð7Þ

NaSimðE2; E1Þ ¼
Pn

i¼1maxm
j¼1ðNaSimðe2i

; e1j
ÞÞ

n
ð8Þ

where max is the maximum similarity value of each row in the
matrices.

The next factor that affects the semantic similarity between two
elements is the cardinality constraint. It is declared as minOccurs
and maxOccurs in the XSD document. These terms define the min-
imum and maximum number of occurrence times of an element in
the XML instances.

We propose a novel metric to measure the constraint similarity
(CaSim) between two duplicate elements e1 and e2. For the deter-
mined values of minOccurs and maxOccurs, we use the following
equation to compute their cardinality constraint similarity:

CaSimðe1ði1; a1Þ; e2ði2; a2ÞÞ ¼
1� je1 :i1�e2 :i2 j

e1 :i1þe2 :i2

� �
þ 1� je1 :a1�e2 :a2 j

e1 :a1�e2 :a2

� �
2

ð9Þ

In (9), i1 and i2 are short forms of minOccurs for elements e1 and
e2, whereas a1 and a2 are similarly short forms of maxOccurs. The
minOccurs values are usually either 0 or 1, and maxOccurs values
are either 1 or unbound. In most cases, the value of maxOccurs is
undetermined (unbound). To compute the value of CaSim for the
unbound value, we define the following function:

e1½maxOccurs ¼ unbound� ¼ 5 �maxðe2½maxOccurs�Þ ð10Þ

where max is the determined value of maxOccurs of the element e2.

http://www.w3.org/2001/XMLSchema
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Eq. (10) is proposed based on our survey on the dataset (XSD
and XML instances). The appearance time of an attribute with
maxOccurs = unbound is usually approximately 5 times greater
than the maximum values of the determined maxOccurs. In the
case that all maxOccurs in the XSD document are undetermined
(unbound), we assign them values of 5. Applying Eq. (9) to this
value, we obtain the similarity of the attribute’s cardinality
constraint.

Sometimes the values of the minOccurs and maxOccurs are
retrieved from other indicators. For instance, maxOccurs and
minOccurs values of Order and Group indicators (any, all, choice,
sequence, group name, and group reference) are 1.

For the DTD document, the cardinality constraints are declared
by the characters ‘‘?’’ (min = 0, max = 1), ‘‘ + ’’ (min = 1, max = un-
bound), and ‘‘�’’ (min = 0, max = unbound). Similarly, we can deter-
mine the value CaSim of an element in a DTD document by
applying Eqs. (9) and (10). For elements without constraint decla-
rations, we assume that their min and max values are 1.

The datatype similarity (DtSim) property employs the distance
measure [17] to compute the distance similarity of each datatype
pair in the hierarchy tree proposed by W3C as follows:

DtSimðe1; e2Þ ¼
2�D3

D1 þ D2 þ 2�D3
ð11Þ

where D3 is the number of nodes from the common node of ele-
ments e1 and e2 to the root node, and D1 and D2 are the number
of nodes from the elements e1 and e2, respectively, to their common
node.

The child similarity of duplicate elements in a schema is com-
puted based on Definition 3, as follows:
Definition 3. Given that the child name of the element E1 is e1 and
the child name of the element E2 is e2, the child similarity (ChSim)
between two duplicate elements E1 and E2 is defined as the
weighted sum of the name similarity (NaSim) and the cardinality
constraint similarity (CaSim).

ChSimðe1; e2Þ ¼ d�1NaSimðe1; e2Þ þ d�2CaSimðe1; e2Þ ð12Þ

where d1 and d2 are the weight parameters, d1 = d2 = 0.5; NaSim is
determined by Eqs. (4), (7), (8); CaSim is measured by Eqs. (9) and
(10).

Usually, one element contains more than one child, thus the
child similarity of duplicate elements can be presented as matrices
(13) and (14):

ChSimðE1; E2Þ ¼

ChSimðe11 ; e21 Þ � � � ChSimðe11 ; e2s Þ

..

. . .
. ..

.

ChSimðe1r ; e21 Þ � � � ChSimðe1r ; e2s Þ

2
664

3
775; r P s

ð13Þ

ChSimðE2; E1Þ ¼

ChSimðe21 ; e11 Þ � � � ChSimðe21 ; e1r Þ

..

. . .
. ..

.

ChSimðe2s ; e11 Þ � � � ChSimðe2s ; e1r Þ

2
664

3
775; r < s

ð14Þ

where r and s are the numbers of child elements of E1 and E2,
respectively; ChSim(e1, e2) is the child similarity of elements e1

and e2, and it is determined by Eq. (12). The child similarities of
two elements E1 and E2 in the matrices (13) and (14) are deter-
mined by Eqs. (15) and (16), respectively:

ChSimðE1; E2Þ ¼
Pr

i¼1maxs
j¼1ðChSimðe1i

; e2j
ÞÞ

r
; r P s ð15Þ
ChSimðE2; E1Þ ¼
Ps

i¼1maxr
j¼1ðChSimðe2i

; e1j
ÞÞ

s
; r < s ð16Þ

In the case that one of the duplicate elements is a leaf node
(meaning it contains no child node), the child similarity of this
twin element is 0.

Similar to child similarity, sibling similarity between duplicate
elements is computed based on the following equation:

SbSimðe1; e2Þ ¼ e�1NaSimðe1; e2Þ þ e�2CaSimðe1; e2Þ ð17Þ

where e1 and e2 are the weight factors, e1 = e2 = 0.5.
Given that the number of sibling elements in E1 is x and the

number of sibling elements in E2 is y, the matrix of sibling similar-
ity is similar to (13) if x P y and similar to (14) if x < y. The sibling
similarities of duplicate elements in these two cases are computed
by Eqs. (18) and (19):

SbSimðE1; E2Þ ¼
Px

i¼1maxy
j¼1ðSbSimðe1i

; e2j
ÞÞ

x
; x P y ð18Þ
SbSimðE2; E1Þ ¼
Py

i¼1maxx
j¼1ðSbSimðe2i

; e1j
ÞÞ

y
; x < y ð19Þ

Depending on the expected similarity value, the duplicate ele-
ments can be classified into two groups, similar and non-similar.
The transforming strategies in Section 3.2 are then applied to
transform these duplicates into the appropriate OWL concepts. In
this paper, we use the threshold value 0.7 to classify the duplicate
elements. The value of 0.7 was chosen based on our observation of
experimental results: At the threshold of 0.7, the error rate of clas-
sification is greatly smaller than other thresholds. See Section 4.2
for details.
3.2. Transforming DTD/XSD into the OWL ontology

According to the characteristics of OWL definitions and the func-
tionality of DTD elements, we define suitable transforming nota-
tions from DTD elements into OWL concepts. In OWL, a class
defined by owl:class identifies a class or a non-instance item of the
ontology. Because DOCTYPE defining the root element of the docu-
ment usually contains other elements and attributes, it is converted
to an owl:class. If ELEMENT includes other elements or attributes or
refers to an entity notion, it is mapped to the owl:class as well. ATT-
LIST, which normally defines the attributes of the document, is
transformed into owl:DatatypeProperty by default. However, if ATT-
LIST contains other entity references, we map it to an owl:class be-
cause it has the same functionality of the class. This notion was
not mentioned in our previous work [12].

In OWL, a property is divided into two types, ObjectProperty and
DatatypeProperty. Because ObjectProperty specifies the relationship
between two instances that belong to the same or different classes
[7], we use ObjectProperty to describe the relationship among OWL
classes. The DatatypeProperty indicates the relationship between
instances and RDF literals. The rdfs:domain and rdfs:range, which
restrict the anterior and posterior values of a property, respec-
tively, are used as a supplement for the DatatypeProperty and
ObjectProperty. Moreover, to prevent a member of one class from
being a member of another class, we used owl:disjointWith. Other
OWL descriptions such as owl:unionOf, owl:DataRange, owl:oneOf,
rdf:first, and rdf:rest are also utilized to improve the expressiveness
of OWL attributes. Details of the transformation model from DTD
and XSD into OWL are presented in Table 2.

Furthermore, unlike XML, OWL does not allow identical names.
Thus, when our procedure meets an element or attribute that has
the same name as the previous node, two solutions are proposed:



Table 2
The transforming correspondences between DTD/XSD and OWL.

DTD XSD OWL representation

Type rdfs:domain rdfs:range

DOCTYPE (root) element@name, complexType owl:class, owl:disjointWith Class name Child name
owl:ObjectProperty

ELEMENT contains
Other elements element@name, complexType owl:class, owl:disjointWith Class name Child name

owl:ObjectProperty
ENTITY reference only element@ref owl:class, owl:disjointWith
Data type only element@name, complexType

mix=‘‘true’’|
owl:DatatypeProperty Attribute name Datatype

simpleType|element@type

ENTITY contains
>1 attributes element@name, complexType mix=‘‘true’’ owl:DatatypeProperty,

owl:subPropertyOf
Attribute name Datatype

simpleType|>1 attribute@name
One attribute element@name, complexType

mix=‘‘true’’|
owl:DatatypeProperty Attribute name Datatype

simpleType|element@type

ATTLIST contains
Other property >1 attribute@name, extension@base| owl:DatatypeProperty Attribute name Datatype

restriction@base rdfs:subPropertyOf
Data type only 1 attribute name owl:DatatypeProperty Attribute name Datatype
ENTITY reference attribute@ref owl:class, owl:ObjectProperty Class name Child name

ELEMENT element-name (child1, child2, . . .) sequence owl:intersectionOf
ELEMENT element-name

(child1|, child2|, . . .)
choice owl:unionOf

+, �, ? maxOccurs| minOccurs
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(1) If this duplicate element is highly similar to the previous ele-
ment, the procedure uses owl:unionOf to connect the parent
nodes of these duplicates in the same domain.

(2) Otherwise, the procedure renames the duplicated element
by adding the parent element’s name along with an under-
score ‘_’ character between the parent’s name and the dupli-
cate’s name.

For example, because the value of DupSim between elements
name of the patient and name of the physician is 0.8, which is
higher than our threshold, the two elements name are combined
to one element name and their domain consists of the parents of
the two elements. The OWL description of two elements name is
as follows:

<owl:DatatypeProperty rdf:about=‘‘#name’’>
<rdfs:domain> <owl:Class>

<owl:unionOf rdf:parseType=‘‘Collection’’>
<owl:Class rdf:about=‘‘#physician’’/>
<owl:Class rdf:about=‘‘#patient’’/>

</owl:unionOf> </owl:Class>
</rdfs:domain>

<rdfs:range rdf:resource=
‘‘http://www.w3.org/2001/XMLSchema#string’’/>

</owl:DatatypeProperty>

However, because the value of DupSim between elements name
of the drug and name of the physician (or patient) is 0.48, which is
lower than our threshold (0.7), the element name of the drug is
renamed by adding its parent name before its name. Its OWL
definition is as follows:

<owl:DatatypeProperty rdf:ID=‘‘drug_name’’>
<rdfs:range rdf:resource=

‘‘http://www.w3.org/2001/XMLSchema#string’’/>
<rdfs:domain rdf:resource=‘‘#drug’’/>

</owl:DatatypeProperty>
4. Experiment evaluation
owl:maxCardinality, owl:minCardinality
4.1. Evaluation setup

In this section, we describe our experimental setup. We first
discuss the implementation language for transformation. Then,
we present performance metrics for evaluating the quality of
transformation, and then describe the real-world schemas used
in the experiment.

The transformation language used in this experiment is XSLT
(eXtensible Stylesheet Language Transformation) [29]. XSLT is ap-
plied to an XML schema with Visual C#. We choose XSLT because
its natural purpose is to act as a transformation tool for extensible
languages.

We evaluate the proposed transforming strategies by match-
ing an XSD document with an OWL ontology to determine the
true matches, and compare our results with related methods.
To assess the quality of the matching system, we use precision
and recall [13,25]. Given the reference matching, R (such as that
resulted by related methods), the Precision of the matching pro-
duced by
S-Trans, T, is computed as the following equation:

PrecisionðR; TÞ ¼ jR \ Tj
jTj ð20Þ

Recall specifies the share of real correspondences:

RecallðR; TÞ ¼ jR \ Tj
jRj ð21Þ

Although precision and recall are the most widely used mea-
sures, when comparing matching systems, one may prefer to have
only a single measure. For this reason, two measures, F-measure
and Overall [13], are introduced to aggregate the precision and
recall.

F-measure ¼ 2�
precision�recall

precisionþ recall
ð22Þ

http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/2001/XMLSchema#string


Table 3
The characteristics of the tested schemas.

# Schema name File size
(KB)

#
Nodes

Max
depth

#
Duplicates

1 Drug_medicament 180 683 9 0
2 Patient-admission 40 240 4 7
3 Healthcaremetadata 5523 1071 11 16
4 Pathology.report 328 778 5 14

Fig. 2. The error rate of classification at different thresholds.
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Overall is defined as follows:

overall ¼ recall� 2� 1
precision

� �� �
ð23Þ

To obtain practical evidence, we applied our transformation to
four healthcare XML documents: particularly, (1) drug_medica-
ment.xml [26], (2) genertic_risk.xml [26], (3) healthcaremetadata.xsd
[27], (4) pathology.report.xml [27]. The corresponding schemas of
the test cases numbered (1), (2), and (4) are generated with a
schema converter [28]. The characteristics of the four schemas
are presented in Table 3.

Because there is no supporting tool for matching between DTD
and the OWL model, in this section, we only compare our transfor-
mation of XSD into the OWL ontology with one transforming meth-
od proposed by Hannes et al. [7] and with two matching methods
introduced by Toni et al. [10] and COMA++ [14].
Fig. 3. Evaluation results, drug_medicament schema.

Fig. 4. Evaluation results, patient_admission schema.
4.2. Results

This section provides evaluation results for the test cases in Sec-
tion 4.1. First, we conducted an experiment to determine the best
threshold value for classifying duplicate elements. Second, we car-
ried out another set of experiments to compare our work with re-
lated approaches. Lastly, we assessed the quality of each proposed
measuring factor with S-Trans.

Fig. 2 shows how error rates for classifying duplicate elements
change as we use different threshold values for the DupSim mea-
sure. For the three schemas including duplicate elements in Table
3, we manually classified into two groups: similar and non-similar,
then computed the classification error rate at each threshold (in
the range 0.1–1.0). The weighted average of the error rates for
the three schemas is computed by using the number of duplicate
pairs in each schema as the weighted factor.

Fig. 2 shows that very small or very large threshold values result
in a large number of error rates. Particularly, at the threshold val-
ues ranging between 0.1 and 0.3, the average error rate of the clas-
sification is nearly 38%. This number decreases to approximately
27% at the threshold values between 0.45 and 0.55 and declines
to 2% at the threshold value of 0.7. From the threshold values of
0.75 and higher, the error rate values steadily climb up and are
highest (62%) at the threshold values of 0.95 and 1.0. Because the
error rate of classification achieves the minimum value at the
threshold of 0.7, we use 0.7 as the classifying value to separate
the duplicates into two groups, similar and non-similar.

The comparisons of our work with related methods are shown
in Figs. 3–6.

In Fig. 3, S-Trans performs as well as COMA++ and outperforms
Hannes and Toni’s methods in terms of quality indicators. The
main reason for this improved performance is that the drug_medi-
cament schema does not contain any duplicate; thus, S-Trans does
not change or integrate any XML element. Therefore, the COMA++
method can match 100% of XML elements with OWL concepts.
Hannes’s method, however, renames all complex and simple
elements by adding ‘‘has’’ and ‘‘dtp’’ prefixes, and Toni’s method
changes the XML elements by replacing them with the XPath
expressions. Therefore, methods of Hannes and Toni result in
fewer matches. However, Toni’s method only changes the
complex elements, whereas Hannes’ method alters most of ele-
ments and properties. Therefore, Toni’s approach is slightly better



Fig. 5. Evaluation results, healthcaremetadata schema.

Fig. 6. Evaluation results, pathology.report schema.

Fig. 7. Quality of S-Trans, PrSim, ChSim, SbSim, and CaSim.
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than Hannes’ approach in terms of matching quality between
XML and OWL.

In the case of larger-sized XML schema, as well as cases with
more duplicate elements, S-Trans still outperforms other methods.
Particularly, S-Trans’s overall scores are over 84% in three test
cases; see Figs. 4–6. Hannes’ method works very poorly in test
cases #3 (Fig. 6); its overall value is only 4% compared with 31%,
51%, and 84% of Toni, COMA++, and S-Trans, respectively.

Furthermore, to determine the most important factor that af-
fects the similarity values, we separated four similarity factors
and compared them with their combination (S-Trans). The compar-
ison results are presented in Fig. 7.

Fig. 7 shows that CaSim has the lowest quality; its overall qual-
ity is only 7% compared with 24% for PrSim, 50% for ChSim, and 59%
for SbSim. The reason for this difference in quality is that most
duplicates have similar CaSim. However, we can also observe that
the combination of all similarity factors outperforms SbSim; there-
fore, it is preferable to use multiple similarity measures instead of
a single measure.
5. Conclusions

The S-Trans method presented in this paper allows the auto-
matic transformation of XML schema (XSD or DTD) into the OWL
ontology. Our procedure outperforms the existing methods due
to the following four reasons. First, when transforming all the ele-
ments of an XML document into OWL, our algorithm retains the
original structure and captures the implicit semantics expressed
in the XML document. Second, a component in DTD or XSD is con-
sidered as a class or a property or a data type based on its defini-
tion and its detail descriptions, which causes the result to be
independent from users’ opinions. Third, the languages used in
our procedure are utilized according to their original functions.
DTD or XSD is used for defining XML structure, XML is used for
describing instances, and OWL is used for providing definitions
and relationships between concepts. To solve the duplicate prob-
lem, we proposed several novel metrics to measure the semantic
similarity between each duplicate pair. On the basis of the similar-
ity results and the introduced transforming strategies, duplicate
elements are transformed into the appropriate OWL concepts.
Our experimental evaluation shows that a combination of similar-
ity factors, such as parent, child, sibling, and cardinality con-
straints, provides the best similarity values of duplicates
compared with using single similarity factor.

We hope that this research has created a bridge to narrow the
gap between XML data and the OWL ontology in a semantic way.
If this method is popularized, a large amount of the XML healthcare
data on the Web today can be interpreted into the meaningful OWL
ontology, which is particularly useful for the Semantic Web, and
medical applications.
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