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Abstract Encryption ensures confidentiality of the data outsourced to cloud storage
services. Searching the encrypted data enables subscribers of a cloud storage service
to access only relevant data, by defining trapdoors or evaluating search queries on
locally stored indexes. However, these approaches do not consider access privileges
while executing search queries. Furthermore, these approaches restrict the searching
capability of a subscriber to a limited number of trapdoors defined during data encryp-
tion. To address the issue of privacy-aware data search, we propose Oblivious Term
Matching (OTM). Unlike existing systems, OTM enables authorized subscribers to
define their own search queries comprising of arbitrary number of selection crite-
rion. OTM ensures that cloud service provider obliviously evaluates encrypted search
queries without learning any information about the outsourced data. Our performance
analysis has demonstrated that search queries comprising of 2 to 14 distinct search
criteria cost only 0.03 to 1.09 $ per 1000 requests.
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1 Introduction

Cloud computing is an epitome of on-demand and scalable computing. It provides
virtualized computing resources as services over the Internet, which can be sub-
scribed on the need basis [1]. Subscribers of cloud services do not need to manage
their own computing resources. They can simply harness compute resources of a pub-
lic cloud, owned by a Cloud Service Provider (CSP). This frees the subscribers from
expensive and expertise-intensive in-house IT resource management [2]. CSP pro-
vides an abstraction of unlimited processing power and storage facility, which can be
subscribed as a pay-as-you-use subscription model; leveraging the subscribers to pay
only for what they have consumed.

With the amount of digital data doubling almost every eighteen months, cloud
storage provides a cost-effective solution to deal with the ever-increasing demand
of storage facility [3]. It provides raw storage as a service, accessible through high-
speed network, which can be scaled up or scaled down accordingly. Subscribers of
cloud storage, including both individuals and enterprises, can keep their data for much
longer time without the concerns of reliability and availability of the outsourced data.
The advent of cloud storage has brought forth data backup, synchronization, sharing
and collaborative services which have certainly changed the way we manage and
interact with the outsourced data [4].

Subscribers of a cloud storage are charged for the consumed storage facility and
amount of data accessed on each data access request [5, 6]. To avoid needless data
access requests, and to minimize network traffic, subscribers need to access only rele-
vant outsourced data. Thus a cloud storage that leverages its subscribers to search the
outsourced data is highly valuable, especially for the enterprises, where huge data are
outsourced and relevant data can only be accessed through search. However, cloud
storage is owned and managed by an independent CSP, and there is a great risk of
privacy infringement when confidential data are stored on such services [7, 8]. Unau-
thorized subscribers can model search queries that can be used to learn confidential
information about the outsourced data. Suppose, subscriber of a cloud storage is a
patient who has shared her medical report with a doctor. A malicious subscriber (at-
tacker) can model a search query with keywords (i.e., diabetes mellitus, cerebrovas-
cular accident) and can search for the documents matching the search criteria, conse-
quently learning about the disease patient is suffering with.

To ensure data confidentiality, often encrypted data are outsourced to cloud stor-
age [9]. Certainly, encryption achieves data confidentiality; however, it restrains
searching capability of subscribers, as search criteria of a standard lookup query can-
not be evaluated for the encrypted data [10]. To access particular data, subscribers ei-
ther have to download the entire outsourced data,1 locally decrypt it and then execute

1We assume that encrypted data are outsourced to a cloud storage. For simplicity we refer encrypted data
residing within untrusted domain of a cloud service provider as outsourced data.
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search query over plain text, or rely on CSP to search cloud storage. Clearly, down-
loading entire outsourced data is not a feasible solution, as it would generate needless
data access requests, and unnecessarily consume network bandwidth. Whereas, en-
abling CSP to search for particular data would compromise privacy of the outsourced
data. CSP would need auxiliary information (i.e., keywords, inverted index) about the
outsourced data to identify the data, which fulfils the selection criteria. However, this
auxiliary information can leverage malicious CSP to learn confidential information
about the outsourced data, even though it is in encrypted format.

The problem of searching encrypted data outsourced to an untrusted domain of
CSP is manifold. First, the modelling of search query that can be used to search
cloud storage. Second, the privacy of standard search query, which do not reveal con-
fidential information about the outsourced data. Third, enforcement of access control
policies while searching cloud storage. Considering the issues of conventional search-
ing methodologies, search queries on cloud storage should be executed privately and
must conform to access control polices. Private execution of search queries ensures
that CSP cannot learn any information about the outsourced data. Conformance to
access control policies certifies that search queries of malicious subscribers are never
executed successfully even with the assistance of a CSP.

Existing systems tend of achieve searching capabilities within cloud storage by
employing methodologies of search over encrypted data [11, 12]. However, these
methodologies rely on assumptions which are either not viable in cloud ecosystem
or greatly affect the utility of a cloud storage. The most common approach to search
encrypted data is to define trapdoors for individual keywords that are associated with
the encrypted data [13, 14]. These trapdoors are then distributed among authorized
subscribers enabling them to search encrypted data. However, this approach restrains
query modelling capabilities of a subscriber to a limited number of valid trapdoors.
Besides this, systems utilizing trapdoor-based approach fail to enforce access control
policies during the execution of search queries.

Enterprise search products employ slightly different methodology than the sys-
tems based on trapdoor-based approach [15, 16]. These products create searchable
index from the data that need to be searched. Searchable indexes are stored locally
and data are outsourced to cloud storage after employing suitable encryption. Search
queries are executed locally over searchable indexes. This ensures that CSP cannot
learn any information about the outsourced data, as search queries are executed within
the trusted domain of an enterprise. Although, these products ensure data privacy;
however, they greatly reduce utility of cloud storage as searchable indexes are need
to be managed locally, which requires detected computing resources.

To ensure privacy of the outsourced data while executing search queries, we pro-
pose oblivious search for cloud storage called Oblivious Term Matching (OTM). It
utilizes homomorphic encryption [17] to ensure that search queries are obliviously
evaluated, preventing the exploitation of search queries by a CSP. We utilize proxy
re-encryption [18] to ensure authorized data search. It restrains malicious subscribers
to team up with a CSP and learn any information that can be used to compromise pri-
vacy of the outsourced data. OTM is not limited to a number of trapdoors, as it utilizes
index-based oblivious term matching. It enables us to associate arbitrary number of
keywords with the outsourced data. Authorized subscribers define their own search
queries, which can be obliviously evaluated by a CSP.
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OTM can be regarded as a value-added privacy-aware search service that enhances
the utility of cloud storage. To demonstrate viability of OTM, we implemented a
search service for Google’s cloud ecosystem (i.e., Google App Engine [19], Google
Docs [20] and Google Datastore [21]). The performance analysis of our proposed
privacy-aware search for cloud storage demonstrated that search queries comprised
of 2 to 14 distinct search criteria can be modelled within 0.001 to 0.037 ms. Besides
this, these search queries can be evaluated within 639 to 19554 ms by Google App
Engine (CSP).

In general, with OTM we make the following contributions in the area of search-
able cloud storage services:

– Oblivious data search for encrypted data to ensure that CSP cannot learn any infor-
mation from the search query. Moreover, CSP is unable to identify the outsourced
data that satisfy the selection criteria.

– Privacy-aware data search,2 which ensures that only authorized subscriber can
search the outsourced data.

– Assorted queries, which ensure that CSP cannot relate search queries submitted by
multiple subscribers even if they are searching for similar data contents.

– A search service that enables authorized subscribers to model their own search
queries instead of relying on trapdoors defined prior to data outsourcing.

The rest of this paper is organized as follows. Section 2 reviews the related work.
Section 3 presents the cryptographic primitives and protocols which are utilized by
OTM. Section 4 outlines the models, design goals, and assumptions. Sect. 5 presents
OTM. Section 6 discusses the implementation details of our proposed privacy-aware
search for cloud storage. Section 7 presents the evaluation results. Section 8 discusses
the security aspects of OTM. Finally, Sect. 9 concludes the paper along with the future
directions.

2 Related work

We categorize OTM as a service that provides privacy-aware search rather than a
cryptosystem, which encrypts the data in such a way that keywords can be matched
without the need to decrypt the cipher text. Through OTM, we propose a privacy-
aware search for cloud storage that is independent of underlying cryptographic algo-
rithms which ensure confidentiality of the outsourced data. Throughout this section,
we focus on the efficacy of the existing systems which provide searching capabilities
over the encrypted data. By efficacy of a system we mean that how system affects the
utility of cloud storage.

Searchable symmetric key cryptography (SKC) was first proposed by Song et
al. [11], making it possible to search for a particular keyword from the encrypted

2Privacy-aware data search is realized by distributing appropriate cryptographic keys to authorized sub-
scribers. Inaccessibility to these cryptographic keys restrains capabilities of unauthorized subscribers to
search cloud storage and deduce any information about the outsourced data even if they collude with cloud
service provider.
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data by using trapdoors. Based on SKC various schemes have been developed which
utilize it to search encrypted index, instead of the encrypted data [22–24]. Followed
by SKC, first practical searchable public key cryptography (PKC) was proposed by
Boneh et al. [12]. PKC enables untrusted server to perform search over the encrypted
data concealed with public key, without the need to reveal actual decryption key (pri-
vate key). Both SKC and PKC utilize trapdoors to execute search queries. In cloud-
based data sharing and collaborative services both SKC and PKC greatly affect the
utility of a service, as search queries are limited to number of trapdoors. In addition,
these trapdoors need to be distributed among the entities who want to search the en-
crypted data. Trapdoors are further subject to change on any modification in the out-
sourced/shared data; thus they need to be redistributed on each update. From privacy
perspective, SKC and PKC fail to enforce access control policies while searching
encrypted data.

Li et al. in [13] proposed authorized private keyword search (APKS) on encrypted
Personal Health Records (PHR) by using Hierarchical Predicate Encryption (HPE).
In their construction of privacy-aware search, a Trusted Third Party (TTP) was re-
sponsible for distributing capabilities (trapdoors). Users obtained capabilities from
a TTP, according to their access privileges and then submit trapdoors to a CSP. Us-
ing trapdoors to model search queries, and relying on TTP to achieve privacy-aware
search greatly affects the utility of cloud storage, as authorized subscribers can only
model search query using the trapdoors provided by the TTP. Wang et al. [14] pro-
posed a secure ranked search over encrypted data, for data residing within the un-
trusted domain of CSP. Their proposed system only supports single keyword based
search queries. Thus, for an enterprise system outsourcing petabytes of data to cloud
storage, their proposed system simply lack realism. Search query with a single key-
word cannot define complex selection criteria to achieve efficient searching capa-
bilities. CS2 [25] provided symmetric searchable encryption (SSE) with search au-
thentication (SA). CS2 utilized inverted index to search encrypted data, along with
dynamic data updates. However, CS2 was limited to personal storage system and did
not allow client to share files.

Enterprise search products, like Google search appliance [15] and Windows en-
terprise search [16], provide document indexing functionality. Enterprises can use
these products to query document repositories within their data centre and over cloud
storage (public cloud) as well. These products create a single enterprise wide central-
ized index, which can be queried and then the results of search queries are filtered
out according to the access control policies. As these systems enforce access control
policies at query time, they require search services to be hosted within the enterprise,
thus obstructing migration of an enterprise to a cloud ecosystem as it would have to
manage centralized index by using its compute resources. Research concluded in [26]
has shown that by carefully modelling search queries malicious users can learn valu-
able information from the centralized index, even if they do not have access to the
data residing within enterprise’s data centre or in a cloud storage.
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3 Preliminaries

Before elaborating the proposed oblivious search for cloud storage, we introduce
some of the preliminaries used in its development.

3.1 Homomorphic encryption

A cryptographic scheme is said to be homomorphic if its encryption function EH

holds the property EH (x) ∗ EH (y) = EH (x + y). A homomorphic encryption is said
to be semantically secure if EH reveals no information about x and y, hence it is
computationally infeasible to distinguish between the cases x �= y and x = y [27].

Public key encryption scheme proposed by Pascal Paillier [17] is additively ho-
momorphic, and consists of subsequent fundamental algorithms.

3.1.1 Key generation

Let p and q be two large primes and n = p.q . The Euler’s totient function is denoted
by φ(n). The Carmichael’s function is represented by λ(n). For n, the product of two
primes, φ(n) = (p − 1)(q − 1) and λ(n) = lcm(p − 1, q − 1). These two functions
exhibit the following properties over the multiplicative group Z

∗
n2 :

∣
∣Z

∗
n2

∣
∣ = φ

(

n2) = n.φ(n) (1)

and for any ω ∈ Z
∗
n2 ,

ωφ(n) = 1 (mod n) (2)

ωnφ(n) = 1 (mod n2) (3)

Public key P K is defined as (n, g), where g is an element of Z
∗
n2 , and a secret key

S K as λ(n).

3.1.2 Encryption

To encrypt a message m ∈ Zn, randomly choose y ∈R Z
∗
n2 and define an encryption

function EH such that

EH : Zn × Z
∗
n �→ Z

∗
n2 (4)

EH (m,y) = gmyn (mod n2) (5)

3.1.3 Decryption

To decrypt the ciphertext, L is defined as (u− 1)/n, ∀u ∈ {u|u = 1(mod n)}. Cipher-
text c can be decrypted by using secret key S K = λ(n), Dg as

DH

(

c,λ(n)
) = L(cλ(n)(mod n2))

L(gλ(n)(mod n2))
(6)
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3.1.4 Homomorphic operation

Arithmetic addition between the ciphertexts c1 = EH (m1, y1) and c2 = EH (m2, y2)

is obliviously computed as:

EH (m1, y1) = gm1y1
n
(

mod n2)

EH (m2, y2) = gm2y2
n
(

mod n2)

EH (m1, y1).Eg(m2, y2) = gm1+m2(y1.y2)
n
(

mod n2)

= EH (m1 + m2) (7)

3.2 Private matching

Private matching (PM) [28] is a value matching protocol. It assists two interactive
entities to compute set intersection over their private set of values, without revealing
any element of their private set to each other. It uses homomorphic encryption to
identify the commonalities among the private sets, while ensuring privacy of each
set.

Suppose there is a client C and a server S . C has its own private set of values X :
{x1, x2 . . . xn}, and so does S , Y : {y1, y2 . . . yn}. C wants to compute set intersection
with S over the private set of values (i.e. X , Y ). However, C does not want to seep
out any information about X , with an exception of set cardinality. To identify the
commonalities between X and Y , C computes a polynomial (see (8)) whose roots are
members of X :

P(x ∈ X ) = (x − x1)(x − x2) . . . (x − xn) =
n

∑

i=0

αix
i (8)

C then sends the homomorphically encrypted coefficients (α̂0...n) of P(x) to S . By
using α̂, S evaluates P(y) for every element of its private set. It then computes
oblivious value by multiplying evaluated P(y) with a random number r and adding
it to y, i.e. EH (r.P (y) + y), where EH is a homomorphic encryption algorithm.
These oblivious values are then send to C for decryption. At C , the decryption of
an oblivious value results in y, if P(y) computed by S is evaluated at z, such that
〈z ⊆ ⋂ |(z ∈ X ) ∧ (z ∈ Y )〉. Otherwise, C ends up generating a random value. At the
end of this protocol, C learns only the intersection set; whereas, S ascertains nothing
more than the cardinality of X .

3.3 Proxy re-encryption (PRE)

Proxy Re-Encryption (PRE) is a cryptographic primitive, which transforms the ci-
phertext from one secret key to another without revealing the secret key to a semi-
trusted party [18]. Through PRE, ciphertext encrypted with Alice secret key can be
transformed to another ciphertext, which Bob can decrypt without revealing any in-
formation to the intermediary (semi-trusted server). PRE consists of four fundamen-
tal algorithms: Key Generation, Encryption, Re-Encryption, and Decryption. Sup-
pose Alice wants to send a message m to Bob through an intermediary server by
using PRE; the following are the steps which will be executed.
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3.3.1 Key generation

Alice first selects a Bilinear Group G of prime order q with g generator. Two random
numbers a and b of order q are generated. Then a and b are used to generate re-
spective secret keys SKa = a and SKb = b. Consequently, public keys are produced
as PKa = ga and PKb = gb . Once public keys are defined, Alice selects a random
number r ∈ Z

∗
p , along with a Bilinear Map of G as Z = e(g, g). Finally, proxy-key

is generated as RKa→b = (gb)1/a and is handed over to a semi-trusted server respon-
sible for ciphertext transformation.

3.3.2 Encryption

In order to encrypt message m, with Alice public key, ciphertext is computed as
Ca = (Zr .m,gra).

3.3.3 Re-encryption

This step is executed by a semi-trusted server. Ciphertext is transformed from Ca →
Cb by using proxy-key RKa→b:

Cb = (

Zr.m, e
(

gra,RKa→b

)) = (

Zr.m, e
(

gra, gb/a
)) = (

Zr.m,Zrb
)

(9)

3.3.4 Decryption

To decrypt the ciphertext Cb, Bob uses his secret key SKb , communicated to him by
Alice through secure means, i.e. SSL. Message m can be obtained as m = Zr .m

(Zrb)1/b

4 Models, design goals, and assumptions

4.1 System model

To realize a cloud storage with privacy-aware searching capabilities over outsourced
data, cloud service provider, data owner, data consumer, and trusted third party are
considered as the involved entities. For brevity, we shall refer to them as cloud server,
owner, user, and third party, respectively. Cloud server provisions storage and com-
putes facilities on subscription basis. Owner owns the confidential data that need to
be shared with users. Authorized users can access and search the cloud storage with
respect to their access privileges. Third party transforms the search criteria submitted
by a user to an oblivious search query. Cloud server evaluates the oblivious queries
without learning any information about the search criteria and the outsourced data.
Besides this, cloud server cannot identify the files which contain the keywords user
is looking for.
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4.2 Security model

Privacy of cloud storage is ensured if cloud server cannot learn or extract any infor-
mation about the outsourced data, from the data itself, and the index that leverages
authorized users to search the cloud storage. In short, cloud server should obliviously
execute search queries submitted by a user. Oblivious query execution ensures that
privacy of the search query is preserved along with the outsourced data. In addi-
tion, it ensures that cloud server cannot identify the files which contain the keywords
specified by the search criteria. To compromise privacy of the outsourced data, cloud
server can team up with malicious users. By teaming up, cloud server and malicious
users try to learn confidential information about the outsourced data, from the queries
submitted by an authorized user.

4.3 System design goals

Searching is an important feature of storage systems. When data is stored in an un-
trusted domain (i.e., cloud server), search queries can reveal confidential information
about the outsourced data. Privacy of outsourced data can be effortlessly ensured
by encrypting it with an appropriate encryption algorithm. However, searching out-
sourced data is of major concern, as cloud server cannot map standard search queries
to encrypted data. Besides this, cloud server can learn confidential information about
the outsourced data by manipulating the search query submitted by a user. The pivotal
design goal of our proposed oblivious search for cloud storage is to assure that au-
thorized users can search outsourced data without revealing search query to the cloud
server. Additionally, the cloud server should not be able to learn the result of search
query execution and relate search queries of different users searching for identical
data contents.

4.4 Assumption and notation

Oblivious Term Matching (OTM) focuses on enabling privacy-aware data search for
cloud storage systems—we intentionally neglected the details of data sharing from
security and privacy point of view. Readers may refer to [29] for more details on
efficient and secure data sharing in cloud storage. Table 1 illustrates the notation that
we use to explain the core concept of our proposed oblivious search for cloud storage.

F represents the file outsourced to cloud storage, searchable to authorized sub-
scribers. I represents the inverted index over F . It contains frequently occurring key-
words in F along with their frequency count. H is a publicly known encoding func-
tion, which encodes keywords into integer value of arbitrary size. EP , DP and TP are
proxy re-encryption functions. These functions realize privacy-aware data search and
ensure that cloud service provider need to persist single copy of encrypted inverted
index for each outsourced file. EH and DH are homomorphic encryption functions—
for realizing secure computation on encrypted data, i.e., inverted index and search
query. EA and DA are asymmetric encryption functions that ensure that only autho-
rized subscribers can search cloud storage. α0...n are polynomial coefficients that are
used to privately match encrypted search query and inverted index obliviously. Δy0...n

represent oblivious values that are obtained as a result of private matching protocol.
ψ0...n represent the query evaluation result retrieved by trusted third party.
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Table 1 Notation used in the descriptive detail of OTM

Notation Description

F Confidential file that needs to be shared.

I = {(kw0, f0), . . . , (kwn,fn)} Inverted index file that contains n keywords along with their
frequency in F .

H Public encoding function which encodes an arbitrary string to
an integer value of q modulo, where q is a large prime.

EP , DP , TP Proxy re-encryption, decryption, and ciphertext
transformation algorithms.

ωo, ωu, ωo→u Proxy re-encryption keys for the owner, user and cloud server,
respectively.

EH , DH Homomorphic encryption and decryption algorithms.

σpk, σsk Public and secret keys for homomorphic encryption
algorithm.

EA, DA Asymmetric encryption and decryption algorithms.

kpub, kpri Public and private key pair for asymmetric encryption
algorithm.

α0...n List of coefficients of a polynomial P that defines the search
query.

Δy0...n
Oblivious values: query execution result by a cloud server
provider.

ψ0...n Query execution result computed by the user from the
oblivious values (Δy0...n

).

sk Third party secret to conceal keyword frequency in inverted
index.

5 Proposed system

We first briefly present the main idea of privacy-aware data search for cloud storage.
Then we describe the details of searching cloud storage with oblivious term matching.

5.1 Main idea

Suppose, Datamine is an advisory firm which provides market analysis and trend
discovery services to its customers. Alice is a director of research at Datamine. She
is working on two distinct projects. One of the project mines social networks’ data
to devise effective advertisement campaigns. Whereas, the other project processes
the healthcare data to identify early signs of an epidemic. Alice’s clients exchange
their data in text files, which she stores on cloud storage, owned by Eve. For each
project, Alice maintains a separate directory, which contains the data along with the
index (i.e. keywords). Alice does not trust Eve as the data stored on the cloud storage
contains confidential information, which Eve can exploit. To ensure privacy of the
data, Alice first encrypts the data and corresponding index, and then outsources them
to the cloud storage.

Bob and Mallory are research analysts at Datamine, working with Alice. Bob is an
expert in dealing with data related to social networks. Mallory is good in processing
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Fig. 1 Abstract model of privacy-aware oblivious data search in a cloud storage

healthcare data. Alice has granted access to both of the research analysts on their
respective directories by exchanging data decryption and secret key to conceal search
criteria. Whenever Bob and Mallory need to search for a file containing particular
keywords, they define selection criteria by encoding keywords with publicly known
encoding function. Selection criteria are then encrypted with secret key and submitted
to the trusted party, which models oblivious query. Oblivious query is then submitted
to the cloud server as a search query. Cloud server then obliviously evaluates the
query on encrypted index, and replies back the response. Trusted party processes
the cloud server response and sorts the results according to the concealed selection
criteria. Query execution result is then sent back to the respective user.

At Datamine, Alice is dealing with confidential data. She does not allow Bob to
query directory, which persists the healthcare data. Similarly, Mallory cannot query
the social network data. Even if one of them would behave maliciously and team
up with Eve, still they would not be able to successfully query the encrypted index.
For an attacker, the result of a malicious query is always a randomized response.
Oblivious evaluation of the query ensures that Eve cannot learn the keywords, which
Bob and Mallory are looking for. Nevertheless, Eve manages to accurately evaluate
the query, without compromising privacy of the query and outsourced data. Figure 1
presents an abstract model of our proposed oblivious search for cloud storage.

5.2 Searching cloud storage with oblivious term matching (OTM)

Oblivious query evaluation in a cloud storage system is achieved by uniquely combin-
ing homomorphic encryption and proxy re-encryption. The amalgam of these cryp-
tographic primitives ensures that cloud server cannot learn any information about
the outsourced data. Most importantly, cloud server evaluates the query submitted
by a user, without learning the search criteria and the result of query execution. Be-
sides this, it also ensures that unauthorized users cannot query the outsourced data on
which access is not granted by the owner. To achieve privacy-aware data search in an
untrusted domain of cloud server, the proposed privacy-aware search for cloud stor-
age is divided into five steps, namely: Setup, Data Outsourcing, Query Generation,
Searching and Response Extraction.
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5.2.1 Setup

Privacy-aware data search in a cloud storage system is achieved by searching an in-
verted index (I ) associated with the outsourced data (F ). For each F , the owner
generates I by utilizing an indexing algorithm. I contains a list of keywords, along
with the frequency of each keyword (I = (kw0, f0), . . . , (kwn,fn)). Search queries
are evaluated against these keywords. Once I is generated, the owner initializes proxy
re-encryption by generating owner key (ωo), user key (ωu), and transformation key
(ωo→u). The owner key ωo ensures the privacy of keywords within I , whereas key-
word frequencies are concealed with third party’s secret key (sk). The user key ωu is
used by the user to encrypt search criteria. The owner only shares ωu with the autho-
rized users. The transformation key ωo→u is used by the cloud server to transform
ciphertext (encrypted inverted index). Transformation of ciphertext ensures that the
owner does not need to outsource separate encrypted index for each authorized user.

5.2.2 Data outsourcing

To ensure that cloud server can obliviously evaluate the search query submitted by an
authorized user, owner encodes Ikw0...n

by using a publicly known encoding function,
i.e. H(Ikw0...n

) → Îkw0...n
. The encoded keywords (Îkw0...n

) are then encrypted with
proxy re-encryption algorithm by using ωo, i.e. EP (Îkw0...n

,ωo) → Î ωo

kw0...n
. To ensure

that the cloud server cannot learn any information from the inverted index, an owner
encrypts If0...n

with third party’s secret key, i.e. ES(If0...n
, sk) → I sk

f0...n
. After that, the

owner encrypts ωu with the public key of the user to whom it wants to grant searching

capabilities over the outsourced data, i.e. EA(ωu, kpub) → ω
kpub
u .

In a cloud storage system, outsourced data can be shared with multiple users – each
having its own access privileges over the outsourced data. With proxy re-encryption
owner does not need to encrypt Ikw0...n

separately to permit each authorized user
to query Î ωo

kw0...n
. An authorized user can submit its query encrypted with its proxy

re-encryption secret key (ωui
). Cloud server then transforms Î ωo

kw0...n
to Î ωui

kw0...n
by

using an appropriate transformation key (ωo→ui
) provided by the owner. Thus, the

owner only needs to encrypt Î ωo

kw0...n
once, and n authorized users can query it, without

compromising privacy of the outsourced data.
Once the owner secures Ikw0...n

, If0...n
, and ωu, it outsources Î ωo

kw0...n
, I sk

f0...n
and

ω
kpub
u to the cloud server, along with the outsourced data. After that, availability of

the owner is no longer required. Multiple users can engage in an oblivious query
evaluation protocol with the cloud server. However, only authorized users can suc-
cessfully query Î ωo

kw0...n
. For others, the cloud server obliviously generates a random-

ized response from which they cannot learn any information about the outsourced
data.

5.2.3 Query generation

In order to privately search the cloud storage, a user obtains its proxy re-encryption
secret key from the cloud server and deciphers it by using the private key, i.e.
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DA(ω
pub
u , kpri) = ωu. The user then defines a search criteria (Ckw0...l

) that consist of
a list of keywords kw0 . . . kwl . Then Ckw0...l

is encoded by using a publicly known
encoding function, i.e. H(Ckw0...l

) → Ĉkw0...l
, where H is the same as used by the

owner during data outsourcing. To ensure confidentiality of the keywords, Ĉkw0...l
is

encrypted with proxy re-encryption by using the proxy re-encryption secret key, i.e.
EP (Ĉkw0...l

, ωu) = Ĉωu

kw0...l
.

Once privacy of the search criteria is assured, it is send to third party who
uses it to model oblivious search query. On receiving Ĉωu

kw0...l
the third party de-

fines a polynomial (P(x)), such that each element of Ĉωu

kw0...l
is a root of P(x), i.e.

P(x ∈ Ĉωu

kw0...l
) = ∑l

i=0 αix
i = 0; see Sect. 3.2 for more details on defining a polyno-

mial with multiple roots.
Once P(x) is defined in accordance to Ĉωu

kw0...l
, the third party then initializes homo-

morphic encryption by generating a public key (σpk) and secret key (σsk). The third
party then encrypts the coefficients (α0...l) of P(x) with homomorphic encryption
algorithm by using σsk, i.e. EH (α0...l , σsk) = α

σsk
0...l . After that, α

σsk
0...l and σpk are trans-

ferred to the cloud server. Encrypted coefficients (ασsk
0...l) are used to execute search

query over encrypted inverted index (Î ωo

kw0...n
). Section 3.2 illustrates that coefficients

(α0...n) of a polynomial (P(x)) can be used to compute set intersection between two
private sets. In the context of search over encrypted data, set intersection can be used
to execute search query by matching search criteria with the inverted index.

5.2.4 Searching

Cloud server hosts the encrypted inverted index as an encrypted keywords (Î ωo

kw0...n
)

and their concealed frequencies (I sk
f0...n

) along with the outsourced data (F ). En-

crypted query (ασsk
0...l) submitted by the third party is evaluated against Î ωo

kw0...n
. On

receiving α
σsk
0...l , cloud server transforms Î ωo

kw0...n
with the respective user’s transfor-

mation key (ωo→u), provided by the owner, i.e. TP (Î ωo

kw0...n
,ωo→u) → Î ωu

kw0...n
. Once

the encrypted index is transformed, cloud server defines a polynomial (P(y)), by
using each element of α

σsk
0...l as a coefficient of P(y). It then computes oblivious

value (Δyi
), by evaluating r.P (yi), where yi ∈ Î ωu

kw0...n
and r is a random number,

i.e. Δyi
= r.P (yi).

As the query is concealed by using homomorphic encryption, cloud server can-
not learn any information from P(yi ∈ Î ωu

kw0...n
). Once the cloud server has evaluated

P(y0...n ∈ Î ωu

kw0...n
) = Δy0...n

, it replies back the query evaluation result—list of oblivi-
ous values along with the concealed keyword frequencies to the third party, i.e. Δy0...n

,
I sk

f0...n
.

5.2.5 Response extraction

On receiving the cloud server’s response (Δy0...n
, I sk

f0...n
), third party decrypts the

oblivious values by using the homomorphic secret key, i.e. DH (Δyi
, σsk) = ψi , where

ψi can be zero or a random number. As the search query was modelled as a poly-
nomial having roots equal to the concealed search criteria, i.e. P(x ∈ Ĉωu

kw0...l
) =
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∑l
i=0 αix

i , query evaluation at cloud server can result either in a zero or a non-zero
value shown in (10).

P(yi) =
{

ψi = 0 if {yi |yi ∈ Î ωu

kw0...n
∧ yi ∈ Ĉωu

kw0...l
}

ψi �= 0 if {yi |yi ∈ Î ωu

kw0...n
∧ yi /∈ Ĉωu

kw0...l
} (10)

Zero value reveals that inverted index contains keyword that matches with the
concealed search criteria specified by the user, i.e. Ĉωu

kwi
∈ Î ωu

kw0...n
, whereas non-zero

reveals that concealed search criteria do not match with any of the keyword in inverted
index; consequently, third party recovers r̃ . Once encrypted keywords are identified,
third party deciphers the corresponding frequency index by using the secret key, i.e.
DS(I sk

fi
, sk) → Ifi

. After that, the third party sorts the identified encrypted keywords
according to the frequency count. The third party then replies back the oblivious
query evaluation result to the user.

On receiving the third party’s response, a user deciphers the search criteria by
using its proxy re-encryption secret key. Through decryption the user learns the key-
word that matches with the encrypted index, i.e. DP (Ĉωu

kw0...k
,ωu) = Ĉkw0...k

, where k

is the number terms that are identical between Ĉkw0...l
and Î ωu

kw0...n
. During the query,

evaluation cloud server learns nothing about the inverted index or the search criteria.
However, it accurately evaluates the search query and replies back the oblivious re-
sponse. Whereas, the third party only learns frequencies of the concealed keyword
that matches the search criteria.

6 Implementation

To demonstrate viability of our proposed privacy-aware search for Google’s cloud
ecosystem, we implement a data search, key management, and intermediate services
as standard Java web services. Data search and key management services are de-
ployed on Google App Engine. Intermediate service is deployed on secure local
server. Google Docs hosts the outsourced documents. Google Datastore is utilized to
store encrypted inverted index associated with the documents stored in Google Docs.
Data search service is responsible for executing search queries over the encrypted in-
verted index. For each user, data owner outsources user’s proxy re-encryption key to
key management service, whereas each user generates its own RSA key pair. Public
key is persisted by the key management service, and the user securely stores pri-
vate key. Intermediate service is utilized to model oblivious query and process the
response of data search service.

To create inverted index we utilize Apache Lucene [30], a high-performance, full-
featured text search engine library. With Apache Lucene we associate arbitrary num-
ber of keywords with the outsourced documents. Although, there is no restriction on
the length of inverted index; however, we restrict Lucene from indexing keywords
that are smaller than a four characters. However, data owner is allowed to manually
add or remove keywords in inverted index. SHA-512 hashing algorithm is utilized
to hash keywords in inverted index. Hashed value of individual keyword is encoded
as a BigInteger of arbitrary length. To achieve oblivious query evaluation, we utilize
Pascal Paillier cryptosystem.



Privacy-aware searching with oblivious term matching for cloud

We have developed owner and client applications as standard Java SE 7.0 desk-
top applications. The owner application is responsible for generating inverted index,
encrypting it with proxy re-encryption and outsourcing it to Google Datastore. The
client application is utilized to encode search criteria and encrypting it with proxy
re-encryption.

7 Evaluation

We evaluate our proposed privacy-aware search for cloud storage on Google’s cloud
ecosystem (i.e., Google App Engine [19] and Google Datastore [21]). Data search
and Key management services are individually deployed on Google App Engine by
using F4 frontend instance class having 2.40 GHz processor and 512 MB main mem-
ory [31]. The performance analysis of owner and client applications is carried out on
32-bit Windows 7 machine having 2.60 GHz Dual Core processor with 2 GB main
memory. We test execution overhead of intermediate service on 64-bit Windows 7
machine having 3.30 GHz Core i5 processor with 4 GB main memory.

For evaluation, initially we analyse owner and client applications by measuring the
execution time required to generate encrypted inverted index, encrypt search criteria,
and decrypt response of intermediate service. We then present execution overhead to
model and generate oblivious query, and time required to learn result of oblivious
query evaluation. Finally, we present the execution time and cost analysis of oblivi-
ous query evaluation on Google App Engine. The core purpose of this evaluation is
to measure the execution overhead of enabling oblivious query evaluation on cloud
storage and modelling of privacy-aware search query. We intentionally neglect the
details of key exchange between the key management service and authorized sub-
scribers.

7.1 Inverted index and search criteria generation and processing

We utilize Apache Lucene to generate inverted index. Indexed keywords are hashed
by using SHA-512 hashing algorithm. Individual hashed value is then encoded as a
BigInteger of arbitrary length. Finally, the encoded values are encrypted with proxy
re-encryption by using 1248-bit key and frequencies of indexed keywords are en-
crypted with AES by using 256-bit key. Figure 2 shows the time required to index
file of varied sizes ranging from 1 to 30 MB. It delineates the execution time to en-
crypt indexed terms within inverted index. Figure 3 presents the time exerted by client
application in generating encrypted search criteria comprising of 2 to 14 keywords
and decrypting the response of third party.

The evaluation of owner application reveals that the time required to generate in-
verted index by using Apache Lucene is linear to file size. Besides this, execution
time to conceal indexed terms with proxy re-encryption by using 1248-bit key also
shows linear behaviour. Although, inverted index can be generated and encrypted in
linear time by the owner application; however, size of inverted index (i.e., number of
indexed terms) affects the computational time and cost required to evaluate oblivi-
ously queries on Google App Engine. Data owner should only select those indexed
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Fig. 2 Inverted index generation and indexed term encryption time

Fig. 3 Search criteria encryption and decryption time

terms that are relevant to a document. For client application, we utilized 2 to 14 dif-
ferent keywords to define search criteria. Our evaluation results highlight the fact that
client application can conceal search criteria with proxy re-encryption within fairly
response time, considering the level of secrecy achieved with 1248-bit key. Besides
this, the decryption of intermediate service’s response shows linear behaviour with
respect to the number of keywords that comprises the search criteria.
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Fig. 4 Query modelling, oblivious query generation encryption and response extraction time

7.2 Oblivious query modelling and response extraction

To model oblivious query a polynomial is defined by the third party, such that the
concealed keywords constituting the search criteria are roots of that polynomial. We
call this process a query modelling. After that, the third party initializes a 1248-bit
key pair of Pascal Paillier cryptosystem and encrypt each coefficient of the defined
polynomial. We refer to this process as query encryption. The encrypted query is
then transmitted to the cloud storage along with the public key of Pascal Paillier
cryptosystem.

Data search service obliviously searches the cloud storage, and responds back the
query evaluation result. Third party then learns the keywords that match with the en-
crypted inverted index by deciphering the query evaluation result. Matched keywords
are sorted by the third party and sent back to the user. We refer to the process of
learning matched keywords as response extraction. Figure 4 presents the execution
time of oblivious query modelling, query encryption, and response extraction.

Search query comprised of higher number of keywords can be effortlessly mod-
elled by the user. However, execution time of query encryption linearly increases
with the increase in size of search query. It applies for the response extraction, as
well. Although number of terms affect the encryption and response extraction time,
still it remains fairly amicable and never increases form 2901 and 4627 millisec-
onds respectively for query having 14 distinct keywords comprising the search crite-
ria.

7.3 Oblivious query evaluation on Google App Engine

We measure the execution time and cost of oblivious query evaluation on Google App
Engine. For the performance analysis we consider the execution time of a billable
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Fig. 5 Oblivious query evaluation time, cloud server response time and estimated execution cost for 1000
requests

CPU (CPU Time), time taken to complete the request (response time) and estimated
CPU usage cost for 1000 identical requests (cpm_usd). To obliviously evaluate the
search queries, data search service takes encrypted query from the third party. It then
executes the oblivious search query for each value in the encrypted inverted index.
The result of oblivious query evaluation is then sent back of the third party. Figure 5
shows computational and cost analysis of oblivious query evaluation on Google App
Engine for a single encrypted inverted index entry.

It is clear that execution time and cost greatly depend on number of keywords
comprising the selection criteria. However, the performance analysis has shown a
linear relation among the size of query, CPU Time and its estimated cost. Through the
predictive cost analysis, we have shown that the estimated execution cost of oblivious
query evaluation having 2 to 14 keywords remains between 0.035 and 1.09 dollars for
1000 requests of similar computational requirements. We have highlighted the fact
that oblivious data search can be realized by a cloud storage system with amicable
computational load and fairly reasonable cost, without compromising privacy of the
outsourced data and search queries as well.

8 Discussion

Data search is an integral part of cloud storage service. Searching methodologies
ensure that subscriber of a cloud storage can access relevant data without generat-
ing needless data access requests. However, when confidential data are outsourced
to these services in encrypted format, subscribers can no longer use standard search
queries to look for a particular file or data content, mainly because comparison opera-
tors cannot be evaluated for the encrypted data and search criteria specified in search



Privacy-aware searching with oblivious term matching for cloud

query. Besides this, standard search queries do not ensure privacy of the outsourced
data as malicious or curious cloud service provider can use them to learn confidential
information about the outsourced data.

Numerous efforts have been made in the form of cryptographic primitives and
enterprise search products to achieve searching capabilities over the encrypted data.
These systems mainly utilize cryptographic trapdoors or index data structures to exe-
cute search queries. However, these approaches lose their efficacy in the area of cloud
storage due to their intrinsic properties of trapdoor distribution, and in-house index
management. Moreover, these systems either do not enforce access control policies
or rely on trusted third party to achieve privacy-aware data search in an untrusted
domain of CSP.

In order to leverage subscribers of cloud storage with searching capabilities, we
have proposed Oblivious Term Matching (OTM). It is privacy-aware data search that
can be regarded as a value-added service for existing cloud storages. OTM ensures
that search queries are obliviously evaluated by a CSP, without learning any informa-
tion about the outsourced data. Since OTM is an indexed-based data search, unlike
trapdoor-based approaches, authorized subscribers are not confined to a limited num-
ber of trapdoors defined by a data owner. To restrain CSP from compromising privacy
of the outsource data, indexes are encrypted before they can be outsourced to a CSP.
OTM is independent of data encryption that ensures confidentiality of the outsource
data, thus it can be integrated with any cloud storage system to realize a privacy-aware
data search.

OTM utilizes homomorphic and proxy re-encryption to ensure that a cloud server
obliviously evaluates search queries and only authorized subscribers can search cloud
storage. Since we utilize private matching, cloud server cannot learn any information
about the search criteria (i.e. keywords) as coefficients of a search query are homo-
morphically encrypted by using Pascal Paillier cryptosystem. Private matching en-
sures that cloud server cannot even learn the selection criteria that match with the
values in encrypted inverted index. Thus, for query evaluation, OTM provides two
levels of secrecy. First, cloud server cannot learn the search criteria. Second, it can-
not learn the keywords that are common between the search criteria and encrypted
inverted index.

To realize a privacy-aware data search service, we utilize proxy re-encryption. It
encrypts the inverted index generated by the data owner and search criteria defined by
an authorized subscriber. Proxy re-encryption ensures that cloud server only has to
persist single copy of encrypted inverted index and yet it is able to evaluate oblivious
queries generated by authorized subscribers. For each authorized subscriber, cloud
server has a valid transformation key. Whenever a subscriber initiates a data search
request, cloud server transforms the encrypted inverted index by using an appropriate
transformation key. Since only the authorized users have their respective transfor-
mation key with the cloud server, search queries of an unauthorized user cannot be
evaluated successfully. Even if cloud server behaves maliciously and teams up with
an unauthorized subscriber, privacy of the outsourced data cannot be compromised
because cloud server does not have valid transformation key and unauthorized user
does not have its proxy re-encryption secret key.

OTM utilizes trusted third party to model oblivious queries, process the response
of cloud server, and sort the result of oblivious query evaluation according to the
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frequencies of matched keywords. Utilizing trusted third party to sort result reveals
frequency of individual encrypted keywords. Since these keywords are concealed
with proxy re-encryption, no oblivious information is leaked to the trusted third party.
However, if sorting of results is not required, trusted third party can be seamlessly
avoided without losing efficacy of OTM.

The practicality of proposed privacy-aware cloud search is demonstrated by real-
izing it for Google’s cloud ecosystem. We deploy search service on Google App En-
gine, and encrypted indexes are stored on Google’s Datastore. To generate inverted
index, we opt for Apache Lucene. However, OTM is not confined to any specific
indexing framework. Data owner can even manually associate keywords and their
respective frequencies with the outsourced data. OTM is mainly based on two asym-
metric cryptosystems, i.e., Pascal Paillier and proxy re-encryption. For our imple-
mentation we opt for 1248 bit long keys (by default). As recommended by ECRYPT
II 2011, 1248-bit long key based on Discrete Logarithm Group provides long-term
protection against small organizations, and very short-term protection against agen-
cies [32, 33]. However, key lengths of both Pascal Paillier and proxy re-encryption
are configurable by the data owner according to the level resilience required against
a determined attacker.

With OTM, we have realized a data search service which ensures that only au-
thorized subscribers can search the outsourced data obliviously. Search queries are
obliviously executed by a cloud server that does not learn any information about the
outsourced data, not even about the result of query execution. OTM ensures that cloud
server cannot relate search queries of two different users even if the queries are mod-
elled with similar search criteria. Through our implementation we have highlighted
the fact the OTM is independent of underlying cloud storage system. It can seam-
lessly be integrated with other cloud storage services to leverage subscribers with
privacy-aware searching capabilities.

9 Conclusion and future directions

In this paper, we addressed the problem of privacy-aware data search over encrypted
data residing within the untrusted domain of a cloud storage provider (CSP). To
leverage subscribers of cloud storage, we proposed Oblivious Term Matching (OTM)
that ensures authorized search over encrypted data without revealing any informa-
tion about the search queries. Unlike existing methodologies of searching encrypted
data, OTM is not confined to a limited number of trapdoors and allows authorized
subscribers to define their own search queries. OTM utilizes amalgam of homomor-
phic encryption and proxy re-encryption to ensure that CSP can obliviously evaluate
search queries without learning any information about encrypted outsourced data.
OTM can be regarded a value-added service that provides searching capabilities to
existing cloud-based data sharing and collaborative systems. It enables data owner
to define encrypted index once, allowing multiple subscribers to search it according
to their access privileges. Evaluation of OTM has highlighted the fact that it exerts
reasonable execution load on each of the involved entities. Besides this, its estimated
execution cost is fairly reasonable, being only 0.03 to 1.09 $ for 1000 search requests
having search criteria comprised of 2 to 14 distinct keywords.
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The current implementation of proposed privacy-aware data search service does
not support range queries. For our future research directions, we have intention of
incorporating range queries. However, the inclusion of range queries does not af-
fect the fundamental concept of OTM that is based on private matching and proxy
re-encryption. Besides this, we will incorporate order preserving encryption [34] to
restrain trusted third party from learning frequency information during response ex-
traction.
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Appendix: Performance evaluation: data tables

Performance evaluation presented in Sect. 7 is based on the following data tables.
Figure 2 presented the visual representation of Table 2. Similarly, Figs. 3, 4, and 5
are associated with Tables 3, 4, and 5, respectively.

Table 2 Inverted index generation and indexed term encryption time

File size (mb) Lucene indexing
time (ms)

No. of indexed
terms

Encryption time
(ms)

1 631 10 1260

5 960 15 1915

10 1291 20 2572

15 1601 25 3186

20 1912 30 3803

25 2246 35 4467

30 2582 40 5134

Table 3 Search criteria
encryption and decryption time Search criteria size Encryption time (ms) Decryption time (ms)

2 252 484

4 500 970

6 751 1468

8 1003 1973

10 1253 2430

12 1524 2915

14 1772 3401
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Table 4 Query modelling, oblivious query generation encryption and response extraction time

Search
criteria size

Query modelling
time (ms)

Query encryption
time (ms)

Response extraction
time (ms)

2 0.001 483 902

4 0.003 821 1493

6 0.005 1181 2116

8 0.010 1571 2680

10 0.016 2008 3361

12 0.024 2421 4011

14 0.037 2901 4627

Table 5 Oblivious query evaluation time, cloud server response time and estimated execution cost for
1000 requests

Query size CPU time (ms) Response time (ms) Estimated CPU cost
($) for 1000 requests

2 639 1255 0.035

4 1966 3934 0.110

6 4106 8245 0.229

8 6850 13827 0.384

10 10435 21027 0.584

12 14415 29069 0.808

14 19554 39504 1.098
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