
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 29, 851-871 (2013)

851

Ontology Evolution and Challenges*

ASAD MASOOD KHATTAK1, RABIA BATOOL1, ZEESHAN PERVEZ1,

ADIL MEHMOOD KHAN2 AND SUNGYOUNG LEE1,+
1Department of Computer Engineering

 Kyung Hee University
Yongin, 446-701 Korea

2Division of Information and Computer Engineering
Ajou University

Gyeonggi-do, 443-749 Korea

Information semantics and semantic interoperability among applications, systems,

and services are mostly based on ontology. Its increase usage in Information Systems
and Knowledge Sharing Systems raises the importance of ontology maintenance. Ontol-
ogy change management incorporates areas like ontology engineering, evolution ver-
sioning, merging, integration, and maintenance. Changes are made to the body of know-
ledge as experts develop a better understanding of the domain. As a result, the body of
knowledge evolves from one state to another. Preserving consistency, while accommo-
dating new changes, is a crucial task that needs special attention. This paper aims at pro-
viding a comprehensive review on key approaches followed in the field of ontology evo-
lution. The analysis reveals that different individual components have been developed
but a complete integrated system for automated ontology evolution is not available yet.
This paper introduces some unfolded challenges in the field of ontology evolution,
which must be tackled to complete the process automatically. Moreover, the new
changes could affect the dependent data, applications, systems, and services. Therefore,
this paper also discusses in detail why special attention must be paid to minimize the af-
ter effects of ontology evolution and proposes some possible solutions to achieve this
goal.

Keywords: knowledge management, knowledge management applications, ontology, on-
tology change, ontology change management, ontology evolution

1. INTRODUCTION

The fundamental aspect of information exchange among applications, systems, and
services is the development of a consistent and comprehensive model for representing
the domain knowledge. It is essential for: sharing knowledge of research outcomes, shar-
ing information among independent organizations [1], exchange of information among
clinics [2], and among heterogeneous systems [3]. To make this possible, we need to
carefully model the domain knowledge while preserving its semantics [4, 5].

Ontology provides formal structure with semantics about how an expert perceives

Received July 29, 2011; revised May 24, 2012; accepted December 6, 2012.
Communicated by Elena García-Barriocanal.
+ Corresponding author.
* This research was supported by the MKE (The Ministry of Knowledge Economy), Korea, under the ITRC

(Information Technology Research Center) support program supervised by the NIPA (National IT Industry
Promotion Agency) (NIPA-2012-(H0301-12-2001)). This work was supported by the Industrial Strategic
Technology Development Program (10035348, Development of a Cognitive Planning and Learning Model
for Mobile Platforms) funded by the Ministry of Knowledge Economy (MKE, Korea). This research was
supported by the new faculty research fund of Ajou University. This paper is supported by sabbatical year of
Kyung Hee University in 2010.

A. M. KHATTAK, R. BATOOL, Z. PERVEZ, A. M. KHAN AND S. Y. LEE

852

the domain of interest with its real meanings. Philosophical ontology is the science of
what is, of the kinds and structures of objects, properties, events, processes, and relations
in every area of reality. In computer science, ontology is defined as formal and explicit
specifications of a shared conceptualization of a domain of discourse and is the main
driving force behind Semantic Web vision [6]. Ontologies are complex in nature and often
large structured. Their development and maintenance incorporates research areas like: evo-
lution, versioning, merging, and integration where these are fundamentally different [7].

Different convergence technologies like: Semantic Web Services [8, 9], Context-
aware Search Engines [10], Software Agents [11], and Semantic Grid [12] use ontology
for their customized needs [13]. Systems using context-aware information (modeled us-
ing ontology) offer opportunities for applications, services, application developers, and
end users by gathering context information. The modeled information facilitates in
adapting systems behavior according to application and end user customized needs. Es-
pecially in combination with mobile devices, this modeled information is of high impor-
tance that increases usability of information and applications on top of the modeled in-
formation tremendously [13]. Currently in use and most appreciate approach for informa-
tion modeling, mediation, and integration is use of ontology in every aspect of data, ap-
plication, system, service, and technology level integration and interoperability [4, 13-15].

Thus the use of ontology is increasing in Information Systems and Knowledge Shar-
ing Systems, which in response increases the significance of ontology maintenance [5, 7,
16]. Ontology change results in evolution of ontology where ontology evolution is the
change in expert’s perception about the domain in view [17]. The evolution process deals
with the growth of ontology. More specifically, ontology evolution means modifying or
upgrading the ontology when there is a certain need for change or there comes a change
in the domain knowledge [18]. For better system accuracy and performance, up-to-date
and complete information must be maintained in the knowledgebase. Ontology change
management thus deals with the problem of deciding the modifications that should be per-
formed in ontology, implementing these modifications, and managing their effects on
dependent data structures, ontologies, systems, services, and applications [5, 7, 19].

Ontology evolves from one consistent state to another [20] and to accomplish the
evolution process several different sub-tasks are performed in a sequence, i.e., Capture
change, Change representation, Semantics of change, Change implementing and verifi-
cation, and Change propagation [7, 15, 16, 21, 22]. Research on ontology evolution is
being carried out by different researcher’s groups, and their approaches overlap with
each other [7, 16-19, 21, 22]. These approaches do have some pragmatic advantages and
disadvantages. The current ontology evolution techniques have several hidden weak-
nesses which are still needed to be unfolded for the purpose of automatic ontology evolu-
tion and minimizing its after effects. One major weakness is that the specification of new
changes due to change in domain knowledge, resolving inconsistencies because of new
changes (selecting deduced changes from available alternatives), and also undo and redo
in case we want to recover the ontology are all done manually [23]. In order to automate
the process of ontology evolution, we need to automate all the above mentioned tasks.
This automation is important because human intervention is time consuming and error
prone. In addition to these issues, the process of evolution also brings consequent effects
on dependent applications and services using the evolving ontology, which must be
minimized [15, 24, 25].

ONTOLOGY EVOLUTION AND CHALLENGES

853

The goal of this research is to provide a comprehensive review of the approaches
employed by different research groups for ontology evolution. The paper discusses in
detail the main features of these approaches and their contributions. Their limitations are
also highlighted using summary tables and are critically analysed. Furthermore, the paper
discusses some open challenges that need to be addressed in order to completely auto-
mate the process of ontology evolution. We have also discovered and highlighted conse-
quent effects of ontology evolution on dependent ontology, applications, and services
and have also suggested possible solutions to minimize these effects.

This paper is arranged as follows: Section 2 provides a case study on ontology
change and its effects of dependent service. Section 3 briefly discusses different types of
ontology changes and change management activities to cope with these changes. Section
4 presents existing ontology evolution approaches with their contributions and limita-
tions. In Section 5, we present the challenges that are still needed to be tackled for com-
plete automation of evolution procedure and minimize the after effects on the dependent
data, systems, and technologies. Finally, we conclude our discussion in Section 6.

2. ONTOLOGY CHANGE A CASE STUDY

Ontology is being used by different convergent technologies for their customized
needs, such as Context-aware Search Engines [10], Software Agents [11], and Semantic
Grid [12]. In this section, we mainly focus on Semantic Web Services [8, 9, 26] (as a
road map for later sections) and their use of ontology for the completion of different
tasks. Current web is the migration of traditional web from collection of web pages to
collection and integration of services that can interoperate with one another.

Fig. 1. Vehicle ontologies, Ontology O1 and O2 are used by different web services.

In this section we only highlight the use of ontology for web services in order to set

the stage for the upcoming sections that would focus on issues that a web service might
face due to ontology evolution. The Vehicle Ontology O2 given in Fig. 1, is an extended
version of the ontology used in [26]. Consider two web services that provide services
about Vehicle. These services use the two ontologies given in Fig. 1 respectively, to ful-
fill client’s diverse requests. Now consider a scenario in which a client requests for Train
related information from the service that is using ontology O2, but the requested informa-
tion is not available with the contacted web service. This web service has a collaboration
established with another web service that is using ontology O1, so it will route the cli-

Ontology O1 Ontology O2

A. M. KHATTAK, R. BATOOL, Z. PERVEZ, A. M. KHAN AND S. Y. LEE

854

ent’s request to the second web service where client’s needs are fulfilled. For this routing
of request, proper mapping of information is required from both sides [26-29] so that
semantic interoperability could be achieved. However, consider that the same ontologies
on both sides are used by different stakeholders and they make the changes in a central-
ized instance of ontology. The change happened to any side of the collaborating ontolo-
gies will make the established mappings unreliable and there will be no more information
sharing among the two services (see Fig. 2). To evolve the mappings and continue the
sharing of information, proper maintenance of ontology changes and their reflection is
necessary [7, 15, 30].

Fig. 2. Vehicle ontologies, Ontology O1 and Ontology O2 used for information sharing scenarios

based on the established mappings. However, changes initiated from any department will
make the mappings unreliable which will stop the sharing of information between the two
ontologies. Change management module facilitates consistent evolution of ontology.

To facilitate the dynamic mappings in this case, proper management of ontology
changes is required. This gives importance to ontology change management to support
smooth evolution of ontology [7]. Consider the scenario given in Fig. 2 where the Vehi-
cle ontology is continuously subject to change because of the participating stakeholders.
Now the changes need to be reflected on the final state of ontology without any conflicts
for inconsistencies. This task is carried out by change management module. The re-
quested changes are semantically represented. Possible conflicts are resolved and the
changes are implemented on the ontology that evolves to another consistent state.

3. ONTOLOGY CHANGE MANAGEMENT ACTIVITIES

As explained in [7] ontology change management deals with the problem of decid-
ing the modifications to be performed in ontology in response to a certain need for
change. The ontology change management is a mechanism that keeps the changing on-
tology consistent. Different changes and their effects are mostly discussed in [19, 31].
Ontology change management deals with four main activities which are related and in
some cases overlap but are fundamentally different activities.

 Ontology evolution is the process of modifying ontology in response to a certain change
in the domain or its conceptualization [7, 16, 19, 22, 31].

ONTOLOGY EVOLUTION AND CHALLENGES

855

 Ontology versioning is the ability to handle an evolving ontology by creating and man-
aging its different versions [7, 16, 32, 33].

 Ontology integration is the process of composing an ontology on a particular subject
from information found in two or more ontologies covering multiple domains [7, 16, 34].

 Ontology merging is the process of composing an ontology from information found in
two or more ontologies covering highly overlapping or identical domains [7, 16, 35].

A number of changes, ranging from concepts to properties, could affect the ontol-

ogy when it is requested to be reflected in the existing ontology. Most of these changes
are discussed in greater length in [19]. Here we will briefly highlight some of the aspects
that will initiate a change when requested for accommodation in the ontology.

 New Concept: This is the most common change in any ontology. New concepts emerge

and have to be accommodated in the concept hierarchy.
 Concept with Changed Properties: This is the case when the concept in focus is al-

ready present in the ontology but its properties and restrictions are different from those
associated with existing concepts.

 Simple vs. Aggregated Concept: The concept in focus might be a combination of two
or more existing concepts (or vice versa). The ontology framework shall preferably
detect and act accordingly to accommodate the change.

 Concept vs. Property: Different modeling approaches are followed by ontology engi-
neers for building ontologies. One such case is modeling the same concept either as a
class in OWL or as a property of some other existing class. For example, the concept
Luxury_Vehicle could be a separate subclass of Vehicle or could be modeled as prop-
erty of the concept Vehicle.

 Concept with Changed Hierarchy: Different modeling approaches may fix the same
concept in different hierarchical locations in two different ontologies.

A single change in ontology can be of both simple and complex nature depending

upon resources that are affected with it. Understanding change types is necessary to cor-
rectly handle explicit and implicit change requirements [18], and consequently under-
stand the effects. Renaming a class or a property could be regarded as simple changes,
whereas merging two hierarchies with all their constraints could be termed as a complex
change. Keeping these simple and complex changes in view, ontology changes are ar-
ranged in different forms listed below, but these classifications of changes do overlap
[19]. (1) Changes at class level (adding, deleting, updating, and renaming) correspond to
changes that are directly related to classes; (2) Changes at slot level refer to changes
which are related to slots, such as adding, deleting, updating, and renaming different slots.
Other examples include setting domain/range of slots, setting the slot as symmetric, func-
tional, and inverse; (3) Change in hierarchy of the ontology means modifying the struc-
ture of the ontology. These changes include adding, deleting, moving, and merging dif-
ferent classes and subclasses, slots and sub-slots in an ontology. So these changes depend
on class-level and slot-level changes; (4) Change at instance level is a kind of change that
occurs when the instances are added, deleted, and modified. Some other examples in-
clude changes in property characteristics, equality or inequality, restricted cardinality,
and union or intersection.

A. M. KHATTAK, R. BATOOL, Z. PERVEZ, A. M. KHAN AND S. Y. LEE

856

Different changes may introduce different issues in ontology as well as in dependent
services. These issues and their possible solutions are discussed later. Let’s consider the
Ontology O2 given in Fig. 1. Suppose that a simple change of class (i.e., Sea_Vessel) de-
letion occurs; (1) This deletion needs some decisions like whether all the instances of
Sea_Vessel should also be deleted, which is loss of information. If not then how these
instances should be maintained in the hierarchy; (2) Suppose that all the sibling classes
(i.e., Aircraft, Sea_Vessel, and Landcraft) are disjoint. In that case, instances of Sea_
Vessel cannot be distributed among the disjoint classes; (3) Consistency of ontology after
this change is not guaranteed.

4. ONTOLOGY EVOLUTION APPROACHES

Ontology over time needs to be updated to accommodate new discoveries (changes)
in the domain knowledge, user requirements, and to incorporate incremental improve-
ment in the service. The evolution process deals with the growth of the ontology by cap-
turing, and accommodating the new information [7, 16, 22, 31]. Different ontology edit-
ing tools are developed and most of their functionalities are based on the algorithms and
approaches discussed later. Table 1 provides a brief investigation of these tools with their
contributions and limitations.

Table 1. Brief description of ontology editing tools.

System Contributions Limitations Evolution

Protégé
[36, 37]

 Mostly used for ontology creation
 Often used for evolution and main-

tenance
 Provides Merging, Integration, and

Comparison
 SparQL queries support

 Weak ontology change
management

 No facility for ontology re-
covery

 Use third party services for
consistency checking of on-
tology

Manual
evolution
support

KAON
[38]

 Provides ontology editing services
like Protégé

 Provides environment for pre-evo-
lution strategy making, avoid con-
flicts using deduce changes

 Supports automatic evolution, redo
and undo

 Provides collaborative editing facility

 Complex system
 Slow in response
 Needs ontology engineer-

ing for conflict resolution

Pre-defined
strategy
based evo-
lution sup-
port

OilED
[39]

 Used for ontology engineering
 Disallows inconsistency in ontology
 Supports semi-automated ontology

evolution

 No change logging facility
 No facility for ontology

recovery
 Strict in its operations

Semi-auto
matic sup-
port

On-
toEdit
[40]

 Used for ontology editing
 More options than KAON for strat-

egy making
 Allows collaborative editing envi-

ronment

 Provides less operations
than KAON

 To avoid side effects of
conflicts, it involves ontol-
ogy engineer

Strategy-
based evo-
lution sup-
port

ONTOLOGY EVOLUTION AND CHALLENGES

857

4.1 Ontology Evolution

The evolution process involves following subtasks (see Fig. 4, ontology). Capture
Change: which will capture the required changes to be applied to ontology. Change Rep-
resentation: where all the required changes are represented using formal representational
format. Semantics of Change: where the effects of the required changes are tested on
ontology for its consistency and if required then some deduced changes are also included
in the change request to avoid conflicts. This process is mainly related to the area of on-
tology debugging [7]. Change Implementation and Verification: where the complete
change request is executed on the ontology and validation is performed to see if the re-
quested changes made to ontology or not. All the applied changes are also logged into a
repository and these logged changes are used for different purposes. Change Propaga-
tion: where changes are propagated to all the dependent data, applications, and services.

The evolution in ontology is mainly of two types i.e., Ontology Population and On-
tology Enrichment [24]. Ontology Population is when we get new instances for concept
that is already present in the ontology. Here only the new instance(s) of the concept is
introduced and the ontology is populated. Ontology Enrichment is when we get changes
in the structure of ontology. For example when we get new concept(s), which is totally
new for our ontology or the concept does have some sort of changes from its counter
concept in the ontology. Then we enrich our ontology to accommodate the new changes
and also populate our ontology for its instance(s). In this section, we briefly discuss on-
tology evolution approaches with reference to their comparison in terms of their contri-
butions and limitations. At the end, we will critically analyze these approaches that will
set the stage for next section on open challenges.

Fig. 3. Ontology Evolution Lifecycle takes source ontology along with new changes and implements

the new changes to source ontology.

Initially, L. Stojanovic and B. Motik in [22] talked about the support that different
ontology editors have, their limitations, and complexities, and usability issues of these
tools for ontology evolution management. As ontology needs refinements, so it must be
updated by making appropriate changes in it. Therefore, methods to cope with the chang-
es that result from evolution are an essential requirement for ontology editors.

Types of change capturing, such as structure driven, data driven, usage driven, and
discovery-driven are discussed in [18] and the requirements that an ontology manage-

A. M. KHATTAK, R. BATOOL, Z. PERVEZ, A. M. KHAN AND S. Y. LEE

858

ment system for ontology evolution and propagation of these changes are discussed in
[22]. They first provided the functional requirements for the system to properly interact
with the underlying model and also provided multiple types of changes related to class,
properties, hierarchy, instances, and restrictions. In [7, 19, 36, 38, 41, 49], new changes
are specified by ontology engineer, whereas [16, 42-44] detect new changes between two
different versions of ontologies using PromptDiff (Protégé plug-in), OntoView [45], and
H-Match [27] algorithms. The systems discussed in [21, 31, 49] detect new changes
mostly using WordNet and H-Match [27]. These changes are then represented as a com-
plete change request in formal representational format developed by different researchers,
such as Change and Annotation Ontology (CHAO) [19], Change Log [44], and Change
History Ontology (CHO) [21]. Resolving the conflicts (inconsistencies) due to new
changes is one of the most focused issues of ontology evolution algorithm. In most of the
systems (as given in Table 2) ontology engineer resolves these conflicts, but systems like
KAON [38] and OntoEdit [40] use a predefined resolution strategy, and Evolva of NeOn
Toolkit [49] uses a customized run time strategy for conflict resolution.

After the implementation of the new changes, some systems [19, 21, 38, 44] provide
the facility for change logging [23]. There is also a need to select an appropriate level of
granularity for change item. A very simple level can cause side effects [22] while com-
plex level can make problems during ontology recovery and can pass up the facility for
item level recovery [23]. After the validation of implemented changes, they are propa-
gated to the dependent data, applications, and services using push-based and pull-based
[22] approaches. But most of the evolution systems do not provide the facility of propa-
gation as they follow the Semantic Web context, where it is highly possible that the on-
tology might be in use of unknown entity and they might not need the updates. So, the
pull-based approach is suitable, which excludes change propagation phase from ontology
evolution procedure.

4.2 Discussion

Existing ontology evolution approaches discussed above, to some extent have
achieved automatic ontology evolution. However, still they have many issues to consider
before announcing an automated system for ontology evolution. Some of the issues, not
handled by existing systems are discussed briefly in this section.

 The existing systems do not consider new emerging concept(s) (instead they work

with manual change requests), which is the first and amongst the most important as-
pects of developing automated evolution procedure.

 In [22] the authors talked about different requirements that need to be fulfilled in order
to achieve ontology evolution properly, such as composing change request, conflict
resolution, change implementation, and change propagation; however, they did not
provide any tangible results. In [22, 42], users manually created the requests for
changes, whereas the conflicts were manually resolved by experts.

 In [31], author focused on discovery of new change and afterwards ontology expert
inserted the resource at suitable place suggested by the system. Their main achieve-
ment was to use matching technique and discover most appropriate position for the
new emerging concept in ontology hierarchy. The main concerns in [21, 49] systems
were the best matching resource(s) selection for the newly emerging change.

ONTOLOGY EVOLUTION AND CHALLENGES

859

Table 2. Summary of ontology evolution approaches. Last column represents maturity
level of the approach in terms of automation.

Approaches
Change
Request

Change
Representation

Conflict
Resolution

Change
Implementation

Change
Propagation

Working

L. Stojano-
vic, et al.

[22].

The complete change request is repre-
sented in formal representational format.
These changes (due to business require-
ments) are specified by ontology engi-
neer.

Ontology engineer
resolves all the
inconsistencies due
to requested changes
by incorporating
deduced changes.

The requested changes
(including deduced
changes) are applied to the
source ontology.

Applied changes are
propagated to de-
pendent data, appli-
tions, and services.
Out dated instances
are replaced.

User inter-
vention
required for
system
working

M. Klein, N.
Noy, et al.
[19, 36, 41]

Specified by
ontology engineer.

Developed Change
and Annotation
Ontology (CHAO)
to represent change
request.

Ontology engineer
involvement.

Suggested that tools
should provide interface
for user interaction.

Consistent propaga-
tion of changes to
distributed instances
of ontology.

User inter-
vention
required for
system
working

T. Gabel, et
al. [38]

(KAON)

Specified by
ontology engineer

Formal representa-
tion of changes

Predefined strategies
for conflict resolu-
tion.

Provides interface for user
interaction and also logs
the changes.

Propagation of
changes to depend-
ent artifacts.

Most parts of
the system are
working

P. Plessers,
et al. [42]

Different versions of ontologies are used
in this approach. Changes among differ-
ent versions are represented formally.

After change imple-
mentation, it checks
for inconsistencies
and implement
change recovery.

First it implements the
change request and then
checks for any conflicts.

It does not support
change propagation
as it works on
versions.

User interven-
tion required
for system
working

D. Oberle, et
al. [43, 44]

Changes detected
among two versions
by using Prompt-
Diff and OntoView
[45], and a com-
plete change request
is compiled

Formally repre-
sented using their
developed semantic
structure.

Ontology engineer
resolves inconsis-
tencies by introduc-
ing deduced changes

With change implementa-
tion, all the changes are
also logged for undo/redo
purpose

It does not support
change propagation
as it works on
versions

User interven-
tion required
for system
working

P. Plessers,
et al. [42]

Use top-down
manual and bottom-
up automatic
approach for
change detection

Suggestions for the
use of formal
representation i.e.,
using the change
log representation

Involves ontology
engineering for
resolving conflicts

Manual implementation of
these changes

It does not support
change propagation

User inter-
vention
required for
system
working

H. Liu, et al.
[46]

Changes are suggested by end user and
are assumed to be represented at atomic
level.

For all conflicts, the
resulting solutions
are calculated using
DL assertions

Changes are implemented;
no log is maintained for
this.

Suggestions for
consistent propaga-
tion are made

User inter-
vention
required for
system
working

S. Castano,
et al. [31]

Changes are
recognized auto-
matically by
analyzing domain
artifacts. H-Match
[27] and WordNet1
[47] are used for
change detection.

Changes are
then formally
represented.

Inconsistencies are
resolved by ontology
engineer.

Changes are made by
ontology engineer.

Change propagation
is not a focus.

Semi-automat-
ic

A. M. Khat-
tak, et al.

[48]

New changes such as (change in single
concept, group of concepts and concepts
in a hierarchical structure) are detected
automatically using H-Match [27] and
WordNet. Change representation is
provided by Change History Ontology
(CHO) [21].

For conflict resolu-
tion KAON API [38]
is used with some
suggested exten-
sions.

Changes are implemented
atomically and after every
change implementation,
these are logged in CHL
[21]. At the end, all
changes are validated
against the change re-
quest.

Change propagation
is not handled in this
approach.

This approach
provide
suggestions
toward
automation of
the process

F. Zablith
[49]

Changes can be specified by user and
detected automatically. They also use
WordNet for new change detection. Then
these changes are formally represented
using different representation techniques
followed in their overall NeOn Toolkit.

A new developed
algorithm for
conflict resolution
strategy is partially
implemented.

Changes are implemented
and verified.

Change propagation
is the focus for 2nd
phase with conflict
resolution.

This approach
is a step
towards
automatic
evolution

1 http://wordnet.princeton.edu/wordnet/download/

 Inconsistency resolution is also amongst the most critical problems that needs atten-
tion before, during, and after evolution. The consistency is checked for; consistent
modeling of new resources in presence of existing resources, consistency with the
other side matching ontology, and consistency with the business rules of organization.

 In [21] the author proposed a training process for different deduced changes. But
training a system for induced and consequent deduced changes is a tough job, and
even after proper training the system results may not match user’s intentions. For a

A. M. KHATTAK, R. BATOOL, Z. PERVEZ, A. M. KHAN AND S. Y. LEE

860

single conflict there might be many alternative deduced changes, and deciding upon a
certain change is another issue in itself [25, 49].

5. OPEN CHALLENGES

In this section, we explain in detail the challenges that need to be solved for the pur-
pose of achieving automated ontology evolution [24]. Afterwards, we discuss in detail
some of the after effects of ontology evolution on the dependent data, applications, sys-
tems, services, and ontologies. For the challenges discussed in different scenarios, we
also suggest possible solutions to overcome these challenges or minimize their effects. In
discussion on these challenges, we present the problems at class level but it is applicable
to all including slots, instances, and restrictions. The first two issues arise during evolu-
tion whereas the rest is related to the after effects of evolution on services and ontology.

5.1 Change Detection

The first phase of automatic ontology evolution is to detect new changes. To detect
changes among the newly emerging concept(s), various resource correspondence, differ-
ence, and matching [27, 43] techniques are applied. This helps in finding out the most
appropriate position for the emerging concept in concept hierarchy [7]. First of all, the
existence of newly detected resource is checked, and if it does not exist then matching
process starts to detect the most relevant concept(s) in the source ontology [21, 27] where
the new concept should be inserted. However, there exist two different problems [24]:

 Relevance Detection: It means to calculate the relevance between the new concept and

the existing concept(s). The currently used algorithms for difference, correspondence,
and matching are presented in [27, 28, 43]. However, their results are still not accu-
rate enough for diverse domains, so using these algorithms is not fully reliable and
user intervention is required. See Fig. 4, these algorithms [27, 28, 43] produce high
correspondence for the newly emerging concept Vehicle having sub-concepts Light_
Vehicle and Heavy_Vehicle against the root concept Vehicle of the source ontology,
and produce low correspondence against the Landcraft concept. But this correspon-
dence is not correct as the emerging concept Vehicle is actually more related to the
concept Landcraft.

Fig. 4. Emerging concepts are the newly detected changes (discoveries) in domain and are the rea-

sons for change in source ontology (i.e., Vehicle Ontology in use of a web service).

Emerging Concepts Source Ontology

ONTOLOGY EVOLUTION AND CHALLENGES

861

 Selection among Newly Detected Changes: It is quite possible that more than one
concept is related to the newly emerging concept, so which alternative should be se-
lected? To understand this problem concentrate on Fig. 4, where we have emerging
concepts Fighter_Airplane and Airliner_Airplane, and the source ontology is Vehicle
ontology to which the changes will be applied. The correspondence calculated for
these emerging concepts give three alternatives for their insertion in the concept hier-
archy: (1) Insert both emerging concepts as sub concepts of Vehicle concept. This al-
ternative is reasonable as Aircraft is already a sub concept of Vehicle concept; (2) A
more feasible option is to make both these concepts sub concepts of Aircraft concept
in the source ontology; (3) Another alternative is to make Fighter_Airplane and Air-
liner_Airplane sub concepts of Airplane and this is the most reasonable suggestion.
An ontology expert knows that the third alternative is the most suitable one, but in
automatic evolution procedure the decision is to be made by the system. Proper heu-
ristics should be implemented or the system should be trained for such situations. But
it is a tough task to train the system as ontology is very much different in its nature
and structure than any other information representation schemes [17]. These issues
are still unsolved and need attention.

5.2 Conflict Analysis

Consistency of ontology after evolution is the most critical concern. In order to re-
solve these conflicts and make ontology consistent, deduced changes are introduced in
change request. Introduction of appropriate deduced changes is one of the most high-
lighted problems in ontology evolution literature. Most of the existing systems use expert
intervention for resolving the conflicts [22, 31, 41, 42]. In KAON [38] and OntoEdit [40],
predefined evolution strategies are used to avoid any sort of inconsistency. For example,
if there are two alternatives for a concept change: (1) to become a property of some con-
cept; and (2) to become a sub-concept of some concept in the source ontology (like Lux-
ury_Vehicle concept case in section 3), then the choice of sub-concept should be selected
which is predefined in the evolution strategy. The problem is, we cannot make prede-
fined strategies for all sorts of conflicts, so ontology engineer is required for conflict
resolution [38, 40]. In [23], we proposed training the system for different types of de-
duced changes, and then accordingly selecting the alternative (deduce change) that has
less impact on ontology. To resolve the conflicts in this way, we need to address two
very important things.

 System Training: It is very hard to train the system for an exhaustive list of changes

(even for a specific domain) and then expecting accurate results. Moreover, the re-
sults may also not be acceptable to ontology engineer. In addition, there might be
cascading conflicts and resolving all these may result in weak response time of the
system which in result can make a web service using this ontology to go offline.

 Impact of Deduced Changes: In [21], we proposed to select those deduced changes
from alternatives having less impact on ontology. However, special attention must be
paid in deciding about which aspect of the ontology should be considered to analyze
the impact of change for the deduced changes. Moreover, it should also be kept in
mind that some changes have larger impact on the structure of ontology but have less

A. M. KHATTAK, R. BATOOL, Z. PERVEZ, A. M. KHAN AND S. Y. LEE

862

impact on the semantics of resources in the ontology. For example (see Fig. 5), add-
ing concepts Light_Vehicle and Heavy_Vehicle as sub-concept of Landcraft in source
ontology have larger structural impact than semantic impact. In the same way, adding
concepts Light_Vehicle and Heavy_Vehicle as sub-concepts of Vehicle in source on-
tology have less structural impact but more semantic impact. If we make Sea_Vessel
disjoint with its sibling concepts, then this change also has less structural impact but
can have very large impact on semantic of the resources as its effects will also be re-
flected on the sub-concept(s) of all the disjoint concept(s).

5.3 Change Traceability

Corresponding to the CRUD interfaces in databases, there are three categories (ex-
cluding read) in the proposed ontology representing the change types: Create, Update,
and Delete. There are four categories in the ontology to represent different components
of the ontology being subject to change (i.e., Class, Property, Individual, and Ontology
[21]). Based on the above mentioned categories, we derive instances of class Ontology-
Change, represented with the symbol Δ, using the following axioms, for details see [21].

R∆ ≡ ChangeTarget. (Class ⊔ Property ⊔ Individual ⊔ Ontology)
∆ ≡ R∆ ⊓ changeType. (Create ⊔ Update ⊔ Delete) ⊓ changeAgent.(Person ⊔
SoftwareAgent) ⊓ = 1changeReason

Changes and the reasons for the changes need to be preserved for later use. We pro-

posed and use Change History Log (CHL) to store all the changes in formal and semantic
representational format provided by Change History Ontology [21]. Changes of specific
time interval are logged as one Change_Set (see Fig. 6), and this Change_Set changes are
the reason for ontology evolution. Managing ontology changes during evolution in CHL
is also helpful for new users to understand the changes made to ontology. Using entries
of CHL one can also understand the change in semantics of the changed concept(s). An-
notation can also be added with all the changes, such as reason for the change, effects of
the change on dependent data, application, and services, which could help in under-
standing the changes in ontology, data, application, and service behavior.

5.4 Ontology Recovery and Change Visualization

Proper maintenance of ontology changes is very important to provide the facility of
reverting back to the previous consistent state of ontology. These stored changes not only
provide the facility for rollback, but are also used for roll-forward operations based on
user request. Different ontology editors like KAON [38], Protégé [37], and OntoEdit [40]
do provide the facility for undo and redo changes but they do not provide the facility for
complete recovery of ontology from one consistent state to another.

Ontology visualization tools and plug-ins are available in abundance. None demon-
strates ontology evolution and change visualization. New breed of ontology visualization
tools can be implemented using change history log to visualize different ontology states.
The ontology changes (logged in CHL) can be used to visualize the change effects on
ontology in different states through which it passed before reaching the current state.
Such visualization will provide the facility to temporally trace the ontology changes and

ONTOLOGY EVOLUTION AND CHALLENGES

863

2 http://cidoc.ics.forth.gr/index.html

Fig. 6. Representation of Change_Set instance from CHL with corresponding change entries, reason
for O1 evolution to O1

/ using CHO. The changes are represented using N3 notation.

better understand its evolution behavior.
We validated our proposed framework as an added component for the ontology edi-

tor (i.e., Protégé) [23]. The recovery and visualization component, on top of all other
components, should provide ontology recovery and visualization services. For details on
these procedures and validation refer to [23]. The recovery process is still not mature as
the proposed method is only valid for structure level recovery of ontology. There is still
no system available that can work for both structure and instance level recovery.

5.5 Change Prediction

For conflict resolution as well as for future change prediction, the logged changes
can be of significant help. The changes logged in CHL [21] are atomic level (simple)
changes that do provide lots of open space for change patterns. See Fig. 6, where after
every new class addition a class renaming change is performed. The same way, after
every property addition, property renaming and setting its domain and range is occurring.
So these patterns can be extracted and used in conflict resolution and next change predi-
ction. Using these frequent patterns, we can also get a better understanding of develop-
ment. Fig. 5 is an example of mining frequent patterns from some logged changes.

Fig. 5. Mining frequent change pattern from logged changes.

log:Change_Set_Instance_2010_08_06_00_05_04
 a cho:Change_Set ;
 cho:hasChangeAuthor
 cho:hasChangeBeginTime "2010-08-18T00:05:04";
 cho:hasChangeReason "New Changes";
 cho:hasOntology "vehicle".
log:Change_Person_Instance_2010_08_06_00_03_54 ;
.
.
.
log:Class_Addition_Instance_1282056020687
 a cho:Class_Addition ;
 cho:hasChangedTarget vehicle:Class_2 ;
 cho:hasTimeStamp "1282056020687” ;
 cho:isPartOf
 log:Change_Set_Instance_2010_08_06_00_05_04;
 cho:isSubClassOf vehicle:Airliner_Ariplane .

log:Class_Renaming_Instance_1282056031031
 a cho:Class_Renaming ;
 cho:hasChangedName "Passenger_Airplane" ;
 cho:hasOldName "Class_2” ;
 cho:hasTimeStamp "1282056031031” ;
 cho:isPartOf
 log:Change_Set_Instance_2010_08_06_00_05_04;
 cho:isSubClassOf vehicle:Airliner_Ariplane .

log:Domain_Addition_Instance_1282057572968
 a cho:Domain_Addition ;
 cho:hasChangedTarget vehicle:landsOn;
 cho:hasDomain vehicle:Helicopter ;
 cho:hasPropertyType owl:ObjectProperty ;
 cho:hasTimeStamp "1282057572968”;
 cho:isPartOf

log:Change_Set_Instance_2010_08_06_00_05_04.

log:Range_Addition_Instance_1282057580015
 a cho:Range_Addition ;
 cho:hasChangedTarget vehicle:landsOn ;
 cho:hasPropertyType owl:ObjectProperty ;
 cho:hasRange "Sea_Vessel”;
 cho:hasTimeStamp "1282057580015”;
 cho:isPartOf

log:Change_Set_Instance_2010_08_06_00_05_04.

log:Property_Deletion_Instance_1282057717953
 a cho:Property_Deletion ;
 cho:hasChangedTarget vehicle:carColor ;
 cho:hasPropertyType owl:ObjectProperty ;
 cho:hasTimeStamp "1282057717953”;
 cho:isPartOf

log:Change_Set_Instance_2010_08_06_00_05_04.
.
.
.

ClassAddition 1
ClassRenaming 2
ClassDeletion 3
MakingDisjoint 4

PropertyAddition 5
PropertyRenaming 6
PropertyDeletion 7
SettingDomain 8
SettingRange 9

A. M. KHATTAK, R. BATOOL, Z. PERVEZ, A. M. KHAN AND S. Y. LEE

864

5.6 Query Reformulation

Query written over one schema does not give correct results when executed over
another schema [50], so it needs to be reformulated. Same is true for ontology, so when
ontology evolves then the query written over previous state needs to be reformulated to
extract the required results from the evolved ontology [51]. The author in [51] proposed a
five phase query reformulation procedure for evolved ontologies. The main modules of
the procedure are: capture, instantiate, analyze, update, and respond (for details please
refer to [51]). They evaluated the system using two different versions of CRM2 [52] on-
tology. The main idea behind this work is to maintain the changes in a repository and
later used these changes for query reformulation.

This system was only tested over two specific versions of CRM ontology, so its
scalability is a question mark, not only for other ontologies but also for different versions
of CRM ontology. Secondly, the structure for logging the ontology changes is also not
suitable for query reformulation over more than two versions of ontologies at the same
time as it is hard to extract the changes from the log that corresponds to a particular state
of ontology. In [21], a Change History Ontology (CHO) is presented that logs all the on-
tology changes in atomic manner and also keeps the changes separate from those that
correspond to a different state of ontology. The notion of Change_Set has been intro-
duced that bundles all the ontology changes together that result in its evolution from one
state to another. So this separate Change_Set instance helps in proper reformulation of
query for required state of ontology (Fig. 6 is an example of Change_Set instance that
cause the ontology O1 evolved to O1

/ state, as shown in Fig. 7).
Consider a SPARQL query (given below) written over Ontology O1 shown in Fig 7.

This query will retrieve all the instances of class Car form Ontology O1 in descending
order of their names.

SELECT ?car ?carName WHERE { ?car a :Car . ?car :hasName ?carName } ORDER BY DESC(?carName)

Let’s consider that Ontology O1 evolved to another state O1
/. Now the same query

will not be able to extract the required information from Ontology O1
/. For this purpose,

we need to reformulate the query for the newer state. The query is reformulated using
change history information extracted from CHL using SPARQL queries given below.

SELECT ?changeSet ?timeStamp WHERE { ?changeSet a :Change_Set .
?changeSet :hasTimestamp ?timeStamp } ORDER BY DESC(?timeStamp)

The above query extracts the Change_Set instance where the changes are stored.
The query below will extract changes using the Change_Set instance information from
CHL.

SELECT ?change ?changedName ?oldName WHERE { ?change :isPartOf “changeSet” .
?change :hasOldName ?oldName . ?change :hasChangedName ?changedName .
FILTER regex(?oldName, "Car") }

After extracting the information from CHL using above queries, the first query is
rewritten as given below. This changed query will now get the required information from
the evolved state of ontology O1

/.

ONTOLOGY EVOLUTION AND CHALLENGES

865

SELECT ?car ?carName WHERE { ?car a :Light_Vehicle . ?car :hasName ?carName }
ORDER BY DESC(?carName)

5.7 Rebuilding Ontology Mappings

Mappings are required to translate query and/or share information [27-29, 51, 53].
When ontology evolves then its mappings with the other ontologies are no more reliable
and query execution and information exchange over such mappings will produce unpre-
dictable results. So there is also a need for re-establishment of these stalled mappings.

There is no such solution for re-engineering the broken mappings among the
evolved ontologies except to completely re-establish the mappings. Re-establishing the
mappings among small ontologies is not a problem, but if ontologies like Google Classi-
fication3, Wiki Classification4, ACM Classification Hierarchy5, and MSC Classification
Hierarchy6, then re-establishment of mappings among such ontologies is a time consum-
ing process. To solve this problem in a time efficient manner, we believe Change History
Log (CHL) [21] containing all the changes can play an important role.

Fig. 7. Ontology O1 and O2 having mappings, Ontology O1 have evolved from state O1 to state O1

/, so
the previous mappings are no more reliable as there are different changes introduced in O1

/.

Consider two ontologies exchange information based on the established mappings.
Now one or both the ontologies change (evolve). In this case the already existing map-
pings are not reliable and also become stale. The mappings between these two ontologies
thus need to evolve with the evolving ontologies in order to be up to date. The scenario is
discussed in two cases: (1) When One of the mapped ontologies evolves, (2) When both
ontologies evolve from one consistent state to another. In both cases, the mappings also

Ontology O2

Ontology O1

Ontology O1
/

3 http://www.google.com/Top/Reference/Libraries/Library_and_Information_Science/Technical_Services/Cataloguing/Classification/
4 http://en.wikipedia.org/wiki/Taxonomic_classification
5 http://www.acm.org/about/class/1998/
6 http://www.math.niu.edu/~rusin/known-math/index/index.html

A. M. KHATTAK, R. BATOOL, Z. PERVEZ, A. M. KHAN AND S. Y. LEE

866

need to evolve to accommodate for the changed resources to eliminate the staleness from
the already established mappings and facilitate information exchange.

To reconcile the mappings in a time efficient manner and remove the stalled map-
pings, we proposed using the CHL entries. It helps to identify the changed resources
from both ontologies, establish mappings for these changed resources and update the old
mappings. We only need to extend the method for calculating Semantic Affinity (SA) by
incorporating the change information from CHL. Signature for SA is given below.

1 1

1 1

1 1 2 2 2 2

2 2

 Resource from ontology

 Change information from CHL of Ontology

(, , , ,) Resource from ontology

 Change information from CHL of Ontology

 User defined threshold for resourc

C O

O

SA C C C O

O

e match

Though this proposed process for reconciliation of mapping reduces time, but it

raises the concern for the accuracy of the re-established mappings. There is a need to
come up with a technique that should not only reduce the time for mapping reconciliation
but should also produce the same amount of accurate mappings that systems like H-
Match, MARRA, and Falcon [27-29] generate.

5.8 Collaborative Ontology Engineering

The ontology as by definition is shared, so changes made to any instance of ontol-
ogy should also be reflected to all other instances of the ontology. To support the concept
of collaborative ontology engineering, a sophisticated and formal structure for change
management is required that can bundle the changes of a specific change session and
later propagate the changes to all the other instances as shown in Fig. 8 where the
changes of Ow and Ox are propagated to O1, O2, and O3. For collaborative ontology engi-
neering where ontology engineers are on remote locations and engineering an ontology
then the concept of ontology change management becomes very important. It should also
facilitate the change in ontology based on the time order and avoid any time relevant
conflicts. The changes are also propagated to each instance of ontology to keep the in-

Fig. 8. Collaborative ontology engineering and importance of change management.

ONTOLOGY EVOLUTION AND CHALLENGES

867

stances synchronized. The task of collaborative ontology engineering and change man-
agement is an important challenge of modern days that needs proper attention [54].

6. CONCLUSION

Ontology evolution is a collaborative process and incorporates work from related
fields like ontology matching, merging, integration, versioning, and reasoning. We dis-
cussed different changes that result in ontology evolution, tools that support evolution,
and the approaches followed for ontology evolution by the research community with
their comparative analysis. To automate the process of ontology evolution, some of the
unsolved problems were highlighted, and possible solutions for the highlighted problems
were also suggested. The effects of ontology evolution on dependent data, applications,
information systems, ontology, and services based on ontology were discussed. We also
proposed possible solutions for these after effects of ontology evolution and also referred
to our developed solutions for some of these problems. We believe that the challenges
identified in this article are of critical nature and addressing them would make the opera-
tion of Web Services, Applications, and Systems that use ontology smoother. Currently,
we are working on improving the performance of our re-establishment of ontology map-
ping technique. However, the accuracy is still the main focus in addition to maintaining
good performance. Change prediction in evolving ontologies is also in pipeline.

REFERENCES

1. E. Brynjolfsson and H. Mendelson, “Information systems and the organization of mo-
dern enterprise,” Journal of Organizational Computing, Vol. 3, 1993, pp. 245-255.

2. S. M. Huff, R. A. Rocha, B. E. Bray, H. R. Warner, and P. J. Haug, “An event model
of medical information representation,” Journal of the American Medical Informat-
ics Association, Vol. 2, pp. 116-134.

3. P. B. Bhat, C. S. Raghavendra, and V. K. Prasanna, “Efficient collective communi-
cation in distributed heterogeneous systems,” in Proceedings of the 19th IEEE In-
ternational Conference on Distributed Computing Systems, 1999, pp. 15-24.

4. T. A. Halpin, Information Modelling and Relational Databases: From Conceptual
Analysis to Logical Design, Morgan Kaufman Publishers, San Francisco, 2001.

5. R. Wasserman, “The problem of change,” Philosophy Compass, Vol. 1, 2006, pp. 1-
10.

6. T. B. Lee, J. Hendler, and O. Lassila, “The semantic web,” Scientific American, Vol.
284, 2001, pp. 34-43.

7. G. Flouris, D. Manakanatas, H. Kondylakis, D. Plexousakis, and G. Antoniou, “On-
tology change: Classification and survey,” Knowledge Engineering Review, Vol. 23,
2008, pp. 117-152.

8. M. Martin, S. Paolucci, M. McIlraith, and et al., “Bringing semantics to web services:
The OWL-S approach,” in Proceedings of the 1st International Workshop on Se-
mantic Web Services and Web Process Composition, 2004, pp. 117-152.

9. C. Preist, “A conceptual architecture for semantic web services,” in Proceedings of

A. M. KHATTAK, R. BATOOL, Z. PERVEZ, A. M. KHAN AND S. Y. LEE

868

the 3rd International Semantic Web Conference, 2004, pp. 395-409.
10. A. M. Khattak, J. Mustafa, N. Ahmed, K. Latif, and S. Khan, “Intelligent search in

digital documents,” IEEE/WIC/ACM International Conference on Web Intelligence
and Intelligent Agent Technology, Vol. 1, 2008, pp. 558-561.

11. H. Chen, T. Finin, and A. Joshi, “An ontology for context-aware pervasive comput-
ing environments,” Special Issue on Ontologies for Distributed Systems, Knowledge
Engineering Review, Vol. 18, 2004, pp. 197-207.

12. D. D. Roure, N. R. Jennings, and N. R. Shadbolt, “The semantic grid: Past, present
and future,” in Proceedings of the IEEE, Vol. 93, 2005, pp. 669-681.

13. M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware systems,”
International Journal of Ad Hoc and Ubiquitous Computing, Vol. 2, 2007, pp. 263-
277.

14. M. Lenzerini, “Data integration: A theoretical perspective,” in Proceedings of the
21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, 2002, pp. 233-246.

15. J. Heflin, J. Hendler, and S. Luke, “Coping with changing ontologies in a distributed
environment,” in Proceedings of the Workshop on Ontology Management of the 16th
National Conference on Artificial Intelligence, 1999, pp. 74-79.

16. G. Flouris and D. Plexousakis, “Handling ontology change: Survey and proposal for
a future research direction,” Technical Report FORTH-ICS/TR-362, 2005.

17. N. F. Noy and M. Klein, “Ontology evolution: Not the same as schema evolution,”
Knowledge and Information System, Vol. 6, 2004, pp. 428-440.

18. P. Haase and Y. Sure, “State of the art on ontology evolution,” D3.1.1.b, SEKT Pro-
ject: Semantically Enabled Knowledge Technologies, August 2004.

19. M. Klein, “Change management for distributed ontologies,” Ph.D. Thesis, Depart-
ment of Computer Science, Vrije University, Amsterdam, 2004

20. P. Haase and L. Stojanovic, “Consistent evolution of OWL ontologies,” in Proceed-
ings of the 2nd European Semantic Web Conference, 2005, pp. 182-197.

21. A. M. Khattak, K. Latif, S. Khan, and N. Ahmed, “Managing change history in web
ontologies,” in Proceedings of the 4th International Conference on Semantics, Know-
ledge and Grid, 2008, pp. 347-350.

22. L. Stojanovic, A. Madche, B. Motik, and N. Stojanovic, “User driven ontology evo-
lution management,” in Proceedings of European Conference on Knowledge Engi-
neering and Management, 2002, pp. 285-300.

23. A. M. Khattak, K. Latif, S. Y. Lee, Y. K. Lee, M. Han, and H. Il-Kim, “Change
tracer: Tracking changes in web ontologies,” in Proceedings of the 21st IEEE Inter-
national Conference on Tools with Artificial Intelligence, 2009, pp. 449-456.

24. A. M. Khattak, K. Latif, S. Y. Lee, and Y. K. Lee, “Ontology evolution: A survey
and future challenges,” in Proceedings of the 2nd International Conference on u-
and e-Service, Science and Technology, 2009, pp. 68-75.

25. A. M. Khattak, Z. Pervez, S. Y. Lee, and Y. K. Lee, “After effects of ontology evo-
lution,” in Proceedings of the 5th International Conference on Future Information
Technology, 2010, pp. 1-6.

26. M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara, “Semantic matching of web
services capabilities,” in Proceedings of International Semantic Web Conference,
2002, pp. 333-347.

ONTOLOGY EVOLUTION AND CHALLENGES

869

27. S. Castano, A. Ferrara, and S. Montanelli. “Matching ontologies in open networked
systems,” Techniques and Applications, Journal on Data Semantics, Vol. V, 2006,
pp. 25-63.

28. W. Hu and Y. Qu. “Falcon-AO: A practical ontology matching system,” Journal of
Web Semantics, Vol. 6, 2008, pp. 237-239.

29. A. Maedche, B. Motik, N. Silva, and R. Volz, “MAFRA A MApping FRAmework
for distributed ontologies,” in Proceedings of the 13th International Conference on
Knowledge Engineering and Knowledge Management, 2002, pp. 235-250.

30. A. M. Khattak, Z. Pervez, K. Latif, and S. Y. Lee, “Time efficient reconciliation of
mappings in dynamic web ontologies,” Knowledge-Based Systems, Vol. 35, 2012, pp.
369-374.

31. S. Castano, A. Ferrara, and G. Hess, “Discovery-driven ontology evolution,” The
Semantic Web Applications and Perspectives, 3rd Italian Semantic Web Workshop,
2006.

32. M. V. Antwerp and G. Madey, “Warehousing, mining, and querying open source
versioning metadata,” Journal on Metadata Semantics, 2008.

33. M. Volkel and T. Groza. “SemVersion: RDF-based ontology versioning system,” in
Proceedings of the IADIS International Conference WWW/Internet, 2006, pp. 195-
202.

34. O. Udrea, L. Getoor, and R. J. Miller, “Leveraging data and structure in ontology
integration,” in Proceedings of ACM SIGMOD International Conference on Man-
agement of Data, 2007, pp. 449-460.

35. G. Stumme and A. Mädche, “FCA-merge: bottom-up merging of ontologies,” in
Proceedings of the 17th International Joint Conference on Artificial Intelligence,
Vol. 1, 2001, pp. 225-230.

36. N. F. Noy, A. Chugh, W. Liu, and M. A. Musen, “A framework for ontology evolu-
tion in collaborative environments,” in Proceedings of International Semantic Web
Conference, 2006, pp. 544-558.

37. N. Noy, R. Fergerson, and M. Musen, “The knowledge model of Protégé 2000:
Combining interoperability and flexibility” in Proceedings of the 12th International
Conference on Knowledge Engineering and Knowledge Management: Methods, Mo-
dels, and Tools, 2000, pp. 17-32.

38. T. Gabel, Y. Sure, and J. Voelker, “KAON – ontology management infrastructure,”
D3.1.1.a, SEKT Project: Semantically Enabled Knowledge Technologies, March
2004.

39. S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens, “OilEd: A reasonable ontology
editor for the semantic web,” in Proceedings of the 24th German/9th Austrian Con-
ference on Artificial Intelligence, 2001, pp. 396-408.

40. Y. Sure, J. Angele, and S. Staab, “OntoEdit: Multifaceted inferencing for ontology
engineering” Journal on Data Semantics, Vol. 1, 2003, pp. 128-152.

41. M. Klein and N. F. Noy, “A component-based framework for ontology evolution,” in
Proceedings of the Workshop on Ontologies and Distributed Systems, CEUR-WS,
Vol. 71, 2003.

42. P. Plessers and O. de Troyer, “Ontology change detection using a versioning log,” in
Proceedings of the 4th International Semantic Web Conference, 2005, pp. 578-592.

43. D. Oberle, R. Volz, B. Motik, and S. Staab, “An extensible ontology software envi-

A. M. KHATTAK, R. BATOOL, Z. PERVEZ, A. M. KHAN AND S. Y. LEE

870

ronment,” in Handbook on Ontologies (Series of International Handbooks on Infor-
mation Systems), Springer, 2004, pp. 311-333.

44. D. Rogozan and G. Paquette, “Managing ontology changes on the semantic web,” in
Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence, 2005,
pp. 430-433.

45. M. Klein, A. Kiryakov, D. Ognyanov, and D. Fensel, “Finding and characterizing
changes in ontologies,” in Proceedings of the 21st International Conference on Con-
ceptual Modeling, 2002, pp. 79-89.

46. H. Liu, C. Lutz, M. Milicic, and F. Wolter, “Updating description logic ABoxes” in
Proceedings of the 10th International Conference on Principles of Knowledge Rep-
resentation and Reasoning, 2006, pp. 46-56.

47. G. A. Miller, “WordNet: An on-line lexical database,” International Journal of Lexi-
cography, Vol. 3, 1990, pp. 235-312.

48. A. M. Khattak, K. Latif, S. Y. Lee, Y. K. Lee, and T. Rasheed, “Building an inte-
grated framework for ontology evolution management,” in Proceedings of the 12th
Conference on Creating Global Economies through Innovation and Knowledge Man-
agement, 2009, pp. 55-60.

49. F. Zablith, “Ontology evolution: A practical approach,” poster, in Proceedings of
Workshop on Matching and Meaning at Artificial Intelligence and Simulation of
Behavior, 2009.

50. J. Akahani, K. Hiramatsu, and T. Satoh, “Approximate query reformulation based on
hierarchical ontology mapping,” in Proceedings of International Workshop on Se-
mantic Web Foundations and Application Technologies, 2003, pp. 43-46.

51. Y. D. Liang, “Enabling active ontology change management within semantic web-
based applications” Mini Ph.D. Thesis, Electronics and Computer Science, Univer-
sity of Southampton, 2006.

52. CIDOC Conceptual Reference Model, http://cidoc.ics.forth.gr/.
53. P. Wang and B. Xu, “Lily: Ontology alignment results for oaei,” in Proceedings of

Ontology Matching of the 8th International Semantic Web Conference, 2009.
54. R. Palmaa, O. Corchoa, A. Gomez-Pereza, and P. Haase, “A holistic approach to

collaborative ontology development based on change management,” Journal of Web
Semantics, Vol. 9, 2011, pp. 299-314.

Asad Masood Khattak received his Ph.D. in Computer Engi-
neering from the Department of Computer Engineering at Kyung
Hee University, Korea in August 2012. He is currently working as
Assistant Professor at Department of Computer Engineering, Kyung
Hee University, Korea. His research interests include data manage-
ment, knowledge representation, change management, semantic web,
and ontology.

ONTOLOGY EVOLUTION AND CHALLENGES

871

Rabia Batool received her BS degree in Information Techno-
logy from National University of Sciences and Technology Pakistan
in 2011. She is pursuing her MS in Biomedical Engineering from
the Department of Biomedical Engineering at Kyung Hee Univer-
sity, Korea. Her research interests include natural language proc-
essing, tweet analysis, health informatics, and interoperability.

Zeeshan Pervez received his MS-IT degree from SEECS
NUST, Pakistan in 2008 and Ph.D. in Computer Science from
Kyung Hee University, Korea in 2012. His graduate research was
focused on privacy-aware cloud based data sharing systems. His
research interests include secure multiparty computation, encrypted
data search, and fine-grained access control in untrusted domain.

Adil Mehmood Khan received his Ph.D. degree from the De-
partment of Computer Engineering of Kyung Hee University, Ko-
rea in 2011. He is now working as Assistant Professor with the Di-
vision of Information and Computer Engineering, Ajou University,
Korea. His research interest includes pattern recognition, signal
processing, data mining, ubiquitous computing, and machine learn-
ing.

Sungyoung Lee received his MS and Ph.D. in Computer Sci-
ence from Illinois Institute of Technology (IIT), Chicago, Illinois,
USA in 1987 and 1991, respectively. He has been a Professor in the
Department of Computer Engineering, Kyung Hee University, Ko-
rea since 1993. He is a Founding Director of the Ubiquitous Com-
puting Laboratory, and has been the Director of the Neo-Medical Ubi-
quitous-Life Care Information Technology Research Center, Kyung
Hee University since 2006. He is a member of ACM and IEEE.

