Mobile-to-Grid Middleware: Bridging the gap
between mobile and Grid environments

Hassan Jameel', Umar Kalim®, Ali Sajjad', Sungyoung Lee!, and Taewoong
Jeon?

! Department of Computer Engineering, Kyung Hee University
1, Sochen-ri, Giheung-eup, Yongin-si, Gyeonggi-do, 449-701, South Korea
{hassan, umar, ali, sylee}@oslab.khu.ac.kr
2 Department of Computer & Information Science, Korea University, Korea
jeon@selab.korea.ac.kr

Abstract. Currently, access to Grid services is limited to resourceful
devices such as desktop PCs but most mobile devices (with wireless net-
work connections) cannot access the Grid network directly because of
their resource limitations. Yet, extending the potential of the Grid to a
wider audience promises increase in flexible usage and productivity. In
this paper we present a middleware architecture' that addresses the is-
sues of job delegation to a Grid service, support for offline processing, se-
cure communication, interaction with heterogeneous mobile devices and
presentation of results formatted in accordance with the device specifica-
tion. This is achieved by outsourcing the resource intensive tasks from the
mobile device to the middleware. We also demonstrate through formal
modeling using Petri nets that the addition of such a middleware causes
minimum overhead and the benefits obtained outweigh this overhead.

1 Introduction

Grid [18] computing permits participating entities connected via networks to
dynamically share their resources. Extending this potential of the Grid to a
wider audience, promises increase in flexibility and productivity, particularly for
the users of mobile devices who are the prospective consumers of this technology.

Consider a teacher who wants to augment his lecture with a heavy simulation
test. He uses his PDA to access a Grid service and submit the request. The service
after executing the request compiles the results which are then distributed to
the mobile devices of the registered students of that course. Similarly a doctor
on the way to see his patient, requests a Grid medical service to analyze the
MRI or CT scans of the patient from his mobile device. By the time he meets
his patient; the results would be compiled and presented on his mobile device to
facilitate the treatment.

! This research work has been supported in part by the Korea Ministry of Information
and Communications’ ITRC program in joint collaboration with Information and
Communications University, Korea.

The clients that interact with the Grid middleware to accomplish a task
are required to use client end libraries. These libraries are relatively resource
intensive considering the limitations of mobile devices. Conceiving a distributed
system that uses these libraries directly will not be a practical mobile system
because of the resource demands.

Moreover, most of the conventional distributed applications are developed
with the assumption that the end-systems possess sufficient resources for the
task at hand and the communication infrastructure is reliable. For the same
reason, the middleware technologies for such distributed systems usually deal
with issues such as heterogeneity and distribution (hence allowing the developer
to focus his efforts on the functionality rather than the distribution).

The issues that primarily affect the design of a middleware for mobile sys-
tems are: mobile devices, network connection, and mobility. Firstly, due to the
tremendous progress in development of mobile devices, a wide variety of devices
are available which vary from one to another in terms of resource availability.
Secondly, in mobile systems, network connections generally have limited band-
width, high error rate and frequent disconnections due to power limitations,
available communication spectrum and user mobility. Lastly, mobile clients usu-
ally interact with various networks, services, and security policies as they move
from one place to another.

Considering the assumptions and characteristics of conventional middleware
technologies it is quite evident that they are not designed to support mobile
systems adequately. Instead, they aim at a static execution platform (where the
host location is fixed) and the network bandwidth does not vary. Hence, given
the highly variable computing environment of mobile systems, it is mandatory
that modern middleware systems are designed that can support the requirements
of mobile systems such as dynamic reconfiguration and asynchronous communi-
cation.

In this paper:

— We present an architecture for a middleware (Section 2) enabling heteroge-
neous mobile devices access to Grid services by providing support for dele-
gation of jobs to the Grid, secure communication between the client and the
Grid, off-line processing, adaptation to network connectivity issues and pre-
sentation of results in a form that is in keeping with the resources available
at the client device.

— We demonstrate (Section 3) that the addition of such a middleware causes
minimum overhead and the benefits obtained by it outweigh this overhead.

2 Architecture Details

The middleware service is exposed as a web service to the client applications.
The components of the middleware service (as shown in Figure 1) are discussed
succinctly as follows:

2.1 Discovery Service

The discovery of the middleware by mobile devices is managed by employing a
UDDI registry [6], [7]. Once the middleware service is deployed and registered,

other applications/devices would be able to discover and invoke it.

2.2 Communication Interface with the Client Application

The interface advertised to the client application is the communication layer be-
tween the mobile device and the middleware. This layer enables the middleware

to operate as a web service and communicate via the SOAP framework [8].

Broker Service

Information Service

Security Service

‘Communication
interface with the Client
Adaptaion

Communication
interface with the Grid

Knowledge Management

Middleware service layered architecture

Middleware service

Ontology Server
UDDI Registry

Standard &
0eols (GRAM,
G5l etc)

Wireless
ection

Mobile
devices

Middleware
gateway

Storage|resources

Specializefi Grid
sernvice

pecialized
devices

1) Client application discovers and connects with the middleware service.
2) The client is authenticated.

3) The profiles (device specification) are maintained at a server (in the
form of an ontology). If the device is not listed the client application
submits it entology.

4) A request for a job submission is placed by the client application. The
middleware layer then locates a relevant Grid service and checks for
authorization.

7) Via the client application the user requests some status information
(regarding the job or the service) from the middleware service.

8) The user disconnects from the middleware service (and reconnects
later to collect the results).

11) After disconnection all user requests are served locally (with the help
of information cached locally). Requests that result in updates at the
middleware service are logged for execution at reconnection

5) The code to be executed is downloaded by
the middieware after consulting the client
application for the location parameters.

6) The request is forwarded to the Grid by
using standard Grid protocols.

8) The middleware responds by compiling
information from its local repository and
accessing the Grid network if required

10) The middleware facilitates the process of
prefetching information to support offline
processing

12) Upon reconnection pending instructions are
executed and information updates at the client
end are made to maintain consistency

Fig. 1. Deployment model and the architecture

Adaptation to Disconnected Operations The advertisement of the mobile-
to-Grid middleware as a web service permits the development of the architecture
in a manner that does not make it mandatory for the client application to remain

connected to the middleware at all times while the request is being served.

We focus on providing software support for offline processing at the client de-
vice. For this we consider two kinds of disconnections; intentional disconnection,
where the user decides to discontinue the wireless connection and unintentional
disconnection, which might occur due to variation in bandwidth, noise, lack of
power etc. This is made possible by pre-fetching information or meta-data only
from the middleware service. This facilitates in locally serving the client ap-
plication at the device. However, requests that would result in updates at the
middleware service are logged (so that they may be executed upon reconnection).

To establish the mode of operation for the client application, a connection
monitor is used to determine the network bandwidth and consequently the con-
nection state (connected or disconnected). Moreover, during execution, check-
points are maintained at the client and the middleware in order to optimize
reintegration after disconnection.

2.3 Communication Interface with the Grid

The communication interface with the Grid provides access to the Grid services
by creating wrappers for the API advertised by the Grid. These wrappers in-
clude standard Grid protocols such as GRAM [9], MDS [10], GSI [11] etc which
are mandatory for any client application trying to communicate with the Grid
services. This enables the middleware to communicate with the Grid, in order
to accomplish the job assigned by the client.

2.4 Broker Service

The broker service deals with initiating the job request and steering it on behalf
of the client application. Firstly the client application places a request for a job
submission. After determining the availability of the Grid service and authoriza-
tion of the client, the middleware downloads the code (from the mobile device
or from a location specified by the client e.g. an FTP/web server). Once the
code is available, the broker service communicates with Grid’s GRAM service
to delegate the job.

A status monitor service (a subset of the broker service) interacts with
GRAM to determine the status of the job. The status monitor service then
communicates with the Knowledge Management module to store the results.
The mobile client may reconnect and ask for the (intermediate/final) results of
its job from the status monitor service.

2.5 Knowledge Management

The knowledge management layer of the system is used to manage the relevant
information regarding both the client and Grid applications and services. The
main function of this layer is to connect the client and Grid seamlessly as well
as to introduce the capability of taking intelligent decisions such as downscaling
the results according to device profile, based on the information available to the
system.

2.6 Information Service

This module interacts with the wrapper of the GLOBUS toolkit’s API for in-
formation services (MDS [10]). It facilitates the client application by managing
the process of determining which services and resources are available in the Grid
and also monitors resources such as CPU load, free memory etc.

2.7 Security

The Grid Security Infrastructure is based on public key scheme mainly deployed
using the RSA algorithm [12]. However key sizes in the RSA scheme are large
and thus computationally heavy on handheld devices such as PDA’s, mobile
phone’s, smart phones etc [13]. We employ the Web Services Security Model [14]
to provide secure mobile access to the Grid. This web services model supports
multiple cryptographic technologies.

The Elliptic Curve Cryptography (ECC) based public key scheme can be used
in conjunction with Advanced Encryption Standard(AES) for mobile access to
Grid which provide the same level of security as RSA and yet the key sizes are
a lot smaller [13].

Communication between the user and middleware is based on security policies
specified in the user profile. According to this policy different levels of security
can be used e.g. some users might just require authentication, and need not want
privacy or integrity of messages.

3 Petri Net Model of the System and its Analysis

In this section we model the interaction between the mobile client and the mobile
grid middleware service. Our goal is to estimate the delay caused by the com-
munication between the client and middleware service as well as the additional
processing done by it. This delay should be within acceptable limits so that the
mobile client user is not at a disadvantage as compared to a normal Grid user
as far as time is concerned. We use the time to completion of the whole process
as an index of performance of our middleware communication architecture. We
keep the time taken by Grid processing constant as our results will be bench
marked against it. The communication is modeled by using non-Markovian Sto-
chastic Petri nets [2] [3]. We follow an approach similar to the work done by
Antonio Puliafito et al [1].

To make the Petri Net model in Figure 2, we modeled the following sequence
of operations between the middleware and mobile client:

A mobile client first sends a request(send_req_uddi) to a UDDI registry to dis-
cover an existing middleware service. The UDDI registry returns(send_resp_uddi)
the URI(Uniform Resource Indicator) of the middleware service to the mobile
client. The client then sends a request(send_req) to the middleware service which
includes a URI of its ontology file and a URI of the code to be executed on its
behalf. The middleware retrieves the code (retrieve_code) and the ontology file

(retrieve_ont) at the same time and then executes the code (code_exec). The
code execution includes requests to the Grid, and thus the rest of the job is
done by the Grid. We just simulate it as an immediate transition , as this time
would be the same as in the case of a normal Grid user. Upon receiving the
results, the middleware scales down the results accord-ing to the device pro-
file in the ontology file (result_downscaling) and sends the results to the mobile
device (send_result). This concludes the communication session. Initially , the
place Ready contains a token and at the end of the session the token is in place
(end_session).

send_req_ UDDI_ send_resp
uddi REGISTRY _uddi

send_result

result_ READY_TO_ END_
downscaling SEND_RESULT SESSION

READY ONT_ retrieve_ RETRIEVAL
RETRIEVAL ont _DONE

Fig. 2. Petri net model; communication between the client and the middleware

3.1 Parameters used in the Petri Net Model

In order to make our model simple, we do not consider secure communication
as well as disconnected operation. To evaluate the Petri Net model in Figure 2,
we used the following numerical parameters which are consistent with the ones
used in [1]. We give a description of the parameters as follows:

Size of a request (D,.,): The mobile client sends two types of requests, one
to the UDDI (service type request) and one to the middleware service (URIs
for the ontology and code files) . The size of these requests can safely be
assumed to be small.

Size of the reply (D,in,Dmaz): This depends upon the type of data requested
by the mobile client which could be merely a small numerical value (as large
as Dyeq) or a little bigger image file. So we have two extremes of data sizes.

Size of the ontology (D,,:) and code (Dcoqe): The ontology file is an XML
document and we can safely assume its size to be < 10 KB.

Mean processing time for downscaling the results (1/\;cq1c): We fix this
time as an exponentially distributed random time whose exact value depends
upon the specific application.

Throughput of the communication network (Thiow, T hhign): We assume
two kinds of transmission rates in the network. The wireless network has
been assumed to have lower throughput (Thie,), where as the Grid and

the middleware service are assumed to be connected with high speed link
indicated by (Thpign)-

We use the above mentioned parameters to describe the distributions asso-
ciated with the transitions in the Petri Net model, depicted in Table 1.

Table 1. Parameters used in the Petri Net model

Transition Name Type Expression
send_req.uddi |Deterministic (Dreq/Thiow)
send_resp_uddi |Deterministic (Dmin /Thiow)
send_req Deterministic| (Dreq/Thiow)
retrieve_ont Deterministic| (Dont/T hhigh)
retrieve_code Deterministic| (Dcode/Thhigh)
code_exec Immediate -
results_downscaling| Exponential (Ascate)
send_result Uniform |[Dsmin,Dmac]/Thiow

3.2 Numerical Evaluation of the Petri Net

We assigned the following numerical values to these parameters as shown in
Table 2 for the evaluation of the Petri Net. These values are consistent with the
ones used by [1].

Table 2. Numerical Values used for the Parameters

Parameter Description Value
Dieq Dimension of client request | 1 KB
Din Minimum amount of Data | 1 KB
Dmaz Maximum amount of Data |30 KB
Dont Dimension of ontology 10 KB
Decode Dimension of code 40 KB
Ascale Results scale down rate 4 req/s

Thhrigh |Throughput of wired network|l Mbps

The firing rate of the results_downscaling transition has been fixed to Ageqre=4
requests/sec. This factor is not only application dependent but also dependent on
the computational power of the computer containing the middleware. However
a value of 4 req/sec is a reasonable approximation as used in [1]. We assume

a high speed link in the wired network as it constitutes the Grid network and
assign a value of T'hp;gn=1 Mbps.

Based on these values, we evaluated the Petri Net described in Figure 2 by
using the WebSPN [4] [5] tool with which we can associate exponential as well as
non-exponential firing rates to the transitions. Figure 3a shows a graph of time
to completion (¢)versus the throughput (Thjs.) of the wireless network ranging
from 10Kbps to 1Mbps. The values of the transitions are shown in Table 3.
The values for the send_result transition has been depicted as [a,b] to show the
minimum (@) and maximum (b) value of the uniform distribution.

Table 3. Numerical Values used for the Parameters

Thiow send_ send_ |send_req|retrieve|retrieve| results_ send_
req-uddi|resp_uddi|send_req| _ont | _code |downscaling result
K bits/sec| sec sec sec sec sec req/sec sec
10 0.8 0.8 0.8 0.08 0.32 4 [0.4, 24.0]
20 0.4 0.4 0.4 0.08 0.32 4 [0.4, 12.0]
50 0.16 0.16 0.16 0.08 0.32 4 [0.16, 4.8]
100 0.08 0.08 0.08 0.08 0.32 4 [0.08, 2.4]
200 0.04 0.04 0.04 0.08 0.32 4 [0.04, 1.2]
500 0.016 0.016 0.016 0.08 0.32 4 [0.016, 0.48]
1000 0.008 0.008 0.008 0.08 0.32 4 [0.008, 0.24]

Let’s see the affect if we fix the result size to 1KB and the other values
the same as in Table 3. We can do that by making send_result a deterministic
transition with firing rate Diin/Thiow. After evaluating the Petri Net with
this value, we obtain a graph shown in Figure 3b. The graph shows no notable
distinction with varying Thjyy,.

We can conclude by studying the two graphs that except for the two obvious
parameters, namely the wireless network throughput and the result size, the time
to completion is not severely affected by the middleware to client communication
and even with low throughput and considerably large result set, the time taken
by the middle-ware to mobile device communication is within acceptable limits,
only in the order of a few seconds in the worst case.

4 Related Work

Various efforts have been made to solve the problem of mobile-to-Grid middle-
ware. Signal [15] proposes a mobile proxy-based architecture that can execute
jobs submitted to mobile devices, so in-effect making a grid of mobile devices. A
proxy interacts with the Globus Toolkit’s Monitoring and Discovery Service to
communicate resource availability in the nodes it represents. The proxy server
and mobile device communicate via SOAP and authenticate each other via the
generic security service (GSS) API. The proxy server analyzes code and checks

o s s o
= MR
L L L |

Time to Completion(t) sec
Time to Completion(t) sec
@

3
G q 6 q
4 44
27 2 \\«“—‘
0 T T T T T T] 0 T T T T T T]
10 20 50 100 200 500 1000 10 20 50 100 200 500 1000
(a) Throughput Kbit/sec (b) Throughput Kbit/'sec

Fig. 3. (a) Time to completion (t) vs Throughput of the wireless network Thjoq. (b)
Time to completion (¢) vs Throughput of the wireless network Thjo,, with result size
=1KB.

for resource allocation through the monitoring and discovery service (MDS). Af-
ter the proxy server deter-mines resource availability, the adaptation middleware
layer component in the server sends the job request to remote locations. Because
of this distributed and remote execution, the mobile device consumes very little
power and uses bandwidth effectively. Also their efforts are more inclined to-
wards QoS issues such as management of allocated resources, support for QoS
guarantees at application, middleware and network layer and support of resource
and service discoveries based on QoS properties.

In [16] a mobile agent paradigm is used to develop a middleware to allow
mobile users’ access to the Grid and it focus’s on providing this access transpar-
ently and keeping the mobile host connected to the service. Though they have to
improve upon the system’s security, fault tolerance and QoS, their architecture
is sufficiently scalable. GridBlocks [17] builds a Grid application framework with
standardized inter-faces facilitating the creation of end user services. They advo-
cate the use of propriety protocol communication protocol and state that SOAP
usage on mobile devices maybe 2-3 times slower as compared to a proprietary
protocol. For security, they are inclined towards the MIDP specification version
2 which includes security features on Trans-port layer.

5 Conclusion and Future Work

In this paper we identified the potential of enabling mobile devices access to
the Grid. We focused on providing solutions related to distributed computing in
wireless environments, particularly when mobile devices intend to interact with
grid services. An architecture for a middleware layer is presented which facilitates
implicit interaction of mobile devices with grid services. This middleware is based
on the web services communication paradigm. It handles secure communication
between the client and the middleware service, provides software support for
offline processing, manages the presentation of results to heterogeneous devices
(i.e. considering the device specification) and deals with the delegation of job

requests from the client to the Grid. We also demonstrated that the addition
of such a middleware causes minimum overhead and the benefits obtained by it
outweigh this overhead.

In future we intend to provide multi-protocol support to extend the same fa-
cilities to devices that are unable to process SOAP messages. Moreover, we will
continue to focus on handling security, improving support for offline processing
and presentation of results depending upon the device. Along with this imple-
mentation we intend to continue validating our approach by experimental results.

References

1. Puliafito, A., Riccobene, S., Scarpa, M.: Which paradigm should I use?: An analyti-
cal comparison of the client-server, remote evaluation and mobile agents paradigms’,
IEEE Concurrency and Computation: Practice & Experience, vol. 13, pp. 71-94, 2001.

2. Bobbio, A., Puliafito, A., Telek, M.: A modeling framework to implement preemp-
tion policies in non-Markovian SPNs. IEEE Transactions on Software Engineering,
vol. 26, pp. 36-54, Jan. 2000.

3. Telek, M., Bobbio, A.: Markov regenerative stochastic Petri nets with age type
general transitions. Application and Theory of Petri Nets, 16th International Confer-
ence (Lecture Notes in Computer Science 935). Springer-Verlag, pp. 471-489, 1995.

4. Bobbio, A., Puliafito, A., Scarpa, M., Telek, M.: WebSPN: A WEB-accessible Petri
Net Tool. International Conference on WEB based Modeling and Simulation, San
Diego, California, pp. 137-142, 11-14 January 1998.

5. WebSPN 3.2: http://ing-inf.unime.it/webspn/

6. Hoschek, W.: Web service discovery processing steps. http://www-
itg.lbl.gov/ hoschek/publications/icwi2002.pdf

7. UDDI specification: www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm

8. SOAP Framework: W3C Simple Object Access Protocol ver 1.1, World Wide Web
Consortium recommendation, 8 May 2000; http://www.w3.org/TR/SOAP/

9. GT3 GRAM Architecture: www-unix.globus.org/developer/gram-architecture.html

10. Czajkowski, K., Fitzgerald, S., et al.: Grid Information Services for Distributed
Resource Sharing. Proceedings of the Tenth IEEE International Symposium on High-
Performance Distributed Computing (HPDC-10), IEEE Press, August 2001.

11. Welch, V., Siebenlist, F., et al.: Security for Grid services. HPDC, 2003.

12. Welch, V., Foster, 1., et al.: X.509 Proxy Certificates for dynamic delegation. Pro-
ceedings of the 3rd Annual PKI R&D Workshop, 2004.

13. Gupta, V., Gupta, S. et al.: Performance Analysis of Elliptic Curve Cryptogra-phy
for SSL. Proceedings of ACM Workshop on Wireless Security - WiSe 2002 pages
87-94, Atlanta, GA, USA, September 2002, ACM Press.

14. Giovanni, D., Maryann, H., et al.: Security in a Web Services World; A Proposed
Architecture and Roadmap, 2002, IBM and Microsoft Corp. A joint security whitepa-
per from IBM Corporation and Microsoft Corp. April 7, 2002, Version 1.0.

15. Hwang, J., Aravamudham, P.: Middleware Services for P2P Computing in Wireless
Grid Networks. IEEE Internet Computing vol. 8, no. 4, July/August 2004, pp. 40-46.

16. Bruneo, D., Scarpa, M., et al.: Communication Paradigms for Mobile Grid Users.
Proceedings 10th IEEE International Symposium in HPDC, (2001).

17. Gridblocks project (CERN) http://gridblocks.sourceforge.net/docs.htm

18. 18. Foster, 1., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling
Scalable Virtual Organizations, Int’l J. Supercomputer Applications, vol. 15, no. 3,
2001, pp.200-222.

