
Accepted Manuscript

Change Management in Evolving Web Ontologies

Asad Masood Khattak, Khalid Latif, Sungyoung Lee

PII: S0950-7051(12)00132-3

DOI: http://dx.doi.org/10.1016/j.knosys.2012.05.005

Reference: KNOSYS 2306

To appear in: Knowledge-Based Systems

Received Date: 17 November 2011

Revised Date: 11 May 2012

Accepted Date: 14 May 2012

Please cite this article as: A.M. Khattak, K. Latif, S. Lee, Change Management in Evolving Web Ontologies,

Knowledge-Based Systems (2012), doi: http://dx.doi.org/10.1016/j.knosys.2012.05.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.knosys.2012.05.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.knosys.2012.05.005

Change Management in Evolving Web Ontologies

Asad Masood Khattak a, Khalid Latif b, Sungyoung Lee a,∗

aUbiquitous Computing Lab, Department of Computer Engineering, Kyung Hee University (Global Campus), Korea
bSchool of Electrical Engineering and Computer Science, National University of Sciences and Technology, H-12 Campus

Islamabad, Pakistan

Abstract

Knowledge constantly grows in scientific discourse and is revised over time by different stakeholders, either collabora-
tively or through institutionalized efforts. The body of knowledge gets structured and refined as the Communities of
Practice concerned with a field of knowledge develop a deeper understanding of the issues. As a result, the knowledge
model moves from a loosely clustered terminology to a semi-formal or even formal ontology. Change history man-
agement in such evolving knowledge models is a an important and challenging task. Different techniques have been
introduced in the research literature to solve the issue. A comprehensive solution must address various multi-faceted
issues, such as ontology recovery, visualization of change effects, and keeping the evolving ontology in a consistent
state. More so because the semantics of changes and evolution behavior of the ontology are hard to comprehend.

This paper introduces a change history management framework for evolving ontologies; developed over the last cou-
ple of years. It is a comprehensive and methodological framework for managing issues related to change management
in evolving ontologies, such as versioning, provenance, consistency, recovery, change representation and visualization.
The Change history log is central to our framework and is supported by a semantically rich and formally sound
change representation scheme known as Change History Ontology. Changes are captured and then stored in the log
in conformance with the change history ontology. The log entries are later used to revert ontology to a previous con-
sistent state, and to visualize the effects of change on ontology during its evolution. The framework is implemented
to work as a plug-in for ontology repositories, such as Joseki and ontology editors, such as Protege. The change
detection accuracy of the proposed system Change Tracer has been compared with that of Changes Tab, Version
Log Generator in Protege; Change Detection, and Change Capturing of NeOn Toolkit. The proposed system has
shown better accuracy against the existing systems. A comprehensive evaluation of the methodology was designed
to validate the recovery operations. The accuracy of roll-back and roll-forward algorithms was conducted using dif-
ferent versions of SWETO Ontology, CIDOC CRM Ontology, OMV Ontology, and SWRC Ontology. Experimental
results and comparison with other approaches shows that the change management process of the proposed system is
accurate, consistent, and comprehensive in its coverage.

Key words: Ontology Recovery, Change History Ontology, Ontology Evolution

∗ Corresponding author. Tel: +82-31-201-2514
Email addresses: asad.masood@oslab.khu.ac.kr (Asad Masood Khattak), khalid.latif@seecs.nust.edu.pk (Khalid

Latif), sylee@oslab.khu.ac.kr (Sungyoung Lee).

Preprint submitted to Elsevier 19 May 2012

1. Introduction

Ontologies are formal descriptions of a shared conceptualization of a domain of discourse [14]. Their
usage is wide spread in information systems, especially when building a lingua franca for resolving the
terminological and conceptual incompatibilities between information networks of varying archetype and
different provenance [41].

One of the crucial tasks faced by practitioners and researchers in knowledge representation area is to
efficiently encode human knowledge in ontologies. Maintenance of usually large and dynamic ontologies, and
in particular adaptation of these ontologies to new knowledge, is one of the most challenging problems in
Semantic Web research [10,26]. Due to the uncontrolled, decentralized, and complex nature of the Semantic
Web, ontology change management is a complicated and multifaceted task. Ontology change management
deals with the problem of deciding which modifications to perform in an ontology; implementation of these
modifications; and the management of their effects in dependent data structures, ontologies, services, appli-
cations, and agents [11]. This has led to the emergence of several different, but closely related, research areas,
such as ontology evolution, versioning, integration, and merging [11,15,34]. Ontology evolution research also
deals with other associated problems, such as ontology matching, which otherwise are fundamentally dif-
ferent [22]. Ontology evolution covers modifications in ontology when there is a certain need for a change
as Communities of Practice concerned with the field of knowledge develop a deeper understanding of the
domain of discourse. Ontology evolution takes place when the perspective under which the domain is viewed
has changed [35].

The ontology evolution process deals with the growth of the ontology as well as capturing and accom-
modating new information [28,43]. As an ontology evolves to a new state, the dependant ontologies and
services may become invalid [3,11,22]. Consequently, ontology change management solutions have to an-
swer a number of questions [12]. One such question is, “how to maintain all the changes in a consistent
and coherent manner?” During ontology enrichment, modifications are made to the ontology and it evolves
from one consistent state to another without preserving information about the previous state. This makes
it harder to refer to the previous state unless the changes are preserved in some form. Moreover, the role of
change history information becomes critical when an unauthorized user makes changes, or when an ontology
engineer wants to revert the changes. A storage structure for such information is also crucial for effective
retrieval. Other aspects, such as change traceability and effective visualizations of ontology changes, must
also be taken care of by a comprehensive change management framework.

The general aim of this research work, is to provide a mechanism for temporally tracking down changes to
an ontology throughout it’s life span. In particular the objective is to work on ontology change management,
recovery, and visualization of changes and their effects on an ontology to understand the ontology’s evolution
behavior. To achieve this, all these changes are maintained and managed in a coherent manner.

A Semantically enriched Change History Ontology (CHO) is developed and used to record the ontology
changes in a Change History Log (CHL). For proof of the concept, we have developed the system as a plug-in
for the ontology editor Protege, that listens and logs all of the ontology changes in CHL. Afterwards, these
logged changes are used for ontology recovery (Roll Back and Roll Forward) purposes. We have designed and
implemented the Roll Back and Roll Forward algorithms. The logged changes are also used for visualization
of changes and their effects at different stages of the evolving ontology. A play back feature is provided to
navigate the ontology history for a better understanding of its evolution behavior.

To verify and validate the developed system, we have compared the change capturing ability of the devel-
oped plug-in i.e., ChangeTracer , with the ChangesTab and VersionLogGenerator of Protege, ChangeDetection,
and ChangeCapturing of NeOn Toolkit. The results showed that our developed plug-in has better accuracy
than the ChangesTab, VersionLogGenerator , and ChangeDetection; whereas having almost same accuracy
as ChangeCapturing . Moreover, the proposed system uses difference() method to capture and log all the
missing changes, whereas, the other systems do not. For validating recovery algorithms (i.e., RollBack and
RollForward), we have tested them on standard data sets, i.e., Semantic Web Technology Evaluation Ontol-
ogy (SWETO) [1], CRM Ontology [6], Semantic Web for Research Communities (SWRC) Ontology [44], and
Ontology Metadata Vocabulary (OMV) Ontology [16]. A high accuracy for both algorithms was observed in

2

these tests. The overall working shows that the proposed system is accurate, consistent, and comprehensive
in nature.

The rest of this paper is organized as follows: Section 2 sets the stage by providing the background subject
knowledge about the change management and recovery techniques available in ontology and its sibling
domains. We have also contrasted our work with other related approaches. A comprehensive description of
the semantic structure developed for maintaining the ontology changes is presented in Section 3. Section 4
presents the different possible applications of CHL. Section 5 discusses the recovery algorithms with a running
example and presents implementation details. Section 6 presents the details on system implementation. In
Section 7, a comparative analysis and validation of results of the proposed methodology using Semantic Web
Technology Evaluation Ontology (SWETO), CIDOC Conceptual Reference Model, SWRC Ontology, and
OMV Ontology is presented. Finally, we have concluded the research work and have presented an outlook
to future research aspects in Section 8.

2. Background and Review

Ontology change management deals with the problem of deciding which modifications to perform in
ontology in response to a certain need for change [9]. This mechanism ensures that the required changes are
reflected in the ontology, and that it is in a consistent state. It deals with four different aspects [10,11,38].
(1) Ontology evolution is the process of modifying ontology in response to a certain change in the domain or
its conceptualization. (2) Ontology versioning is the ability to handle an evolving ontology by creating and
managing different versions of it. (3) Ontology integration is the process of composing the ontology from
information found in two or more ontologies covering related domains. (4) And lastly, ontology merging is
the process of composing the ontology from information found in two or more ontologies covering highly
overlapping or identical domains.

To support the dynamic nature of the Semantic Web, there must be some mechanism to cope with the
continuous evolution of domain models and knowledge repositories. Therefore, it is important to manage the
ontology changes effectively, and to maintain the relationship between the changes and models [30]. A lot of
research on schema evolution has been carried out in relational databases. Schema evolution handles changes
in a schema of a populated database without losing data, and provides transparent access to both old and
new data through the new schema. It is a complicated task considering the dynamics of ontologies [34],
and is also critical to the support of networked ontologies. Ontology evolution and versioning could be
amalgamated in a holistic approach to manage ontology changes as well as their effects.

2.1. Ontology Evolution Process

The process of ontology evolution has the following two variants: Ontology Population and Ontology
Enrichment. New instances of prior coded concepts can be introduced or existing instances can be updated.
As a result, the A-Box is changed and reflects new realities. This is called ontology population. Where as
in Ontology Enrichment process, new domain concepts; properties; or restrictions are introduced or existing
ones are updated. This later variant refers to the changes in the schema or T-Box. Overall, the process
of evolution takes ontology from one consistent state to another [4,43]. Fig. 1 depicts an overview of this
process and shows an interconnection of needed building blocks. In a holistic manner, these components
ensure that the ontology has evolved to a consistent new state, incorporating all the required changes. These
components are comprehensively discussed in the subsequent sections.

2.1.1. Change Detection and Description
The first step in the process is to detect changes, whether the suggested changes are already present in the

target ontology. Additionally, schema and individual level differences can be detected effectively, as reported
in [46]. In case the concept in focus is totally new and there is no additional information, then the H-Match
algorithm [5] is used. It takes the new concepts for addition and the target ontology as inputs, and returns
the best matching concept in the ontology in order to identify a taxonomic position for the concept [4].

3

Fig. 1. The Ontology Evolution Process when a change in ontology is requested.

The identified changes: elementary (atomic/simple) change e.g., renaming a class or a property; or com-
posite (complex) change e.g., merging two hierarchies with all their constraints applied, are represented in
a consistent format. These changes are first assembled in a sequence, followed by the change implemen-
tation. Our focus is on atomic changes and we also consider all the composite changes to be an ordered
sequence of atomic changes. Change History Ontology [20] representation is used to represent changes. This
representation is also used to log ontology changes in the Change History Log (CHL) discussed later.

2.1.2. Inconsistencies Detection
In this module ontology changes are analyzed in a systematic manner to ensure that the consistency of

the ontology is not lost. Two types of inconsistencies can occur: (1) syntactic inconsistencies occur when
an undefined or inconsistent construct from meta ontology level is used; (2) semantic inconsistencies occur
when the meaning of the ontology entity is changed due to the changes. To keep the ontology in a consistent
state, further changes are inferred by taking into account the newly introduced ontology changes, known as
induced and deduced changes respectively.

2.1.3. Change Implementation and Verification
This process covers the following three aspects: 1) change should be applied in complete isolation, and

must be atomic, durable, and consistent; 2) each implemented change is verified against the change request;
and 3) All the implemented changes must be logged in the CHL to keep track of the changes performed in
an ordered manner.

2.2. Ontology Versioning and Change Management

Various strategies could be adopted to preserve the changes in ontology, including the use of a database or
semi-structured log files. Different researchers have provided various techniques to maintain these changes.
For example, Changes Tab [33] in Protege and Change Capturing [38], listens to the ontology changes and
preserve them in a log file, which can be used to add, delete, and modify annotations about changes made
to the model. Changes Tab [33] and Change Capturing [38] can be configured for a client-server model in
Collaborative Protege and NeOn Toolkit respectively. It also comes with a conventional tabular view for
searching and navigating within the changes.

Klein [26] has done a significant work on change management for distributed ontologies. The author devel-
oped change ontology by modeling both the atomic and complex changes. A comprehensive categorization of

4

different ontology changes is also provided. This categorization and the change ontology are the foundation
of our research work, and are used to model a representational structure for ontology changes.

A similar approach to ours is used by [31] and [38]. Ontology changes are stored in a file as a script
following a temporal ordering. The script follows the specifications provided in the Log Ontology [30] and
OWL 2 Change Ontology [38]. Upon the user’s request, this script file is used to carry out undo or redo
operations. Such log files are maintained for particular editing sessions. This way, the command history of
one editing session is maintained within Protege and is a candidate for transparent query answering. The
Change Capturing is responsible for capturing the ontology changes and propagating them to the other
instances of the same ontology on different nodes, both locally and remotely [38]. We believe that there
should be a mechanism to maintain the changes for a longer time-span to support, for example, mining of
change patterns in a networked ontology.

2.3. Ontology and Database Recovery

To the best of our knowledge, no ontology editing tool addresses the ontology recovery problem. So it is
worth mentioning the recovery techniques available in related fields, such as databases. Relational databases
also change and these changes are managed by the database management system for recovery and traceability.
The basic purpose of database recovery is twofold. Firstly, it is used to recover the data after system/disk
crashes. Secondly, it preserves ACID properties in transactions, and brings the database into a consistent
state after transaction errors.

From the ontology recovery standpoint we are not concerned with system crashes. This aspect could easily
be delegated to the underlying storage system which can maintain a complete backup/shadow of the whole
ontology. On the other hand, recovery from inconsistencies doesn’t require a complete archival copy of the
database. Several techniques have been proposed in the literature to recover databases, among which logging,
check-pointing, shadowing (or shadow paging), and differential tables are the most prominent [7]. Instead
of directly updating the actual database tables for a change during a transaction, the intermediate updates
may be recorded in a sequential file known as transaction log. The log file serves as historical archive of the
recent database operations. Database systems can also maintain a checkpoint record in the log. This log can
later be used for data recovery, and to bring the database back into a consistent state.

Similar to the logging method, updates could be accumulated in the differential tables rather than making
the changes in the original table or maintaining a complete before image [18]. Three differential tables are
maintained for a single database relation: 1) a read-only copy of the base table; 2) a differential table
for insertion, wherein all the new tuples are first inserted in this differential table; 3) a deletion differential
table, wherein all the deleted tuples are maintained in this differential table. Consider, for example, a Student
relation. The read-only table for this relation could be referred to as StudentR, the insertion differential as
StudentD+, and the deletion differential table as StudentD−. The following equation could then be used to
reflect the updates in the actual table, where the union and difference operators are applied to changes in
temporal order.

Student = (StudentR ∪ StudentD+)− StudentD− (1)

2.4. Change Tracking and Visualization

Most of the previously discussed ontology change management systems focus mainly on detection and
archiving the ontology changes [26]. These changes are not used; however, for undo/redo operations during
collaborative ontology engineering [38], or even for ontology recovery. Change traceability and visualization
remains an under explored research areas.

In [39], the authors provided a structure for persistent storage of ontology changes and a limited support
for change visualization. The work reported in [39], introduces a scheme of logging and visualizing multiple
ontology changes. The process starts with detecting changes in two versions of ontology using Prompt [36]

5

and OntoView [27]. The history manager module then visualizes the changes that were detected and logged
in the repository, such as transformation of an attribute from a datatype property to an object property.

In a nutshell, most of the existing systems discussed here provide a mechanism for logging the ontology
changes. Their main limitations are: (1) For the most part these systems work on two versions of the same
ontology and target versioning rather than covering the ontology evolution process, (2) Temporal traceability
and recovery lacks in these systems, and (3) lastly, none of the systems support change visualization which
can assist in comprehending the effects of changes on the ontology. Change visualization can also help in
understanding the evolution pattern and behavior of an evolving ontology by visually navigating through
the history of all the changes.

3. Change History Ontology

Recovery and change traceability are essential ingredients of any change management system for evolving
ontologies. We propose here a scheme for representing ontology changes, referred to as Change History
Ontology (CHO). A comprehensive framework for change traceability is also presented later. The framework
helps in automatically detecting and logging all the changes, triggered by the change request from the
ontology engineer. Changes can be recorded according to the defined structure in the repository and can
later be utilized to bring the evolving ontology to a previous consistent state. Such a framework can also
benefit the temporal traceability of changes and the visualization of the change effects. Details of the Change
History Ontology are presented below.

3.1. Overview

A number of changes, ranging from concepts to properties, can affect an evolving ontology. Most of these
changes are discussed in greater length in previous literature [2,26,38]. An understanding of different ontology
changes is necessary to correctly handle explicit and implicit change requirements [11,15]. For that purpose
we have designed and developed an ontology to capture ontology change requirements and keep track of the
change history. The proposed Change History Ontology [20] reuses constructs from existing ontologies [30]
and ontology design patterns [13]. We have introduced new extensions to the existing schemes and some of
the notable mentions are discussed in the subsequent sections.

The core elements of CHO are the OntologyChange and ChangeSet classes. The OntologyChange class
has a sub-class called AtomicChange that represents all the class, property, individual, and constraint level
changes at atomic level. On the other hand, the ChangeSet bundles all the changes from specific time interval
in a coherent manner. The ChangeSet is responsible for managing all the ontology changes and arranges
them in time indexed fashion. This time indexing also classifies the ChangeSet as Instant type and Interval
type. Instant type ChangeSet holds only one change occurred at some time instant, whereas the Interval type
ChangeSet holds the changes occurred in a stretched time interval.

Different resources are referred using different prefixes in this work. It is important to explain the prefixes
used. The concepts under the “ch” prefix are used from change history ontology and the prefixes “log” and
“bib” represent the repository log and an example of evolving Bibliography ontology respectively. “xml” is
used for xml, “rdfs” for rdfs, and “owl” for owl namespaces.

3.2. Change Set

We initially introduced the notion of ChangeSet a couple of years ago [20]. The same has also been suggested
in Change Set Vocabulary [45]. The rationale is that individual changes are not performed in isolation and are
usually part of a particular session. On the contrary, ChangeSet can be used to group the individual changes
from a particular session in order to incorporate a holistic view over an ontology evolution. Logging changes
in sets also helps in maintaining and managing the ontology changes corresponding to specific sessions which
is also required for ontology recovery, as discussed later. The use of ChangeSet(s) is common in versioning
systems, such as CVS and SVN. A ChangeSet holds information about the changes made during an ontology

6

engineering session. A ChangeSet can span over a stretched interval of time. Its members, atomic changes,
are singleton changes on an ontology element at some instance of time. Different changes can be part of
the ChangeSet, such as modifying details of an ontology class or adding a new object property. ChangeSets
also help in maintaining the sequence and grouping of changes. The following example (Fig. 2) of ChangeSet
instance covers an ontology editing session spanning over half an hour:

log:ChangeSet01

rdfs:type ch:ChangeSet ;

ch:hasChangeSetType log:Interval ;

ch:hasChangeAuthor log:ChangeAgent01 ;

ch:startTime "2010-01-01 15:12:58+1" ;

ch:endTime "2010-01-01 15:43:11+1" ;

ch:hasChangeReason "Concept X is split into two levels" ;

ch:targetOntology http://seecs.nust.edu.pk/vocab/bib .

Fig. 2. A ChangeSet example with corresponding meta data including the change agent information, the reason for change, the

changed ontology, and the start and end times of the change event. The Fig shows the time spam of ChangeSet.

3.3. Conceptual Design Patterns

Recently, different ontology development methodologies have emerged [17,47], some of which advocate the
reuse of concepts and patterns from foundational ontologies [13]. More specifically, patterns are useful in
order to acquire, develop, and refine the ontologies. We have reused two of the fundamental ontology design
patterns. The Participation Pattern consists of a participant− in relation between the ontology resource and
the change event, and assumes a time indexing for it [13]. Time indexing is provided by the temporal location
of the change in a time interval, while the respective location within the ontology space is provided by the
participating objects (see Fig. 3 and 5). As an example, consider Fig. 4 as the description of a ChangeSet.

In Fig. 4, a ChangeSet instance is described using CHO. The start and end times of the changes are
reflected by startTime and endTime, respectively. It also logs information about the change agent and the
reason for the changes.

Change history ontology is the backbone of the proposed framework. It binds different components of the
framework togethers in order to effectively recover ontology from its previous state. In most of the previous
approaches, ontology changes are stored sequentially without preserving their dependence or interlinking
with other changes [8,11,26,30,38]. Change history ontology, on the contrary, uses ChangeSets to group and
time indexing of changes in a session to preserve coherence of all the ontology changes. A ChangeSet is a

Ontology

Resource OntologyChange

TimeInterval

+participant‐in

1..*

+temporal‐location 1+defined‐in1

Fig. 3. Realizing Participation Pattern in Change History Ontology.

7

log:ChangeSet192

rdfs:type ch:ChangeSet ;

ch:hasChangeSetType log:Interval

ch:hasChangeAuthor log:ChangeAgent2 ;

ch:startTime "2010-01-02 16:32:58+1" ;

ch:endTime "2010-01-02 16:53:11+1" ;

ch:hasChangeReason "Changes after applying rigidity meta property." ;

ch:targetOntology http://seecs.nust.edu.pk/vocab/bib .

Fig. 4. Example of a ChangeSet instance spanning over a time interval.

Fig. 5. Reification of time-indexed participation: ChangeSet is a setting for a change event, ontology resources participating in

that change event, and the time interval in which the change occurs [24].

setting for atomic changes. One ontology resource participates in a change event at one time interval. Fig. 5
shows diagrammatic depiction of this pattern. The complete change history ontology is available online 1 .
Core classes and concepts in the ontology are also shown in Fig. 6.

3.4. Provenance

The proposed change history ontology captures provenance information, such as the change author, reason,
and timestamp. The author can be an ontology engineer making changes using an ontology editor, or a
software agent requesting for some changes, such as an agent during an automatic ontology mapping task.
Fig. 7 depicts an instance of the ChangeAgent class from CHO.

3.5. Change Types

The change history ontology supports three types of change operations corresponding to the CRUD
interfaces in databases (except the read operation). Create allows the addition of new facts and vocabu-
lary in ontology, such as ClassAddition, PropertyAddition, and IndividualAddition. Update operation is used
for modifying existing triples, such as renaming a class, property, and individual through ClassRename,

1 http://uclab.khu.ac.kr/ext/asad/CHOntology.owl

8

Fig. 6. Snapshot representing core classes of Change History Ontology.

log:ChangeSet01

rdfs:type ch:ChangeSet ;

ch:hasChangeSetType log:Interval ;

ch:hasChangeAuthor log:ChangeAgent01 ;

...

log:ChangeAgent01

rdfs:type foaf:Person, ch:ChangeAgent;

ch:fullName "Asad Masood".

Fig. 7. Representation of the Author of a ChangeSet using CHO.

PropertyRename, and IndividualRename respectively. And lastly, Delete operation serves for removing ax-
ioms from the ontology, such as ClassDeletion, PropertyDeletion, and IndividualDeletion. The following axioms
depict parts of the conceptual representation of this aspect:

OntologyChange ≡ ∃changeTarget.(Class t Property t
Individual t Ontology) u ∃changeType.(

Create t Update t Delete) (2)

ClassChange ≡OntologyChange u ∀changeTarget.Class (3)

ClassAddition≡ ClassChange u ∀changeType.Create (4)

SubClassAddition≡ ClassAddition u ∀targetSubClass.Class

9

u = 1targetParent (5)

For instance, the snippet in Fig. 8 represents the addition of a new subclass. SubClassAddition is defined as
a subclass of ClassAddition and is a type of ClassChange event. The hasChangedTarget represents the newly
added class in the Bibliography ontology. As the new class is a subclass, the hasTargetParent property connects
the newly added class with its parent class through a subclass assertion. The hasTimeStamp represents the
exact time of the change event, whereas, the isPartOf connects the change to the corresponding ChangeSet
instance.

log:ClassAddition01

rdfs:type ch:SubClassAddition ;

ch:hasChangedTarget bib:Transaction ;

ch:hasTargetParent bib:Journal ;

ch:hasTimeStamp "2010-01-01 15:12:59+1" ;

ch:isPartOf log:ChangeSet01 .

Fig. 8. An example of Transaction class addition as a subclass of parent class Journal and its representation using CHO.

3.6. Temporal Ordering

A time stamp is added with each ontology change. Though a single change is performed at an instance
of time, it is common that several changes are performed over an extended time interval. A single change
is modeled as a change at a time instance, whereas a sequence of changes is considered as one ChangeSet
spanned over a time interval. So for every change entry that corresponds to a ChangeSet, a timestamp value
is added. This helps in keeping the ontology change entries in an order. The following snippet in Fig. 9 is
an example of timestamp value added to a Property delete event.

log:PropertyDeletion01

rdfs:type ch:PropertyDeletion ;

ch:hasChangedTarget bib:title ;

ch:hasPropertyType owl:DataType Property

ch:hasTimeStamp "2010-01-01 15:24:31+1" ;

ch:isPartOf log:ChangeSet01 .

Fig. 9. Example showing the timestamp value attached with the Property deletion change instance using CHO.

3.7. CHO Modeling Language

To represent the intricacy of changes in; classes, properties, individuals, and constraints, for example,
quite a large number of classes with associated object and datatype properties are modeled. This helps in
recording all the relevant information about a specific change. The properties in change history ontology,
which link the change with its target, are represented as annotation properties. Similarly, object properties
are modeled to hold the information of changing classes by setting their range to owl:class. Consequently,
the model still conforms to OWL-DL; however, it supports very limited DL inference. Advantages of this
approach are reducing the likelihood of error, avoiding string manipulation, and removing ambiguity about
the change target.

SubClassAddition≡ ClassAddition u ∀targetSubClass.Class

u = 1targetParent

10

3.8. Complex Changes

In addition to simple class additions, deletions, and renaming, complex facet modification information is
also recorded. Examples include property scope restrictions, equivalence, disjointness, and complex union
classes. Similarly, property modification details, such as change in domain/range, setting upper-bound and
lower-bound for property values, symmetric, equivalent, inverse, and functional property axioms, are also
recorded. Fig. 10 represent information about changes made in the domain of a property and is an example
of a complex change event. The Document class has two subclasses: TechnicalDocument and ResearchDoc-
ument. The Document class is also the domain of an object property author. Suppose, due to some reasons
the Document class gets deleted. This deletion is a complex change event as it will also result in deletion
of the subclasses and also unsetting the domain of author property. The system records all the changes one
by one at atomic level in a sequence. In this deletion event, the change order triggered by Protege is the
deletion of the subclasses first, then the deletion of domain of a property, and at the end the deletion of the
Document class. Proposed system listens to all these changes and logs them in CHL.

log:ClassDeletion01

rdfs:type ch:SubClassDeletion ;

ch:hasChangedTarget bib:TechnicalDocument ;

ch:hasTargetParent bib:Document ;

ch:hasTimeStamp "2010-01-01 15:14:47+1" ;

ch:isPartOf log:ChangeSet01 .

log:ClassDeletion02

rdfs:type ch:SubClassDeletion ;

ch:hasChangedTarget bib:ResearchDocument ;

ch:hasTargetParent bib:Document ;

ch:hasTimeStamp "2010-01-01 15:14:47+1" ;

ch:isPartOf log:ChangeSet01 .

log:DomainDeletion01

rdfs:type ch:DomainDeletion ;

ch:hasChangedTarget bib:author ;

ch:hasDomain bib:Document ;

ch:hasPropertyType owl:ObjectProperty ;

ch:hasTimeStamp "2010-01-01 15:14:48+1" ;

ch:isPartOf log:ChangeSet01 .

log:ClassDeletion03

rdfs:type ch:ClassDeletion ;

ch:hasChangedTarget bib:author ;

ch:hasTimeStamp "2010-01-01 15:14:48+1" ;

ch:isPartOf log:ChangeSet01 .

Fig. 10. Complex (compound) change resulting from a single change event (Document class deletion).

4. Change History Log (CHL)

In this section we introduce the change history logging scheme. On top of CHL, different applications are
possible and are briefly discussed in this section. The subsequent sections introduce and explain two of the
applications (log-based traceability and recovery procedures) discussed in this section.

Similar to relational databases, our methodology relies on a logging technique to persistently store ontology
changes. Logged changes help in recovering a previous state of the ontology after, for example, un-authorized

11

changes, version conflicts, or even an inconsistent state of ontology due to accidentally closing the ontology
editor. The changes are automatically preserved in a time-indexed manner in a triple store embedded with
the framework. Recovery is manually triggered by a knowledge engineer collaboratively building the ontology.
The change description in the log conforms to the change history ontology. Each entry in the log is an instance
of either the ChangeSet or OntologyChange class. The log also preserves the provenance information about
the changes, such as who made the changes, and when and why these changes were made.

The proposed change history management framework offers numerous benefits ranging from reconciling
ontology mappings to increased understanding of ontology evolution process. Some of its applications are
briefly discussed below.
Query Reformulation: As an ontology evolves with time, the systems using this ontology also need to

be updated to provide proper synchronization and avoid query breakage. To answer a user query, the
system first consults CHL to test if the underlying representation scheme has changed. If the ontology has
changed then the query from system is reformulated to accommodate the changes [30] and then executed
over the evolved ontology. This also helps in avoiding the breakage of query from a system which is still
not updated for the evolved ontology. Very recently a SPARQL-based push technique was proposed to
broadcast notifications to change listeners [42].

Reconciling Ontology Mappings: Providing reliable mappings among evolving ontologies is a challeng-
ing task [40]. CHL can contribute towards a solution for this problem. Mappings are basically established
between ontologies for resolving the terminological and conceptual incompatibilities. Ontology evolution
from one consistent state to another makes existing mappings between ontologies unreliable and stale
due to changes in the mapped resources. So there is a need for mapping evolution to eliminate discrep-
ancies from the existing mappings. For example, mappings are established between two ontologies. Due
to a change in any of the source ontologies, the existing mappings may become void. As CHL logs all
the changes, these changes can be used to reconcile the mappings between evolved ontologies instead of
re-initiating the complete mapping generation process, which is time consuming. For detailed procedure
on time efficient reconciliation of mappings between evolving ontologies, please refer to [24,25,29].

Change Management and Ontology Recovery: Change history log records all the changes with time-
indexing as per the design pattern in the CHO. Time-indexing helps in recovering the ontology into a
previous consistent state [21]. Managing ontology changes during evolution is also helpful for a new user to
get understanding of the changes made. In addition to change reason, annotations can also be added with
all the logged changes and associated artifacts to help understanding the changes in ontology, data, and
application [20]. The log can also be used to understand the semantics of change on the available ontology
constructs. As all the changes are logged, one can also try to deduce pattern of change by applying machine
learning algorithms.

Temporal Traceability of Ontology Changes: Ontology visualization tools and plug-ins are available
in abundance. None demonstrates ontology evolution and changes. A new breed of ontology visualization
tools can be implemented using change history log to visualize different ontology states. Such a visu-
alization of change effects on ontology can help in temporally tracing the ontology changes and better
understanding the evolution behavior of ontology [21]. When a user requests to visualize an ontology at
a particular time instant, all changes after that time interval are reverted back and the older version of
the ontology is regenerated and visualized.
We use a running example featuring a Bibliography ontology to show the process of logging the changes

in CHL. Consider two changes as a part of one ChangeSet. First change adds a new Author class in the
ontology and the second change sets Author as range of the property hasAuthor . Firstly, the process of
creating entries in the log is explained. Taking into account the first change, an individual of ClassAddition
is instantiated. The isPartOf property of this change instance is set to the active ChangeSet. Secondly, the
hasTimeStamp value of the atomic change is also recorded for time-indexing of change entries. For logging
the range addition entry, an individual of RangeAddition class from change history ontology is created and
the value for its hasChangedTarget predicate is set to the object property for which the range has changed.
The modified range information is then stored as a value of hasTargetRange property. Like all log entries,
the isPartOf property of the individual is set to the active ChangeSet and its hasTimeStamp value is also
stored with the individual. The code snippet given in Fig.11 represents these changes in RDF/N3 format.

12

log:ChangeSet192

rdfs:type ch:ChangeSet ;

ch:hasChangeSetType ch:Interval

ch:hasChangeAuthor log:ChangeAgent2 ;

ch:startTime "2010-01-02 16:32:58+1" ;

ch:endTime "2010-01-02 16:53:11+1" ;

ch:hasChangeReason "Changes after applying rigidity meta property." ;

ch:targetOntology http://seecs.nust.edu.pk/vocab/bib .

log:ChangeAgent192

rdfs:type ch:ChangeAgent, foaf:Person ;

foaf:name "Administrator" .

log:IntervalChangeSet2457

rdfs:type ch:ChangeSet ;

ch:hasChangeAuthor log:ChangeAgent192 ;

ch:startTime 00:00:46 ;

ch:endTime 00:03:21 ;

ch:hasChangeReason "User Request" ;

ch:targetOntology http://seecs.nust.edu.pk/vocab/bib .

log:ClassAddition245701

rdfs:type ch:ClassAddition ;

ch:hasChangedTarget bib:Author ;

ch:hasTimeStamp 1224702057078 ;

ch:isPartOf log:ChangeSet192 .

log:RangeAddition245701

rdfs:type ch:RangeAddition ;

ch:hasChangedTarget bib:hasAuthor ;

ch:hasPropertyType owl:ObjectProperty ;

ch:hasTargetRange bib:Author ;

ch:hasTimeStamp 1224702072640 ;

ch:isPartOf log:ChangeSet192 .

Fig. 11. Example of changes in Bibliography ontology represented using change history ontology constructs. The first change is
adding a new class Author and the second change is about adding Author as the range of the property hasAuthor

5. Ontology Recovery and Traceability

In this section, we explain the change recovery process to revert the logged changes. The ontology recovery
process is responsible for executing the changes on the ontology model in inverse manner and reverse chrono-
logical order. Changes are first converted to their inverse equivalents. For example (see Fig.11), ClassAddition
instances are translated to ClassDeletion, being its inverse equivalent. Similarly, RangeAddition instances are
converted to RangeDeletion. These inverse changes are then applied to the ontology in reverse temporal order
of their occurrences. The final outcome is the previous state of the ontology.

For the reason of reverting changes in order to recover ontology, the parser’s job is to parse the CHL for
all the ChangeSets (in descending order of their timestamp value) corresponding to the currently loaded
model. This descending order is also followed for implementing the inverse changes to revert the ontology
to its previous state. The detailed procedure is presented in the recovery Rollback/Undo Algorithm. This
algorithm reads and processes the member entries c∆, instances of OntologyChange, in the given ChangeSet,
S∆ i.e., c∆ ∈ S∆.

The RollBack algorithm supports roll back operations in order to recover the older state of the ontology.

13

(Rollback or Undo Algorithm) This algorithm assumes a pre-defined function, TimeIndexedSort for sort-
ing member entries of the ChangeSet based on their timestamp.
Input: An ontology O.
Input: An instance of ChangeSet, S∆ ∈ ChangeSet, which lists the changes made in the ontology O.
Output: The previous version O′ of the ontology O after reverting the changes mentioned in S∆.
1. /* Sort member entries of the ChangeSet in descending order of their timestamp*/
2. TimeIndexedSort(S∆, ‘DESC’)
3. foreach c∆ ∈ S∆ do
4. /* Process resource addition */
5. if c∆ : OntologyChange u ∃changeType.Create then
6. /* Remove the resource(s) which were target of the change */
7. O ← O − {x |〈c∆, x〉changeTarget}
8. else
9. /* Process resource deletion */
10. if c∆ : OntologyChange u ∃changeType.Delete then
11. O ← O + {x |〈c∆, x〉changeTarget}
12. else
13. /* Process modification*/
14. . . .
15. /* Implementation of this algorithm consists of a number of other conditional statements to check the
change type and to process it accordingly, such as for annotations.*/
16. endif
17. end

The algorithm for RollForward is given below which transforms the ontology to its next state. This algorithm
reads and processes the member entries c∆, instances of OntologyChange, in the given ChangeSet, S∆ i.e.,
c∆ ∈ S∆.

Consider two logged changes to the Bibliography ontology as described in Fig. 11. The first change is
adding a new class Author and the second change is about adding Author as the range of the property
hasAuthor . In order to revert these changes, the ChangeSet entries have to be processed in reverse order of
their hasTimeStamp values.

During the recovery phase, as described in RollBack Algorithm, all changes belonging to a ChangeSet are
sorted in a reverse chronological order and are implemented in the inverse manner on the currently loaded
model. For instance, the RangeAddition change is first transformed into a property RangeDeletion request
and then implemented. The formal representation of RangeDeletion (inverse of RangeAddition) is given in
Fig. 12:

log:RangeDeletion245701

rdfs:type ch:RangeDeletion;

ch:hasChangedTarget bib:hasAuthor;

ch:hasTargetRange bib:Author;

ch:hasPropertyType owl:ObjectProperty;

ch:hasTimeStamp 1224702072649;

ch:isPartOf log:ChangeSet2481 .

Fig. 12. Reverted (inverse of) range addition change.

Similarly, to delete a ClassAddition entry, the target class is selected and removed from the loaded model.
Any further changes will be reverted in the same manner and the updated ontology model will be preserved
along with the revision history. Algorithms for reverting different type of changes are given subsequently.

The Rollback and Rollforward algorithms are designed to revert the ontology to the previous or next state
respectively based on a user request. Both algorithms require the logged ontology changes for the recovery
process. For Rollback (or undo operation) the changes are retrieved from the history log and are processed

14

(Range Deletion) This algorithm unsets the range of a property P from class C .
Input: An ontology O, instance of ontology change that belong to ChangeSet, i.e., C∆ ∈ S∆, made in ontol-
ogy O.
Output: The previous state O′ of the ontology O after reverting the change of RangeAddition as
RangeDeletion mentioned by C∆.
1. if C∆ : OntologyChange u ∃changeType.RangeAddition then
2. /* Unset the range of P from C and update the ontology */
3. O ← O − {x |〈C∆, x〉changeTarget}
4. endif
5. end

(Class Deletion) This algorithm delete the class C from ontology.
Input: An ontology O.
Input: An instance of ontology change that belong to ChangeSet, i.e., C∆ ∈ S∆, made in ontology O.
Output: The previous state O′ of the ontology O after reverting the change of ClassAddition as ClassDeletion
mentioned by C∆.
1. if C∆ : OntologyChange u ∃changeType.ClassAddition then
2. /* Delete the class C from the ontology and update the ontology */
3. O ← O − {x |〈C∆, x〉changeTarget}
4. endif
5. end

in reverse chronological order and inverse of these changes are implemented in the ontology. On the flip
side, for redo operations, the required changes are retrieved from the history log and are implemented in the
ontology in chronological order of their timestamp values (c.f. RollForward Algorithm). In the later scenario,
reverse changes are not generated. The recovery algorithms work at the finest granularity level of atomic
change requests.

6. Implementation Details

We envisioned our proposed framework as an enabling component for the ontology editors. The framework
itself doesnt provide ontology editing services, rather it implements listeners (specific to an ontology editor)
to monitor and log changes. The framework was implemented for ontologies defined in rdfs and all vari-
ants of OWL. Various components were implemented in the framework to perform tasks related to change
history management. For example, the Change Logger component, preserves the changes, and the recovery
component, on top of all other components, provides ontology recovery services [21]. The component based
framework architecture is given in Fig. 13, whereas a detailed description of these components is given in
[19]. To validate the working of the proposed framework, we have also developed a TabWidget plug-in,
ChangeTracer Tab, for Protege ontology editor. Details of various modules are given below:

6.1. Change Listener

The Change listener module consists of multiple listeners which actively monitor various types of changes
applied to the ontology model in Protégé. Table 1 presents all the listeners that we have implemented using
the Protégé OWL API. ProjectListener listens for project related changes. One of its main functions is to
listen for the save or close commands to save the active ChangeSet instance in CHL. KnolwedgeBaseListener
is the most used listener for capturing the changes which are also triggered by the other listeners. This
listener overlaps with ClsListener, ClassListener, SlotListener, and PropertyListener. FacetListener also
overlaps with the ClsListener, ClassListener, SlotListener, and PropertyListener ; however, it also provides
additional axiom related change information. The InstanceListener overlaps with the KnolwedgeBaseListener

15

(RollForward or Redo Algorithm) This algorithm assumes a pre-defined function, TimeIndexedSort for
sorting member entries of the ChangeSet based on their timestamp.
Input: An ontology O.
Input: An instance of ChangeSet, S∆ ∈ ChangeSet, which lists the changes made in the ontology O.
Output: The next version O′ of the ontology O after re-implementing the extracted changes from CHL
mentioned in S∆.
1. /* Sort member entries of the change set in ascending order of their timestamp and select the most
recent one*/
2. TimeIndexedSort(S∆, ‘ASC’)
3. foreach c∆ ∈ S∆ do
4. /* Process resource addition */
5. if c∆ : OntologyChange u ∃changeType.Create then
6. /* Re-implement (insert) the resource(s) which were target of the change */
7. O ← O + {x |〈c∆, x〉changeTarget}
8. else
9. /* Process resource deletion */
10. if c∆ : OntologyChange u ∃changeType.Delete then
12. /* Re-implement (delete) the resource(s) which were target of the change */
11. O ← O − {x |〈c∆, x〉changeTarget}
12. else
13. /* Process modification*/
14. . . .
15. /* Implementation of this algorithm also consists of a number of other conditional statements to check
the change type and to process it accordingly.*/
16. endif
17. end

for capturing the instance level changes. When a change is committed, its corresponding listener collects the
necessary contextual information, such as change agent, target, and updated value.

6.2. Change Logger

The changes captured by the listeners are logged with conformance to CHO. All the changes are handled
at the atomic level. This aspect covers both atomic changes, such as deleting a single concept, as well as
complex scenarios e.g., deleting a sub-tree involving multiple concepts. Atomic change are easy to handle. In
contrast, compound changes are sometimes harder to implement. For instance, deleting a ChangeAgent class
will also impact its subclasses. As a result, every change requests has to be handled at atomic level. Logging
component ultimately plays a critical role in maintaining atomicity of changes, and undo or redo operations,
in case of a failure. Logging component uses CHO specifications for persistent storage of changes. Fig. 14
shows the details of change history. The tabular view of different ChangeSet instances are given and on the
selection of a particular ChangeSet instance from the grid, its relevant information is displayed in the below
panel. The dropdown-box contains the details of all the changes corresponding to the selected ChangeSet
and its color represent the nature of that change. When a change element is selected from the dropdown-box,
its corresponding change meta information is displayed. For instance: in Fig. 14, hasReceivedDate property
change is selected which is of type addition and the corresponding details follow.

6.3. Change History Log Implementation

CHL is a repository that keeps track of all the changes made to ontology. It is also required for reversibility
purpose when an ontology engineer wants to undo or redo some of the changes. The log uses Jena based

16

Communication
Network

Hosts

Executes

Web Resources
Web Server

Server‐side Scripts

Fetch DataData Store
(RDBMS)

DNS Server
(Resolve Named Addresses)

Change Logger

Change ListenerRecovery

Post Changes

Change History
Ontology

Visualization

Parser (Jena2 API)

Change History

Ontology Editor/IDE
Interface

Fig. 13. Component based framework architecture of the proposed system. The architecture is published in [19].

Fig. 14. Tabular view of changeSets and atomic changes in the ontology.

17

Change Listener Description

ProjectListener It listens all the project related events:

like saving, closing, form changed, and

runtime class widget created.

KnowledgeBaseListener Helps in listening changes related to

the model. It overlaps in its provided
methods with all the listeners listed be-

low.

ClsListener Helps in capturing the class, sub-class,
and super-class level changes.

ClassListener Similar to ClsListener, it helps in cap-
turing the class, sub-class, and super-

class level changes.

SlotListener Helps in capturing the slot, sub-slot,

and super-slot level changes.

PropertyListener Helps in capturing the class property,
sub-property, and super-property level

changes.

FacetListener It helps in capturing the changes, such

as restrictions, on frames.

InstanceListener It helps in capturing changes related

instances and individuals.

Table 1
List of change listeners implemented in the Change Tracer plug-in to listen and log ontology changes.

triple store and change description is provided by CHO, to preserve changes for later use. The details of
CHL applications are given in Section 4.

6.4. Parser

The job of Parser is to: 1) Parse CHL for all the ChangeSet(s) that correspond(s) to the open model in
Protege on user request. 2) produce the inverse changes of the stored ones to recover the pervious state
of ontology, then all the RangeAddition instances will be converted RangeDeletion as shown in Fig. 11 and
Fig. 12. The sequence of applying the changes back is also in backward order, i.e., changes in a ChangeSet
applied at the end will be reverted first, then second last changes and so on. These inverse changes are
given to the reverser module which implements these changes in reverse order. Fig. 15 shows the SPARQL
queries for parsing the ontology changes form CHL. These queries are executed on the CHL by the Parser
module to extract all the changes corresponding to a specific ChangeSet instance. The first query extracts
the ChangeSet instances in time order, and then based on user needs, appropriate ChangeSet instance is
selected and its corresponding changes are extracted from the CHL. Afterwards the details of these changes
are extracted. The queries are important for recovery purpose, including both rollback and rollforward.

6.5. Recovery

The Recovery module is responsible for implementing the applied changes on models opened in Protege,
in forward and reverse manner, based on user request. This module gets activated when a user requests to
undo/redo any changes or requests for recovering the previous consistent state of ontology. For any of the
above requests, this module makes request to parser module to retrieve the required ChangeSet entry and
all its corresponding changes, which returns the changes of the corresponding logged ChangeSet in reverse
order, the recovery module then implements these changes on the opened model. The demonstration for
Recovery and Visualization of the system is presented in [23].

18

SELECT ?changes ?timeStamp

WHERE { ?changes docLog:isPartOf changeSetInstance .

?changes docLog:hasTimeStamp ?timeStamp }

ORDER BY DESC(?timeStamp)

SELECT ?changedTarget ?isSubClassOf

WHERE { Resource docLog:hasChangedTarget ?changedTarget .

Resource docLog:isSubClassOf ?isSubClassOf }

SELECT ?change ?changedTarget ?isSubClassOf ?isSubPtyOf ?hasPtyType

?oldName ?changedName ?hasDomain ?hasRange?timeStamp

WHERE { ?change docLog:isPartOf changeSetInstance .

OPTIONAL {?change docLog:hasChangedTarget ?changedTarget} .

OPTIONAL {?change docLog:isSubClassOf ?isSubClassOf} .

OPTIONAL {?change docLog:isSubPropertyOf ?isSubPtyOf} .

OPTIONAL {?change docLog:hasPropertyType ?hasPtyType} .

OPTIONAL {?change docLog:hasOldName ?oldName} .

OPTIONAL {?change docLog:hasChangedName ?changedName} .

OPTIONAL {?change docLog:hasDomain ?hasDomain} .

OPTIONAL {?change docLog:hasRange ?hasRange} .

.

.

?change docLog:hasTimeStamp ?timeStamp }

ORDER BY DESC(?timeStamp)

Fig. 15. SPARQL query for extracting changes corresponding to the ChangeSet and then extracting their relevant details.

6.6. Visualization

The Visualization module is responsible for visualizing the ontology, ontology changes, and their effect on
ontology. The visualization is in graph like structure rather then tree like structure, because the ontology
with class and sub-class hierarchy can also have associative relationships with other classes [26]. Fig.16 is an
interface for visualizing ontology and visually navigating through its different states. Ontology components
(such as concepts and their relationships) as well as the changes made in the ontology are visualized. Effects
of these changes, for example, how it evolved to the current state, are emitted by navigating through the life
of ontology. In order to visualize changes, the ontology change parser processes the requested ChangeSets
and their corresponding changes. The changes are reverted or implemented on the ontology with the help
of recovery module to take ontology to a previous or next state. We have extended the TouchGraph API for
graph drawing in order to visualize the graph view of the ontology structure. Resources, such as classes, are
depicted as nodes. These nodes are connected through properties, which are depicted as edges. The direction
of an edge depicts the direction of the relationship among the nodes. Number of filters are supported in
the graph view, such as zooming in and out of the graph and fish-eye view. A modified version of the
Spring graph drawing algorithm [32] is implemented in the visualization that ensures aesthetically good
looking graph structure and well separated nodes. We have provided the playback and play-forward features
where not only the ontology but the changes can also be navigated. The visual navigation of changes and
change effects on ontology helps in analyzing the trends (Fig. 16). Starting from the very first version of the
ontology, the user can play the ontology changes and their effects on ontology and resources. The changing
concepts are highlighted and color coded to reflect the changes. For example, the deleted concepts fade out
and the new additions gradually appear in the graph. This improves understanding of the evolution history
of ontology.

19

Fig. 16. Graph visualization of ontology with change history playback feature. Users can visually navigate through the ontology

changes.

7. Results and Evaluation

The Bibliography ontology is used for the development and testing of the plug-in. First of all, the results
of the plug-in for change capturing are provided using the Bibliography ontology. At the end, an exhaustive
performance testing of the plug-in on OMV ontology [16], SWRC ontology [44], CRM ontology [6] and
the standard dataset of Semantic Web Technology Evaluation Ontology [1] is provided.

7.1. Change Capturing

There exists no such system (that claims all the features our plug-in provides) to compare the devel-
oped plug-in with. However, there exist systems, such as: a Protege plug-in ChangesTab [33], another
Protege plug-in VersionLogGenerator [37], ChangeDetection [37], and ChangeCapturing [38] that do provide
the change capturing facility. We have compared the proposed plug-in (ChangeTracer) with ChangesTab,
VersionLogGenerator , ChangeDetection, and ChangeCapturing to analyze its change capturing capability.
For this, 35 different changes covering all four different categories (i.e., Change in Hierarchy, Change in
Class, Change in Property, and Other Changes) were made to the Bibliography ontology. (ChangeTracer),
ChangesTab, and VersionLogGenerator were configured with Protege, ChangeCapturing with NeOn Toolkit
(http://www.neon-toolkit.org/), and ChangeDetection was used as a stand alone application. Out of these
35 changes, ChangesTab captured 28 changes, VersionLogGenerator captured 28 changes, ChangeDetection
captured 33 changes, ChangeCapturing captured 32 changes, whereas our proposed plug-in i.e., ChangeTracer
captured 32 changes. The graph representing these results is given in Fig. 17, where the y-axis represents
the number of changes captured and the x-axis represents the total number of changes made.

Protege internally implements different listeners (see Table 1) that report when a change occurs in the
open ontology model. (ChangeTracer), ChangesTab, and VersionLogGenerator were developed to implement
these listeners and capture the changes that were triggered by Protege. However, when certain events are
triggered, such as element deletion (i.e., Class, Property, Individual), then the element is first deleted and
later the event is notified. Due to this reason, the deleted element’s information is missed and not captured

20

Fig. 17. Comparison of ChangeTracer against ChangesTab, VersionLogGenerator , ChangeDetection, and ChangeCapturing .

by the plug-ins (ChangeTab and VersionLogGenerator). This also happens with ChangeCapturing . In our plug-
in, to handle this issue, difference is computed for the new model and the old model at the time of element
deletion event, which provides the information about the deleted element. Another issue with Protege is that
for Datatype property range addition, deletion, and modification, there is no event notification. So these
changes are misidentified. As visible from the Fig. 17, that ChangeDetection captured more changes than
the others; however, its performance heavily depends on the types of changes. For example, if the changes
are always of element modification in an ontology then the ChangeDetection will misidentify them. Moreover,
ChangeDetection cannot identify a sequence of changes.

To get more concrete results, we repeated the experiment for 20 times with 35 different and random
changes. Details and results of these experiments are given in Table 2 and its graph representation is given
in Fig. 18. Total of 700 different changes were made. Out of these 700 changes, 663 (i.e., 94.71%) changes
were detected by ChangeTracer , 632 (i.e., 90.28%) changes by ChangesTab, 645 (i.e., 92.14%) changes by
VersionLogGenerator , 629 (i.e., 89.86%) changes by ChangesDetection, and 667 (i.e., 95.28%) changes by
ChangesCapturing . The results clearly show that our plug-in (i.e., ChangeTracer) has outperformed the
ChangesTab, VersionLogGenerator , and ChangeDetection in terms of change capturing. In comparison with
ChangeCapturing , our system has almost the same results. However, our plug-in uses the difference() method
of Model class from Jena API to capture the missed changes, whereas the ChangeCapturing always misses
certain changes [38].

7.2. Change Recovery

The aim of this discussion is to validate whether the proposed algorithm for ontology recovery is correct
and can scale up to complex ontologies. Validation and verification of the outcome of the recovery process
is essential and critical. There has to be a mechanism to prove the hypothesis that the output ontology,
after applying the recovery process on top of the CHO, is correct. In order to quantitatively measure the
performance of the recovery algorithm, an evaluation measure was used which is discussed below.

For the evaluation of the recovery procedure, we took two different versions of ontology i.e., OV 1 and
OV 2. The changes between the versions i.e., C∆ were stored in Change History Log (CHL) using CHO. 35
different changes were manually incorporated in Bibliography ontology. All the changes were classified in
three categories: (1) Hierarchy level changes, including the changes having effects on classes, properties, and

21

Specifications Change Tracer Changes Tab Version Log Gen-

erator

Change Detection

Plug-in

Change Capturing

No of Experi-

ments

20 20 20 20 20

No of Changes

per Experiments

35 35 35 35 35

Total Changes 20 * 35 = 700 20 * 35 = 700 20 * 35 = 700 20 * 35 = 700 20 * 35 = 700

Changes Cap-
tured

663 632 645 629 667

Average 94.71 90.28 92.14 89.86 95.28

Table 2
Comparative Analysis of Change Detection Approaches i.e., Changes Tab, Version Log Generator, Change Detection Plug-in,

and Change Capturing Against Proposed Change Tracer.

Fig. 18. Shows the average result of 20 experiments with 35 different changes using ChangeTracer , ChangesTab,

VersionLogGenerator , ChangeDetection, and ChangeCapturing .

their constraints, (2) Class level changes, changes resulting from modifications to classes and constraints
on classes. These changes also contribute to changes at hierarchy level, (3) Property level changes, changes
resulting from modifications to properties and constraints on the properties. They also contribute to changes
at hierarchy level. The number of hierarchy, class, and property changes was 10, 10, and 15 respectively.
However, changes contributing from classes and properties made the number for hierarchy level changes
bigger. After identifying and logging the changes between two versions, we came up with an equation for
the verification of recovery procedure. As our plug-in provides both Rollback and Rollforward facilities, we
separated equations for these procedures’ verification.

7.2.1. Roll Back
To roll back the changes from OV 2, we simply need to subtract all the changes i.e., C∆ from the ontology

that caused OV 2 from OV 1. This subtraction of the changes from OV 2 was all made using proposed recovery
(RollBack) algorithm. The equation for verification is as under;

OVx ≡ OV 2 − C∆ (6)

22

Roll Back

Details Tests Correct Results Problems Accuracy

Initial Attempts: 12 5 Domain Addition, Datatype Property Range Deletion 41.67

First Revision: 12 7 Inverse Property 58.34

Second Revision: 12 12 Nil 100

Roll Forward

Details Tests Correct Results Problems Accuracy

Total Attempts: 36 36 Nil 100

Table 3

Roll Back and Roll Forward procedures results.

difference〈OV 1,OVx〉 ≡ ∅ (7)

The recovery (RollBack Algorithm) process was applied on OV 2. The recovered version was stored in
another temporary version OVx . The temporary recovered version was checked against the available version
OV 1. Here we differed OV 1 from the recovered version i.e., OVx and if the difference was null (empty) then
it means that the recovery process for roll back produced correct result.

7.2.2. Roll Forward
To roll forward the ontology from OV 1, we simply need to add/apply all the changes i.e., C∆ to the

ontology that caused OV 2 from OV 1. This addition of the changes to OV 1 were all made using proposed
recovery (RollForward) algorithm. The equation for verification of Rollforward algorithm is;

OVx ≡ OV 1 + C∆ (8)

difference〈OV 2,OVx〉 ≡ ∅ (9)

The recovery (RollForward Algorithm) process was applied on OV 1. The recovered version was stored in
another temporary version OVx . The temporary recovered version was compared against the available version
OV 2. Furthermore, we differed OV 2 from the recovered version i.e., OVx and if the difference was found null
(empty) then it means that the recovery process for roll forward produced correct result.

The difference between two ontology models was calculated using the difference() method of Model class
from JenaAPI . We have also checked both these versions using Prompt [36]. Using the Bibliography ontology,
we have tested the RollBack and RollForward algorithms and got very good results. The details of these results
are given in Table 3, whereas their descriptions are given below.

For RollBack, we have tested the plug-in 12 times and obtained 5 correct results. The problems were: (1)
when a DomainAddition entry is rolled backed, it is reverted as DomainDeletion. So the algorithm actually
has deleted the domain of some property; however, Protege internally assigns owl : Thing as domain to all
those properties which do not have any domain. (2) When datatype property range is deleted, the range
of that property is not captured properly. Because of these two problems we got very low accuracy for
Rollback. We have solved these problems and tested the plug-in 12 more times. This time, we obtained 7
correct results. Only one issue was found, i.e., when a property is made as inverse property, the information
about the other property to which this property is made inverse to, is missing. We resolved the domain
issue by letting the domain of a property as empty, range problem by using the difference() method, and
inverse property problem by introducing the hasInverseTo property in CHO. After the corrections, 12 more
experiments were conducted and this time we got 12 correct results and had no issues with the recovery
procedure.

RollForward was implemented after we have completely implemented the RollBack and removed all the
problems which we faced during RollBack. To justify that the system is correctly working for its RollForward
operation, we tested the RollForward operation with all the 36 tests which were used to test the RollBack
operation. Out of 36 roll forward experiments, we obtained 36 correct results with 100% accuracy, as shown
in Table 3.

23

Ontology Versions OMV.owl & OMV-0.7.owl OMV-0.7.owl & OMV-0.91.owl swrc-v0.3.owl & swrc-updated-v0.7.1.owl

Total Changes 38 189 310

Change in Hierarchy 18 71 131

Change in Classes 6 34 84

Change in Properties 25 123 172

Table 4
Roll Back and Roll Forward procedures’ results.

To validate that the system was not only tested on biased and controlled data sets, we provided a detail
system evaluation on four standard online available data sets. The details of all these experiments are given
in the next section.

7.3. System Evaluation

In this section, detailed evaluation of the proposed recovery algorithms is presented. We have tested
the algorithms with different versions of four different standard ontologies openly available. The reason for
testing the system on four different data sets was to prove that the system is usable with varity of different
ontologies and in uncontrolled environments. Another reason for the test was to cover as many aspects of
ontology change as possible. As one can see in Table 4 and 5, in different ontologies the concentration
of changes are different. For example, OMV and SWRC ontology have more changes from properties and
axiom prospective, SWETO has more on the class perspective, whereas, the CRM has mixed changes.

It is important to mention the process of logging the changes between different versions of ontologies. To
log the changes in CHL, ChangeTracer was configured with protege and then the respective changes were
performed to the ontologies to log them in CHL. Details of these changes, their types, their dependence,
their most appropriate sequence, and effects were manually analyzed. For the confirmation of the change
analysis between two versions of ontology, the completeness of the changes, and the correctness of the
changes, difference() method of Model class from Jena API as well as the Compare operation of Prompt
[36] algorithm were used. These logged changes were used for the evaluation of the system which is given
below. Because some changes fall into more than one category, the total number of changes is less than the
sum of the specific categories of changes.

7.3.1. Evaluation using OMV
Ontology Metadata Vocabulary (OMV) (http://ontoware.org/frs/?group id=39) [16] is used by the com-

munity for better understanding of the ontologies for the purpose of properly sharing and exchanging the
information among organizations. To achieve this goal, this standard is set and agreed by the community for
sharing and reusing of ontologies. OMV actually provides common set of terms and definitions describing
ontologies, so called ontology metadata vocabulary. OMV have different versions available online contain-
ing different sets of concepts, properties, and restrictions. We have tested our developed plug-in on three
different versions of OMV. The OMV versions that we have used for the experimentation are omv-0.6.owl,
omv-0.7.owl, and omv-0.91.owl.

Table 4 shows complete details about the types and number of changes among different versions. These
changes comprise class related, property related, and hierarchy related changes, which were captured and
stored in CHL with the help of ChangeTracer . Using these logged changes, we applied the Rollback and
Rollforward procedures with the validity checking using Rollback and Rollforward techniques presented in
Section 7.2.1 and Section 7.2.2. We have compared all the recovered versions with the original version and
they all were found error free.

7.3.2. Evaluation using SWRC Ontology
Semantic Web for Research Communities (SWRC) ontology [44], models key entities relevant for research

communities and related concepts in the domain of research and development. Currently there are 70 different

24

concepts with 48 object type properties and 46 datatype properties. The reuse of ontologies for the real
realization of semantic web and its continues improvement by user communities is a crucial aspect. The
description and the usage guidelines are provided for SWRC ontology by the authors to make a complete
value of the implicit and explicit facilities.

We have used two versions of SWRC ontology available online, which are swrc-v0.3.owl and swrc-updated-
v0.7.1.owl. Changes between version swrc-v0.3.owl and swrc-updated-v0.7.1.owl comprise class related, prop-
erty related, and hierarchy related changes, which were captured and stored in CHL with the help of
ChangeTracer . Details are given in the Table 4. Using these logged changes we applied the Rollback and
Rollforward techniques presented in Section 7.2.1 and Section 7.2.2, and that resulted in recovered versions.
We have compared all the recovered versions with the original version and they all were found correct.

7.3.3. Evaluation using CRM Ontology
One of the ontologies we used for our experiments is the CIDOC Conceptual Reference Model (CRM)

[6]. CRM provides a common language and semantic framework for experts and developers in the cultural
heritage domain and facilitates in sharing the understanding of cultural heritage information. Multiple
versions of CRM are available online . For the evaluation of our system, we used two versions of CRM
ontology (i.e., cidoc-crm-3.2.rdf and cidoc-crm-3.4.rdf).

Changes between cidoc-crm-3.2.rdf and cidoc-crm-3.4.rdf were first captured and stored in CHL with the
help of ChangeTracer . Details of all these changes are given in Table 5. Using these logged changes, we applied
the Rollback and Rollforward techniques presented in Section 7.2.1 and Section 7.2.2. The Rollback from
cidoc-crm-3.4.rdf with the help of logged changes produced a temporary recovered version. We checked the
recovered version against cidoc-crm-3.2.rdf, both versions were found same. The Rollforward from cidoc-crm-
3.2.rdf with the help of logged changes produced a temporary recovered version. We checked the recovered
version against cidoc-crm-3.4.rdf, both versions were found the same with no differences between them. This
shows that the RollBack and RollForward operations on cidoc-crm-3.2.rdf and cidoc-crm-3.4.rdf are correct.

7.3.4. Evaluation using SWETO
Semantic Web Technology Evaluation Ontology (SWETO) is basically an ontology developed as a bench-

mark by Semantic Web Community for evaluating the scalability of the available semantic web tools. More
details on SWETO can be found on [1]. Since it is a benchmark ontology for testing the performance and
scalability of semantic web tools, that’s why we have adopted it to test the scalability and performance of
the developed plug-in. Currently, we have used three versions of the SWETO ontology available in [1] with
names: (i) testbed-v1-4.owl (ii) testbed-v1-3.owl, and (iii) testbed-v1-2.owl.

Since we had three versions of ontology, we conducted two experiments. Initially, we used the first two
versions, i.e., testbed-v1-2.owl and testbed-v1-3.owl, and stored all the changes between these versions in
their corresponding log file. The details of these changes are given in Table 4. Using these logged changes, we
applied the Rollback and Rollforward techniques presented in Section 7.2.1 and Section 7.2.2. The Rollback
and Rollforward operations on testbed-v1-3.owl and testbed-v1-2.owl were implemented in the same way as
discussed in previous experiments. With this implementation and comparison, we observed correct results.
This shows that the Rollback and Rollforward operations on the testbed-v1-2.owl and testbed-v1-3.owl are
correct. Secondly, we used its two versions i.e., testbed-v1-3.owl and testbed-v1-4.owl, and stored all the
changes between these two versions in CHL. The number and types of changes are given in Table 5. Using
these logged changes we applied the Rollback and RollForward techniques presented in Section 7.2.1 and
Section 7.2.2. The Rollback and Rollforward operations were applied in the same way as the previous steps.
The differences of original versions and recovered versions from RollBack and RollForward were analyzed for
verification. The results of all the differences were empty which shows that the Rollback and Rollforward
operations on the testbed-v1-3.owl and testbed-v1-4.owl are correct.

25

Ontology Versions cidoc-crm-3.2.rdf & cidoc-

crm-3.4.rdf

testbed-v1-2.owl & testbed-v1-

3.owl

testbed-v1-3.owl & testbed-v1-

4.owl

Total Changes 170 124 223

Change in Hierarchy 94 60 170

Change in Classes 54 107 193

Change in Properties 103 14 22

Table 5

Roll Back and Roll Forward procedures results.

8. Conclusion and Future Work

Ontologies are usually large, structured, and dynamic in nature. Changes in ontologies are expected to
accommodate new knowledge about the domain of discourse. These changes are influenced by the uncon-
trolled, decentralized, and complex nature of the Semantic Web. This makes ontology change management
a complex task. In this research, we explain Change History Ontology in detail as the backbone conceptual
model of the change management framework. It acts as a glue to bind different components in the frame-
work and guarantee effective recovery and proper communication between the components. This ontology
is used to record changes by creating a semantically structured change history log. The system has initially
been developed as a plug-in for the ontology editor Protege to listen and log all the ontology changes. The
framework was later revamped to be an integral part of ontology repositories. Logged changes were used for
ontology recovery, roll back and roll forward functions, implemented in the framework. The log of ontology
changes was also used to visualize changes and their effect during different states of the evolving ontology.
A play back feature is provided to navigate through the history of ontology for better understanding of the
evolution behavior.

The change capturing ability of the developed framework is compared with the ChangesTab, VersionLogGenerator ,
ChangeDetection, and ChangeCapturing . The results have demonstrated that our framework has higher ac-
curacy and better coverage. The recovery algorithms (including both Rollback and Rollforward) were also
tested exhaustively for accuracy, and were found to be consistent and accurate. The tests were carried-out
using different versions of four benchmark datasets; OMV, SWRC, SWETO, and CIDOC CRM.

Building a flexible and customizable change management framework is only the first step of the ladder.
It can lead to many interesting research endeavors. For example, such a framework can be extended to
change prediction by applying machine learning techniques. Already captured changes can also be analyzed
to identify patterns in the ontology evolution process. Query reformulation on evolving knowledgebases
(ontologies) is an important issue and is currently in pipeline based on CHL. The ontology changes captured
in our framework can help in reformulating queries on evolved ontologies.

9. Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MEST) (No. 2011-0030823).

References

[1] I. B. Arpinar, Web technology evaluation ontology (sweto), a nsf medium itr project,

http://lsdis.cs.uga.edu/projects/semdis/sweto/.

[2] W. Behrendt, E. Gahleitner, K. Latif, A. Gruber, E. Weippl, S. Schaffert, H. Kargl, Upper ontologies with specific

consideration of dolce, sumo and sowas upper level ontology, Deliverable D121, DynamOnt Project (2005).

[3] S. Castano, A. Ferrara, G. Hess, Discovery-driven ontology evolution, in: 3rd Italian Semantic Web Workshop: The Semantic

Web Applications and Perspectives (SWAP), Italy, 2006.

[4] S. Castano, A. Ferrara, S. Montanelli, Evolving open and independent ontologies, Journal of Metadata, Semantics and
Ontologies (IJMSO) 1 (4).

26

[5] S. Castano, A. Ferrara, S. Montanelli, Matching ontologies in open networked systems, Techniques and applications, Journal

on Data Semantics (JoDS) 3870/2006.
[6] M. Doerr, Chair, Heraklion, Crm, cidoc documentation standards working group, http://cidoc.ics.forth.gr/index.html.
[7] R. Elmasri, S. B. Navathe, Fundamentals of Database Systems, 4th ed., Addison Wesley, 2003.
[8] G. Flouris, On belief change in ontology evolution: Thesis.

URL http://dl.acm.org/citation.cfm?id=1219755.1219763

[9] G. Flouris, D. Plexousakis, , G. Antoniou, A classification of ontology changes, in: 3rd Italian Semantic Web Workshop:

Semantic Web Applications and Perspectives (SWAP) – Poster Session, Italy, 2006.
[10] G. Flouris, D. Plexousakis, Handling ontology change:survey and proposal for a future research direction, Technical Report

TR-362 FORTH-ICS, Institute of Computer Science, FORTH., Greece (2005).
[11] H. K.-D. P. G. Flouris, D. Manakanatas, G. Antoniou, Ontology change: Classification and survey, Knowledge Engineering

Review (KER) 23 (2).
[12] E. Gahleitner, K. Latif, A. Gruber, R. Westenthaler, Specification of methodology and workbench for dynamic ontology

creation, Deliverable D201, DynamOnt Project (2006).
[13] A. Gangemi, Ontology design patterns for semantic web content, in: Y. Gil, E. Motta, R. Benjamins, M. Musen (eds.), 4th

Intl Semantic Web Conf (ISWC), vol. 3729, Springer, Ireland, 2005.
[14] T. R. Gurber, A translation approach to portable ontologies, Knowledge Acquisition 5 (2).
[15] P. Haase, Y. Sure, State of the art on ontology evolution, Technical Report D3.1.1.b, SEKT Project: Semantically Enabled

Knowledge Technologies (August 2004).
[16] Y. S.-P. H. M. C. S. F. J. Hartmann, R. Palma, Omv - ontology metadata vocabulary, in: in: C. Welty (Ed.), ISWC 2005

- In Ontology Patterns for the Semantic Web, Galway, Ireland, 2005.
[17] D. Jones, T. Bench-Capon, P. Visser, Methodologies for ontology development, in: J. Cuena (ed.), IFIP XV IT & KNOWS,

Hungary, 1998.
[18] S. Khan, P. Mott, Differential evaluation of continual queries, Technical Report 2001.11, School of Computing, the

University of Leeds (May 2001).
[19] A. M. Khattak, K. Latif, M. Han, S. Lee, Y.-K. Lee, H. I. Kim, Change tracer: Tracking changes in web ontologies, in:

21st IEEE International Conference on Tools with Artificial Intelligence, USA, 2009.
[20] A. M. Khattak, K. Latif, S. Khan, N. Ahmed, Managing change history in web ontologies, in: Fourth International

Conference on Semantics, Knowledge and Grid, China, 2008.
[21] A. M. Khattak, K. Latif, S. Khan, N. Ahmed, Ontology recovery and visualization, in: 4th International Conference on

Next Generation Web Services Practices, Korea, 2008.
[22] A. M. Khattak, K. Latif, S. Lee, Y.-K. Lee, T. Rasheed, Building an integrated framework for ontology evolution

management, in: 12th International Conference on International Business Information Management Association, Malaysia,

2009.
[23] A. M. Khattak, K. Latif, Z. Pervez, I. Fatima, S. Lee, Y.-K. Lee, Change tracer: A protégé plug-in for ontology recovery

and visualization, in: In proceedings of 13th APWeb, China, 2011.
[24] A. M. Khattak, Z. Pervez, K. Latif, S. Lee, Time efficient reconciliation of mappings in dynamic web ontologies, Knowledge-

Based Systems (In Press) 0 (0).
[25] A. M. Khattak, Z. Pervez, K. Latif, A. J. Sarkar, S. Lee, Y.-K. Lee, Reconciliation of ontology mappings to support robust

service interoperability, in: In proceedings of 13th APWeb, USA, 2011.
[26] M. Klein, Change management for distributed ontologies, Phd thesis, Vrije University, Netherlands (2004).
[27] M. Klein, A. Kiryakov, D. Ognyanov, D. Fensel, Finding and characterizing changes in ontologies, in: 21st Intl Conf on

Conceptual Modeling, Finland, 2002.
[28] M. Klein, N. Noy, A component-based framework for ontology evolution, in: IJCAI Workshop on Ontologies and Distributed

Systems, Germany, 2003.
[29] S. Lee, Y.-K. Lee, A. M. Khattak, H. I. Kim, M. Han, Method for reconciling mappings in dynamic/evolving web-ontologies

using change history ontology, international Patent No. 12/576,342, Oct. 9, 2009.
[30] Y. D. Liang, Enabling active ontology change management within semantic web-based applications, Mini phd thesis,

University of Southampton (2006).
[31] Y. D. Liang, H. Alani, N. Shadbolt, Ontology change management in protégé, in: AKT DTA Colloquium, Milton Keynes,

United Kingdom, 2005.
[32] C. Lin, H. Yen, A new force-directed graph drawing method based on edge-edge repulsion, IEEE Computer Society 1 (1).
[33] W. Liu, T. Tudorache, T. Redmond, Changes tab in protégé, http://protegewiki.stanford.edu/index.php/Changes Tab.
[34] N. Noy, M. Klein, Ontology evolution: Not the same as schema evolution, Knowledge and Information System 6 (4).
[35] N. Noy, S. Kunnatur, M. Klein, M. Musen, Tracking changes during ontology evolution, in: Intl Semantic Web Conf, USA,

2002.
[36] N. Noy, M. A. Musen, Prompt: Algorithm and tool for automated ontology merging and alignment, in: Proceedings of the

Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial
Intelligence, 2000.

[37] O. D. P Plessers, S. Casteleyn, Understanding ontology evolution: A change detection approach, Web Semantics Science
Services and Agents on the World Wide Web 5 (1).

[38] A. G.-P. R. Palma, O. Corcho, P. Haase, A holistic approach to collaborative ontology development based on change
management, Journal of Web Semantics 9 (3).

27

[39] D. Rogozan, G. Paquette, Managing ontology changes on the semantic web, in: IEEE/WIC/ACM Intl Conf on Web

Intelligence, France, 2005.

[40] P. Shvaiko, J. Euzenat, Ten challenges for ontology matching, in: In Proceedings of The 7th International Conference on
Ontologies, DataBases, and Applications of Semantics (ODBASE), Mexico, 2008.

[41] B. Smith, Blackwell Guide to the Philosophy of Computing and Information, chap. Ontology, Blackwell Philosophy Guides,

Blackwell Publishing, 2003.
[42] Sparqlpush: pubsubhubbub (push) interface for sparql endpoint, Online, http://code.google.com/p/sparqlpush.

[43] L. Stojanovic, A. Madche, B. Motik, N. Stojanovic, User-driven ontology evolution management, in: European Conf on

Knowledge Engineering and Management (EKAW), Spain, 2002.
[44] Y. Sure, S. Bloehdorn, P. Haase, J. Hartmann, D. Oberle, The swrc ontology - semantic web for research communities,

in: In Proceedings of the 12th Portuguese Conference on Artificial Intelligence - Progress in Artificial Intelligence (EPIA),

vol. 3803 of LNCS, Springer, Covilha, Portugal, 2005.
[45] S. Tunnicliffe, I. Davis, Changeset, Online, http://vocab.org/changeset/schema.html (2005).

[46] M. Tury, M. Bielikova, An approach to detection ontology changes, in: First international workshop on adaptation and
evolution in web systems engineering (AEWSE), Brussel, 2006.

[47] M. Uschold, Building ontologies: Towards a unified methodology, in: 16th Annual Conference of the British Computer

Society Specialist Group on Expert Systems, Cambridge, UK, 1996.

28

