
Efficient Routing and Broadcasting Algorithms
in de Bruijn Networks

Ngoc Chi Nguyen, Nhat Minh Dinh Vo and Sungyoung Lee

Computer Engineering Department, Kyung Hee Univerity
1, Seocheon, Giheung, Yongin, Gyeonggi 449-701 KOREA

{ncngoc, vdmnhat, sylee}@oslab.khu.ac.kr

Abstract. Recently, routing on dBG has been investigated as shortest
path and fault tolerant routing but investigation into shortest path in
failure mode on dBG has been non-existent. Furthermore, dBG based
broadcasting has been studied as local broadcasting and arc-disjoint
spanning trees based broadcasting. However, their broadcasting algo-
rithms can only work in dBG(2,k). In this paper, we investigate shortest
path routing algorithms in the condition of existing failure, based on the
Bidirectional de Bruijn graph (BdBG). And we also investigate broad-
casting in BdBG for a degree greater than or equal to two1.

1 Introduction

For routing in dBG, Z. Liu and T.Y. Sung [1] proposed eight cases shortest paths
in BdBG. Nevertheless, Z. Liu’s algorithms do not support fault tolerance. J.W.
Mao [4] has also proposed the general cases for shortest path in BdBG (case
RLR or LRL). For fault tolerance issue, he provides another node-disjoint path
of length at most k + log2k +4 (in dBG(2,k)) beside shortest path. However, his
algorithm can tolerate only one failure node in binary de Bruijn networks and it
cannot achieve shortest path if there is failure node on the path. Broadcasting
problems on dBG have been investigated as local broadcasting[6] and arc-disjoint
spanning trees[7][8]. Nonetheless, the above can only work in a binary de Bruijn
network (dBG(2,k)).

Considering limitations of routing and broadcasting in dBG, we intend to
investigate shortest path routing in the condition of failure existence and broad-
casting in BdBG with a degree greater than or equal to two. Two Fault Free
Shortest Path (FFSP) routing algorithms and one broadcasting algorithm (for
one-to-all broadcasting in the all port communication model) are proposed.
Time complexity of FFSP2 in the worst case is 0(2

k
2 +1d) in comparison with

0((2d)
k
2 +1) of FFSP1 (in dBG(d,k) and k=2h). Our study shows that the max-

imum time steps to finish broadcast procedure is k regardless of the broadcast
originator, time complexity at each node is 0(3

2d), and no overhead happens in
the broadcast message.

1 This research was partially supported by ITRC project of Sunmoon University

The rest of this paper is organized as follows. Background is discussed in
section 2. In section 3, FFSP routing algorithms are presented. Performance
analysis for FFSP routing algorithms is carried in section 4. Section 5 discuss
about broadcasting algorithm in dBG(d,k). Finally, some conclusions will be
given in Section 6.

2 Background

The BdBG graph denoted as BdBG(d,k)[1] has N=dk nodes with diameter k and
degree 2d. If we represent a node by d0d1...dk−2dk−1, where dj ∈ 0, 1, ..., (d− 1),
0≤j≤(k-1), then its neighbor are represented by d1...dk−2dk−1p(L neighbors, by
shifting left or L path) and pd0d1...dk−2(R neighbors, by shifting right or R
path), where p = 0, 1, ..., (d−1). We write if the path P = R1L1R2L2 consists of
an R-path called R1, followed by an L-path called L1, an R-path called R2, an
L-path called L2, and so on, where subscripts are used to distinguish different
sub-paths. Subscripts of these sub-paths can be omitted if no ambiguity will
occur, e.g., P = R1LR2 or P=RL. Shift string of a node A is a binary string (0
for left shift and 1 for right shift) which represents path from originator to A.

For simplest broadcasting mechanism, the originator initiates the process by
making a ”call” to other neighboring vertices in the graph informing them of the
message. Subsequently, the informed vertices call their neighboring vertices and
the process continues until all vertices in the graph are informed. Basically, this
mechanism is like flooding phenomenon. Note that the interval during which a
call takes place will be referred to as a time step or simply step. In flooding
broadcasting (FB), level of a node A is the number of steps by which a message
from originator reaches A (or shortest path length between A and originator).

The following fig. 1a shows us an example for BdBG(2,4). Fig. 1b shows us
eight cases of shortest path routing on BdBG. The gray areas are the maximum
substring between source (s) and destination (d). The number inside each block
represents the number of bits in the block.

Fig. 1. a)The BdBG(2,4); b)Shortest path types[1].

3 Fault Free Shortest Path Routing Algorithms

In order to provide shortest path in the condition of failure existing, several
paths of a specific source destination pair must be provided. Then FFSP is
found among those paths. Therefore, the following concepts are proposed. For
those, we assume that there is a separately protocol which detects failure nodes
and then let other nodes know in periodically.

Definition 1: the level mth discrete set (DSm) is a set which contains all
neighbors of each element in discrete set level m-1; in the constraint that there
is no existent element of discrete set level m coincides with another element of
discrete set level qth (q ≤ m) or failure node set.

Lemma 1: DSm is fault free.
Lemma 2: all the neighbors of a node belong to DSm are in DSm−1, DSm

and DSm+1, except failure nodes.
Proof: obviously we see that DS1 and DS2 contain all the neighbors of DS1

except failure nodes; DS1, DS2 and DS3 contain all the neighbors of DS2 except
failure nodes. So Lemma 2 is right at m=1,2. Assuming that lemma 2 is right
until p, now we prove it is right at p+1. Suppose it’s wrong at p+1. That means
there exist a neighbor A of an element B∈DSp+1, and A ∈ DSi, i < p. Because
lemma 2 is right until p, hence all the neighbors of A are in DSi−1, DSi and
DSi+1 except failure nodes. Therefore, there exists an element B’∈DSi−1, DSi

or DSi+1, and B’=B. It contradicts with definition 1. So Lemma 2 is right at
p+1. Following inductive method, lemma 2 is proved.

Lemma 3: there exists no neighbor of any element of DSm, which is a
duplicate of any element of DSh, ∀h≤m-2.

Proof: suppose there is a neighbor A of an element B ∈ DSm duplicates
with an element A’ of DSh (h ≤ m-2). Following Lemma 2, all the neighbors of
A’ are in DSh−1, DSh and DSh+1. Therefore, there must exist a neighbor B’ of
A’ in level h-1 or h or h+1, and B’=B. It contradicts with definition 1.

Corollary 1: for duplicate checking at the next level of DSq, it is not nec-
essary to check with any element of DSm,∀m≤q-2.

By assigning source node S to DS1, then expanding to the higher level, we
have the following theorem.

Theorem 1: in BdBG(d,k), we can always find a FFSP from node S∈DS1

to node Ax ∈DSx(∀x≤k), if it exists.
Proof: we use inductive method to prove this theorem. When x=1, 2, theo-

rem 1 is right. Assuming that theorem 1 is right until m, m ≤ k. Now we prove
it is right until m+1. Suppose that path from S to Am+1 is not the FFSP. Then
we have the following cases,

• There exist Ap∈DSp, Ap = Am+1and p < m+1.It contradicts definition 1.
• There exists a FFSP, S→B1→B2→...→Bk→...→Bz→...→Am+1, and Bk,

Bk+1,..., Bz not belonging to any DSi (∀ i≤m+1). Because Bk−1 ∈DSj (j≤m+1).
Following Lemma 2, all the neighbors of Bk−1 are in DSj−1orDSjorDSj+1, ex-
cept failure nodes. Therefore, Bk must be a failure node.

→Theorem 1 is right at m+1. Theorem 1 is proved.
Corollary 2: path length of a path from S∈DS1 to Ax ∈DSx is x-1.

Fault free shortest path algorithm 1 (FFSP1) is proposed as a result of the-
orem 1 (shown in fig. 2a). It can always find FFSP in all cases (fault free mode,
arbitrary failure mode) if the network still remain connected.

Proof of FFSP1: suppose path s→...→aip→bjk→...→d is not FFSP, and
then we have the following cases,

• There exist a FFSP s→...→ai′p′→bj′k′→...→d (i’≤i, j’≤j). It contradicts
with the above assumption that aip and bjk are the first neighbors between
discrete sets A and B.

• There exist a FFSP s→...→ai′p′→c1→...→cm→bj′k′→...→d (i′ < i, j′ < j),
and c1, c2, ..., cm do not belong to any discrete set Ap or Bq (p≤i, q≤j). Due to
ai′p′ ∈Ai′ and following lemma 2, all the neighbors of ai′p′ are in Ai′−1, Ai′ and
Ai′+1 except failure nodes. Therefore c1 must be a failure node.

Example 1: we want to find a FFSP from source 10000 to destination 01021,
failure node 00102 (dBG(3,5)).

Applying FFSP1, we have, A1 = (10000) B1 = (01021) A2 = (00000, 00001,
00002, 01000, 11000, 21000) B2 = (10210, 10211, 10212, 00102, 10102, 20102).

However, 00102 is a failure node. So B2=(10210, 10211, 10212, 10102, 20102).
A3 = (20000, 00010, 00011, 00012, 00020, 00021, 00022, 10001, 10002, 00100,

10100, 20100, 01100, 11100, 21100, 02100, 12100, 22100)
Then we find that 02100 and 10210 in A3 and B2 are the first neighbors.

FFSP is found by tracking back from 02100 to 10000 and 10210 to 01021. We
have FFSP 10000 → 21000 → 02100 → 10210 → 01021. In this example, FFSP1
can provide 2 shortest paths (in the case of no failure node) 10000 → 21000 →
02100 → 10210 → 01021 and 10000 → 00001 → 00010 → 00102 → 01021. We
pick up one FFSP 10000→21000→02100→10210→01021 (node 00102 is fail).

Furthermore, we shall see that other elements like 00000, 00002, 01000, 11000
in A2 are useless in constructing a FFSP. So, eliminating these elements can
reduce the size of A3 (reduce the cost at extending to next level) and improve
the performance of our algorithm. It shows the motivation of FFSP2. Before
investigating FFSP2, we give some definition and theorem.

Definition 2: a dominant element is an element which makes a shorter path
from source to a specific destination, if the path goes through it.

Example 2: from the above example 1 we have 2 shortest paths (in the case
00102 is not a failure node) 10000 → 21000 → 02100 → 10210 → 01021 and
10000 → 00001 → 00010 → 00102 → 01021. Thus 00001 and 21000 are dominant
elements of A2, because they make shorter path than others of A2.

Therefore, by eliminating some non-dominant elements in a level, we can
reduce the size of each level in FFSP1 and hence, improve the performance of
FFSP1. A question raised here is how we can determine some dominant elements
in a DSk and how many dominant elements, in a level, are enough to find FFSP.
The following theorem 2 is for determining dominant elements and corollary 3
answer the question, how many dominant elements are enough.

Theorem 2: If there are some elements different in 1 bit address at leftmost
or rightmost, the dominant element among them is an element which has shorter

path length toward destination for cases RL2, R (shown in fig. 1b) for leftmost
bit difference and LR2, L for rightmost bit difference.

Proof: as showing in fig. 1b, there are eight cases for shortest path. Only
four cases RL2, R, LR2 and L make different paths when sources are different
in leftmost bit or rightmost bit.

Example 3: following example 1, we check the dominant characteristic of
three nodes A 01000, B 11000 and C 21000 (in A2) to destination D 01021.
Three nodes A, B and C are leftmost bit difference. So, type RL2, R are applied.

• Apply type R: the maximum match string between A 01000 and D 01021
is 0, between B 11000 and D 01021 is 1, and between C 21000 and D 01021 is
2 → min path length is 3, in case of node C.

• Apply type RL2: the maximum match string [5] between A 01000 and D
01021 is 1 (path length: 6), between B 11000 and D 01021 is 1 (path length: 7),
and between C 21000 and D 01021 is 2 (same as case R) → min is 3, node C.

Therefore, minimum path length is 3 and dominant element is C.

Fig. 2. a)Fault Free Shortest Path Algorithm 1 (FFSP1); b)Fault Free Shortest Path
Algorithm 2 (FFSP2).

Corollary 3: when we apply theorem 2 to determine dominant elements, the
maximum elements of DSm+1 are 2p(p is the total elements of DSm).

Proof: the maximum elements of DSm+1 by definition 1 are 2pd (dBG(d,k)).
We see that in 2pd there are 2p series of d elements which are different in 1 bit at
leftmost or rightmost. By applying theorem 2 to DSm+1, we obtain 1 dominant
element in d elements differed in 1 bit at leftmost or rightmost.

Fault Free Shortest Path Algorithm 2 (FFSP2) is proposed in fig. 2b.
The condition in line 5 and line 8 (fig. 2a, 2b) let us know whether there exists

a neighbor of array A and B of discrete set, ∀aip ∈A[i],∀bjk ∈B[j] . The SPD(M)
function, line 14 fig. 2b, finds the next level of DS M (DS N) and eliminates
non-dominant elements in N followed theorem 2. Expand(M) function, line 14
fig. 2a, finds the next level of DS M. Pathlength type p function, line 19,23 fig.
2b, checks path length followed type p of each element in T toward destination.
Eliminate function, line 20, 24, eliminates element in T, which has longer path
length than the other. The duplicate check(N) function, line 17 fig. 2a and line
27 fig. 2b, check if there is a duplicate of any element in N with other higher level
DS of N. For duplication checking, we use the result from corollary 1. Then, we
get FFSP by going back from aip to s and bjk to d.

Example 4: we try to find FFSP as in example 1. By applying FFSP2, we
have, A1 = (10000) B1 = (01021) A2 = (00001, 21000) B2 = (10210, 00102).
However, 00102 is a failure node. So B2 becomes (10210).

A3 = (00010, 10000, 10001, 02100). However, node 10000 coincides with
10000 of A1. So A3 becomes (00010, 10001, 02100). Then we find that 02100 and
10210 in A3 and B2 are the first neighbors. FFSP is found by tracking back from
02100 to 10000 and 10210 to 01021. We have FFSP 10000 → 21000 → 02100 →
10210 → 01021.

4 Performance analysis for FFSP1 and FFSP2

Mean path length is the significant to analyze and compare our algorithm to
others. Z. Feng and Yang [2] have calculated it based on the original formula,
Mean path length = Totalinternaltraffic

Totalexternaltraffic for their routing performance. We can
use the above equation to get the mean path length in the case of failure. We
assume that failure is random, and our network is uniform. That means the
probability to get failure is equal at every node in the network.

Table 1 shows the results in the simulation of mean path length using six
algorithms, SCP[3], RFR, NSC, PMC[2], FFSP1 and FFSP2. Our two algorithms
show to be outstanding in comparison with the four algorithms. They always
achieve shorter mean path length than the other algorithms.

This section is completed with study in time complexity of our algorithms.
As A. Sengupta [9] has shown that dBG(d,k) has connectivity of d-1. Hence, our
time complexity study is based on assumption that the number of failures is at
most d-1 and our study is focused on large network with high degree (d>>1).
Therefore, diameter of our network in this case is k. We have the following cases,

• For FFSP1, the second level DS lies in the complexity class 0(2d) , the
third level DS lies in the complexity class 0(2d(2d-1))≈ 0(4d2), the fourth lies in

Table 1. Mean path length of FFSP1, FFSP2 in comparison with others.

0(2d(2d−1)2) ≈ 0(8d3), etc... Hence, time complexity of FFSP1 lies in the com-
plexity class 0((2d)n), the value of n equals to the maximum level DS provided by
FFSP1. In the worst case, time complexity of FFSP1 lies in 0((2d)

k
2 +1) (k=2h),

or 0((2d)
k+1
2) (k=2h+1), k is maximum path length from source to destination

(the diameter).
• The computation time of FFSP2 can be divided into 2 parts. One is per-

forming computation on expanding to next level, checking for duplicate and
neighboring checking between DS A[m] and B[q]. This part is like FFSP1, the
difference is that each DS here grows following a geometric progression with
common quotient 2 and initial term 1 (as shown in corollary 3). The other part
is performing computation on finding dominant elements. Hence, the second
level DS lies in the complexity class 0(2+2d)≈0(2d), the third level DS lies in
the complexity class 0(4+4d)≈0(4d), the fourth lies in 0(8+8d)≈0(8d), etc...
Hence time complexity of FFSP2 lies in the complexity class 0(2nd), the value
of n equals to the maximum level DS provided by FFSP2. FFSP2 would cost us
0(2

k
2 +1d) (k=2h), or 0(2

k+1
2) (k=2h+1) time in the worst cases, k is maximum

path length from source to destination (the diameter).

5 Broadcasting algorithm in dBG(d,k)

By applying FB, we can easily obtain k as the maximum number of steps to
finish broadcasting. However, message overhead is very high in FB. Thus, how
to reduce message overhead (or letting each informed vertices call its uninformed

neighbors only) in FB states the motivation for our algorithm. We assume that
each packet sent to the other node must contain originator address, sender’s
level, a shift string of receiver and all calls take the same amount of time.

There are two cases of message overhead when an informed node A wants to
inform node X. Case 1, node X has been informed already. Thus, X must have
lower or equal level to A. Case 2, uninformed node X can be informed by nodes
B,C,D, which have the same level as A, at the same time. For case 1, we need
to compare the shortest-path length between X and A to originator. And X is
informed by A if X level is higher than A’s level and case 2 not happen. For case
2, we have to define some conditions, based on these conditions only A or B or C
or... inform X. The following theorems are proposed for calculating path length.

Theorem 3: given p is shortest-path length between node a and b, the min-
imum length of matched strings between a and b is k-p (dBG(d,k)).

Proof: as shown in fig. 1b, there are 3 types for determining shortest path
(R,L; RL,LR; R1LR2, L1RL2). The minimum matched string[5] can be obtained
in type R,L among them. And length for this minimum matched string is k-p.

Theorem 4: path length between node s and d is min(2sj + si + di, 2si +
sj + dj), where si and di are the left indices, and sj and dj are the right indices
of matched string in s and d respectively.

Proof: path length 2sj + si + di, 2si + sj + dj are for case Rsj Lsj+siRdi

and LsiRsi+sj Ldj respectively . These cases are the general cases for 3 types
presented in fig. 1b(ex. if si, sj , di, dj 6=0, they become type R1LR2 and L1RL2).

To solve the above two cases of message overhead, a Boolean valued function
SPL is proposed. SPL has inputs: originator S, current node P, neighboring node
X, current level n (level of P), shift string Q (q0q1q2...qz−1, length z≤k) (from S
to X through P). Fig. 3a shows SPL algorithm. Step 1,2,3 solve message overhead
of case 1. Step 1 is a result of theorem 3. Step 4,5,6 solve case 2 message overhead.
In case 2, we have several shortest paths from S to X. One shortest path must
be chosen based on the following conditions:

• Shortest path corresponds with shortest matched string of S and X(step5).
• In the case, there exist 2 shortest path from the first condition. Then,

shortest path which begin with shifting right is chosen. (step 6)
Step 7 compares shift string Q to the condition gotten from step 5 and 6 to

determine whether X should be informed or not.
Example 5: in dBG(3,10), given input S: 0012111001, P: 0111012110, n=7,

X: 1110121100, Q=01111100. By applying SPL, we have
Step 1: find all matched strings[5] which have length higher or equal 10-7-

1=2. These strings are 11, 111, 1110, 01, 012, 0121, 01211, 110, 1100.
Step 2: path lengths for strings in step 1 are 12, 10, 8, 14, 12, 10, 8, 13, 11.
Step 3: shortest path length is 8.
Step 4: matched string, which make shortest path length 8, are 1110, 01211.
Step 5: minimum size string from step 4 is 1110, b=false.
Step 6:Typeiden(input si = 0, sj = 6, di = 4, dj = 2)→returned value: 1,a=1.

Fig. 3. a)SPL function algorithm; b)Typeiden function algorithm; c)Broadcasting al-
gorithm for dBG(d,k).

Step 7: there are 2 places in Q in which two adjacent bits are different → a=-
1 6=0. Consequently, X is an uninformed node (step 3,8>n), but it isn’t informed
by P (message overhead case 2) due to our priority given in step 5 and 6.

If we apply SPL for all 2d neighbors of one node, then it cost 0(2d) for
running our algorithm. The following theorems reduce from 0(2d) to 0(1.5d).
Following are some notations used, where T is the previous shifting string.

R↔T: total number of right shift in T > total number of left shift in T
L↔T: total number of left shift in T > total number of right shift in T
Theorem 5: by shifting RLR/LRL, results are duplicate with shifting R/L.
Proof: given a node a0a1...an−1. By shifting RLR in dBG(d,k), we have

a0a1...an−1→ αa0a1...an−2→ a0a1...an−2β→γa0a1...an−2, 0≤α, β, γ<d.
Substitute α for γ → γa0a1...an−2≡αa0a1...an−2.
By proving similarly for case LRL, theorem 5 is proved.
Theorem 6: if R↔T/L↔T, results provided by next shift LR/RL are dupli-

cate.
Proof: assume the beginning node is a0a1...an−1. For case R↔T, we have

the following cases:
•T = RuLvRw, T = LuRvRw, T = LuRv. By shifting LR, we have shift

string R1L1R2L2 or L1R1L2R2, which are not existed for shortest path (as
shown in Lemma 1 of [1]).

•T = RuLv (u>v). By shifting R u times and L v times respectively, we have

a0a1...an−1→βu−1...β1β0a0a1...an−u−1 →βu−v−1...β1β0a0a1...an−u−1δ0δ1...δv−1

where 0≤βi, δj <d, 0≤i<u, 0≤j<v. By shifting LR we have,
βu−v−1...β0a0...an−u−1δ0...δv − 1 → βu−v−2...β0a0...an−u−1δ0...δv →
γβu−v−2...β0a0...an−u−1δ0...δv − 1 (K)
Substitute γ(0≤ γ<d) for βu−v−1 → K is duplicate.
• R=Ru. Shift string RuLR makes duplicate as shown in theorem 3.
By proving similarly to case L↔T, we prove theorem 6.
As a result, broadcasting algorithm is proposed as shown in fig. 3c.
Theorem 7: in the worst case, time complexity for our broadcasting algo-

rithm is 0(1.5d).
Proof: probability for theorem 5 happening is 25%, and for theorem 6 is less

than 25%. Therefore, the probability for CONTINUE command (line 10, 18 fig.
3c) happening is 25%. So, theorem 7 is proved.

6 Conclusion

We have proposed new concepts, routing algorithms and distributed broadcast-
ing algorithm in dBG(d,k). Our routing algorithms can provide shortest path in
the case of failure existence. Our simulation result shows that FFSP2 is an ap-
propriate candidate for the real networks with high degree and large number of
nodes, while FFSP1 is a good choice for high fault tolerant network with low de-
gree and small/medium number of nodes. In broadcasting, our algorithm requires
maximum k steps to finish broadcasting process in dBG(d,k). And there is no
message overhead during broadcasting. Time complexity at each node is 0(3

2d).
Therefore, the algorithms can be considered feasible for routing and broadcasting
in real interconnection networks.

References

1. Zhen Liu, Ting-Yi Sung, ”Routing and Transmitting Problem in de Bruijn Net-
works” IEEE Trans. on Comp., Vol. 45, Issue 9, Sept. 1996, pp 1056 - 1062.

2. O.W.W. Yang, Z. Feng, ”DBG MANs and their routing performance”, Comm.,
IEEE Proc., Vol. 147, Issue 1, Feb. 2000 pp 32 - 40.

3. A.H. Esfahanian and S.L. Hakimi, ”Fault-tolerant routing in de Bruijn communica-
tion networks”, IEEE Trans. Comp. C-34 (1985), 777.788.

4. Jyh-Wen Mao and Chang-Biau Yang, ”Shortest path routing and fault tolerant
routing on de Bruijn networks”, Networks, Vol. 35, Issue 3, Pages 207-215 2000.

5. Alfred V. Aho, Margaret J. Corasick, ”Efficient String Matching: An Aid to Bibli-
ographic Search”, Comm. of the ACM, Vol. 18 Issue 6, June 1975.

6. A.H.Esfahanian, G. Zimmerman, ”A Distributed Broadcast Algorithm for Binary
De Bruijn networks”, IEEE Conf. on Comp. and Comm., March 1988.

7. E.Ganesan, D.K.Pradhan, ”Optimal Broadcasting in Binary de Bruijn Networks and
Hyper-deBruijn Networks”, IEEE Symposium on Parallel Processing, April 1993.

8. S.R.Ohring, D.H.Hondel, ”Optimal Fault-Tolerant Communication Algorithms on
Product Networks using Spanning Trees”, IEEE Symp. on Parallel Processing, 1994.

9. A. Sengupta, A.Sen, and S.Bandyopadhyay, ”Fault tolerant distributed system de-
sign”, IEEE Trans. Circuit Syst., Vol. CAS-35, pp. 168-172, Feb. 1988

