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Abstract Activity recognition is an emerging field of re-
search that enables a large number of human-centric appli-
cations in the u-healthcare domain. Currently, there are ma-
jor challenges facing this field, including creating devices
that are unobtrusive and handling uncertainties associated
with dynamic activities. In this paper, we propose a novel
Evolutionary Fuzzy Model (EFM) to measure the uncertain-
ties associated with dynamic activities and relax the domain
knowledge constraints which are imposed by domain ex-
perts during the development of fuzzy systems. Based on
the time and frequency domain features, we define the fuzzy
sets and estimate the natural grouping of data through ex-
pectation maximization of the likelihoods. A Genetic Algo-
rithm (GA) is investigated and designed to determine the op-
timal fuzzy rules. To evaluate the EFM, we performed exper-
iments on seven daily life activities of ten human subjects.
Our experiments show significant improvement of 9 % in
class-accuracy and 11 % in the F-measures of recognized ac-
tivities compared to existing counterparts. The practical so-
lution to dynamic activity recognition problems is expected
to be an EFM, due to EFM’s utilization of smartphones and
natural way of handling uncertainties.

M. Fahim - I. Fatima - S. Lee ()

Ubiquitous Computing Lab, Department of Computer
Engineering, Kyung Hee University, Seoul, Korea
e-mail: sylee @oslab.khu.ac.kr

M. Fahim
e-mail: fahim @oslab.khu.ac.kr

I. Fatima
e-mail: iram.fatima@oslab.khu.ac.kr

Y.-T. Park
School of IT, Soongsil University, Seoul, Korea
e-mail: park@ssu.ac.kr

Keywords Activity recognition - Smartphone -
Accelerometer signals - Evolutionary fuzzy model -
Genetic algorithm

1 Introduction

Over the last few years, activity recognition using ac-
celerometer signals has become an active research area
due to its large number of potential applications including
context-awareness, healthcare, and active lifestyle [1, 2]. For
instance, patients with diabetes, cardiovascular disease, in-
somnia or obesity often follow well defined exercise rou-
tines (walking, jogging, running, or cycling) as a part of
their treatment. Such human activities can be recognized by
motion pattern analysis using wearable sensors, but this so-
lution is obtrusive, and few users want to wear special shirts,
bracelets or belts for that purpose [3—5]. Current generation
smartphones are an alternative solution to wearable sensors
due to their many diverse and powerful embedded sensors.
The smartphone includes accelerometer, magnetometer, gy-
roscope, proximity, ambient light, GPS and cameras. Fur-
thermore, it is one of the best choices for activity recogni-
tion due to its unobtrusive characteristics, high storage ca-
pacity and computation, low energy consumption and pro-
grammable capabilities.

The nomenclature of accelerometer-based activity recog-
nition is divided into static and dynamic categories. In the
static category, postures of the body are mainly focused
which include sitting, standing or lying down and the transi-
tions between them. These activities are helpful to monitor
risky situations and detect falls, particularly for elderly peo-
ple. Most of the research work has been done on static ac-
tivities. Researchers have developed many probabilistic and
machine learning approaches to identify a range of different
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activities from a body fixed accelerometer to the smartphone
[5-9]. Motion of the body is integral to dynamic activities
such as walking, running, or climbing stairs. A very small
number of studies have investigated dynamic activities us-
ing single or multiple accelerometers [6, 10, 11]. To recog-
nize dynamic activities using a smartphone accelerometer
sensor is a big challenge due to the limitations of a single
accelerometer instead of multiple accelerometers and subtle
differences among dynamic activity patterns. For example,
walking and jogging or jogging and running are different
groups of activities; however, it is difficult to define sharp
boundaries between them. Classical probabilistic methods
are unable to deal with such uncertainties [12].

The aim of this research is to recognize a comprehen-
sive group of dynamic daily life activities. We proposed a
novel evolutionary fuzzy model to deal with the uncertain-
ties of dynamic patterns of these activities by defining fuzzy
sets. The most common strategy for defining fuzzy sets is
by using human experts or by trial-and-error [10]. However,
domain experts cannot be expected to provide optimal mem-
bership values for activity recognition problems. This situ-
ation becomes more complex when the number of inputs
and outputs increases, which ultimately increases the num-
ber of fuzzy rules. Our proposed EFM solves the aforemen-
tioned problems by introducing an estimation method for
membership functions to determine the natural grouping of
data over a pre-specified number of fuzzy sets. We solve the
problem of defining the fuzzy rules by creating an evolution-
ary method called a Genetic Algorithm (GA). The GA is an
optimization algorithm that provides a better way to define
optimal fuzzy rules over poorly understood and irregular
search spaces. Consequently, our model relaxes the imposed
constraints of the domain expert’s knowledge and becomes
more robust and reliable in complex situations. An empiri-
cal evaluation shows that the proposed model is successful
at recognizing dynamic activities by utilizing a smartphone
accelerometer.

2 Paper contribution and outline

Our contributions in this work are three-fold. First, we pro-
pose a novel evolutionary fuzzy model to deal with the un-
certainties of dynamic activities and estimate membership
functions by expectation maximization; hence, the problem
of defining the input spaces can be solved. Second, GA is de-
signed for optimal fuzzy rules without domain expert knowl-
edge. Third, EFM performs well for dynamic activities and
has superior accuracy to existing methods. In addition, we
apply our proposed EFM to commercial smartphone-based
activity recognition with a comprehensive group of dynamic
activities that use an intensive activity dataset.

The rest of the paper is organized as follows. We briefly
describe related works and their limitations in Sect. 3. In
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Sect. 4, we introduce our proposed EFM and its implementa-
tion for recognizing dynamic daily life activities. In Sect. 5,
we analyze and evaluate our experimental results to validate
our model. Finally, we conclude our paper in Sect. 6. We
present details about the parameter estimation of member-
ship functions in the Appendix.

3 Related work

There exist several previous studies on the usage of ac-
celerometer signals and analysis of motion patterns in the
activity recognition domain. Lara et al. [13] introduced
a mobile platform for real-time human activity recogni-
tion. Their system is composed of a wearable device and
a Bluetooth-enabled Android phone; experiments were per-
formed in a sequential fashion which recognized walking,
running and sitting activities. They analyzed the C4.5 tree
family classification algorithm and produced acceptable re-
sults; however, the recognized activities comprise on the
small group of activities and quite distinguishable from each
other.

In [14] Ravi et al. reported the results of their study for a
small group of dynamic activities using a single triaxial ac-
celerometer worn near the pelvic region. Four features were
extracted from the accelerometer data (i.e., mean, standard
deviation, energy, and correlation). In order to perform the
classification task, they analyzed the performance of base-
level classifiers and meta-level classifiers on two subjects,
and achieved high accuracy. The sampling frequency was
50 Hz and window size was 5.12 seconds. They used the
Plurality Voting classifier but complication may arise while
increasing the number of subjects as well as dynamic activ-
ities.

Preece et al. [6] analyzed statistical and wavelet-based
features for classifying dynamic activities using accelerom-
eters mounted to the waist, thigh, and ankle as well as their
combinations. They reported a similar level of accuracy in
case of time/frequency or wavelet features when the ac-
celerometer was mounted on the waist. However, for both
ankle and thigh mounted sensors, the time/frequency do-
main features significantly outperformed the wavelet fea-
tures. They used an instance-based classification algorithm,
Nearest Neighbor, to recognize the activities and concluded
that frequency-based features accurately classify activities.
They obtained remarkable classification accuracy with an-
kle and thigh mounted sensors, using a sampling frequency
of 64 Hz for their experiments.

Helmi et al. [10] proposed a fuzzy inference system to
classify a small group of human activities by extracting three
features: peak to peak amplitude, standard deviation, and
correlation between the axes. They collected the three sub-
jects’ data by attaching the triaxial accelerometer to their
waists with a sampling rate of 22 Hz. The fuzzy rules and
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Fig. 1 The proposed architecture of the evolutionary fuzzy model

the membership functions of this fuzzy system are defined
manually based on the experiences of domain experts.

In previous works, excellent approaches have been devel-
oped by researchers by varying the number of accelerom-
eters, using different placements and considering different
intended outcomes. For static as well as dynamic activities,
some studies also reported on fuzzy theory [10, 15, 16] to
recognize daily life activities; however, they required do-
main expert knowledge to develop the fuzzy systems or per-
sonal annotations to evolve the system. To overcome the lim-
itations of existing work, we propose an alternative state-of-
the-art evolutionary fuzzy model for recognizing dynamic
activities using a smartphone accelerometer. We define the
membership functions using a statistical method and inves-
tigate the suitability of GA as a rule learning classifier. Our
proposed model has the ability to measure associated uncer-
tainties and to generate fuzzy rules without expert domain
knowledge. For these reasons, our EFM has the potential to
work with real world applications.

4 Evolutionary fuzzy model

The proposed architecture of evolutionary fuzzy model for
dynamic activity recognition is illustrated in Fig. 1. It con-
sists of three major components: (1) Data collection: col-
lection of the raw signals from the accelerometer sensor as
an activity observation (2) Features extraction: extraction of
the representative features to recognize the activities (3) Ac-
tivity learner and recognizer: learning the activities during
the training phase and recognizing the performed activities
in the testing phase. The details of each component are de-
scribed in the following sections.

4.1 Smartphone accelerometer and data collection

The smartphones used in this research were Samsung
Galaxy S and Google Android OS version Gingerbread.

Table 1 Characteristics of the participants

Min Max Mean Std. deviation
Age (year) 22 32 27.18 3.3710
Height (cm) 167 180 173.6 4.7806
Weight (kg) 48 92 64.8 13.3553

To collect the activities dataset, 10 healthy adult subjects
(7 male and 3 females) of different ages, heights and weights
participated in this study. The characteristics of the sub-
jects are shown in Table 1. Seven common dynamic ac-
tivities were selected as the basic activities of daily life to
be recognized—walking, jogging, running, cycling, going
up stairs, going down stairs, and hopping. The selection of
these activities was based on healthcare applications and is
required for our u-lifecare research project [17]. Each sub-
ject was requested to perform these activities in a natural
manner (without fixed duration or sequence). The smart-
phone was placed in the front pant pocket regardless of its
orientation to record the activities. A pant pocket location is
an acceptable solution from the user’s point of view, if the
user wishes to use the smartphone for activity recognition.
Furthermore, intended activities depend on motion patterns
of the legs. Each subject recorded the activities on different
days at various locations without researcher supervision by
using our application shown in Fig. 2. Other studies claim
that 22 Hz-100 Hz of frequency is suitable to classify dif-
ferent physical activities [1, 3,4, 7, 10]. In this study, we
analyzed and recorded the data at 50 Hz, which is a suit-
able sampling rate for recognizing dynamic activities with
acceptable accuracy. We collected approximately 16 hours
of data over the two months. A representative data stream
of accelerometer data for each activity is shown in Fig. 3 to
understand the difficulty of recognition.

In Fig. 3, going up stairs and down stairs are almost the
same along the x-axis, while hopping and running activities
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are ambiguous along the y and z axes. Similarly, jogging
and running activity signals are slightly different from one
another. To distinguish these minor differences in the data
for performed activities, we investigate suitable feature ex-
traction methods for dynamic activities.

4.2 Features extraction

An accelerometer sensor generates time series signals that
are highly fluctuating and oscillatory in nature. It is difficult
to recognize the activities using the raw signals. Feature ex-
traction is a highly domain-specific technique that defines a
new attribute using the signals to reduce computational com-
plexity and to enhance the recognition process. In the past,
many complex feature extraction techniques such as Prin-
cipal Component Analysis (PCA) followed by Linear Dis-
criminant Analysis (LDA) [4] and wavelet features [6] were
used; however, they are computationally expensive and dif-
ficult to implement. Many researchers show that simple and
low cost computational features are able to achieve high ac-
curacy [6, 10]. First, we solve the orientation issue of accel-
eration data suggested by Mizell [18] and then extract the
following time and frequency domain features to recognize
dynamic activities:

Fig. 2 Dataset collection
applications
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In (1), the Root Mean Square (RMS) is a statistical time
domain feature to measure the central tendency of vary-
ing quantity. Variance is dispersion metric to measure the
data spread for different activities and is calculated by (2).
The correlation feature in (3) illustrates the interrelationship
among data and is helpful to differentiate simple from com-
plex movements. For example, we can differentiate walking
from going up stairs and down stairs. The walking activity
usually involves changes in one dimension, whereas going
up stairs and down stairs involves changes in more than one
dimension. Similarly, in (4), the energy feature is calculated
by applying the Fast Fourier Transformation (FFT) to find
the quantitative characteristics of the data over a defined
time period. It represents the stress of the signal and indi-
cates the dynamics of the motion. The selections of these
features are subject to the nature of the selected activities
and collectively have high impact on the intended activi-
ties. No single feature is able to consistently perform better
for all activities. All these features are computed for three-
dimensional accelerometer data with a no overlapping slid-
ing window method over a time interval of three seconds.

4.3 Activity learner and recognizer

Fuzzy systems with evolutionary techniques are being suc-
cessfully used to model human-like thinking, measure un-
certainties and do not demand an accurate mathematical
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Fig. 3 Representative raw signals of activities
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model [19-23]. For these reasons, they provide a reasonable  4.3.2 Gaussian membership function estimation
alternative approach to classical learning methods. Our pro-

posed model learns the activities by defining the fuzzy sets  gatistical methods are an alternative to the construction
and mapping the input feature space to the output through ¢ membership values utilizing training activity data. We

fuzzy rules. Membership functions are defined by maximiz-  a5qume that the acceleration pattern of an activity has a
ing the likelihood through an expectation maximization al-  Gaussian-like distribution. Although the assumption is not
gorithm. We design an evolutionary method GA to learn the  ajways true, it is reasonable since most activities have a
optimal fuzzy rules. The details of membership function es- fairly consistent mean value of the distinguishing features.
timation and rule learning are given in subsequent sections. In the proposed method, numbers of Gaussian distributions

are equal to the number of defined fuzzy sets, and initializa-
4.3.1 Fuzzifier tion is done by finding the range and dividing it into equal

parts. To estimate the parameters of each Gaussian distribu-
tion, an Expectation-Maximization (EM) algorithm [24] is
applied to maximize the likelihood over the training data as
follows:

Fuzzification is the process of changing real scalar features
into fuzzy values over the defined fuzzy sets. A fuzzy set
is defined by a membership function that is graded between
0 and 1. In this study, we defined 12 fuzzy input variables: 1 Vm — 1)?
RMS, variance, covariance, and energy (i.e., 12 inputs = 4 Pk | s 8) = > exp{—i}
(features per axis) for each of the three axes (x, y, z axes)). V L

Theoretically, each fuzzy variable can have many fuzzy sets, ZM— Wik Yim

but the most commonly used numbers are three, five, seven Mk = m;,lli (6)
or nine [18]. We divide each fuzzy input variable into five 2=t Wik

fuzzy sets: {very-low, low, medium, high, and very-high}

&)

S Wik — 11)?

with a Gaussian membership function. The parameters of g, = - (7)
the Gaussian membership functions are estimated as fol- > =1 Wik
lows.
Table 2 The parameter .
estimation of membership Parameter estimation My Sx My 3y 7 8,
functions
RMS Very low 2.0806 0.3311 6.2331 0.2867 2.5325 0.2764
Low 3.6014 0.5759 9.7983 0.4489 3.5286 0.3247
Medium 4.3237 0.9352 10.5287 0.5916 4.1769 0.9129
High 5.6829 1.6944 11.1824 0.8412 4.6374 1.1508
Very high 10.0838 2.5517 12.5821 1.7337 7.5937 1.7096
82 Very low 2.164 0.8859 9.0882 3.6385 1.03 0.7101
Low 9.4408 2.6224 20.1302 4.0457 5.857 1.3976
Medium 13.1113 3.5358 26.613 7.1513 9.7751 2.5971
High 25.8409 9.701 70.5636 10.0789 22.3297 8.8136

Very high 82.031 34.5779 92.6388 15.0831 44.6485 20.7813

Corr(x;, x;)* Very low —0.3585 0.0855 —0.3844 0.076 —0.4061 0.0694
Low —0.0462 0.103 —0.1854 0.0797 —0.1372 0.0775
Medium 0.023 0.1112 0.0865 0.1119 0.0067 0.093
High 0.1509 0.1613 0.2507 0.1424 0.1531 0.1593
Very high 0.4391 0.2539 0.4138 0.211 0.3982 0.1851

E Very low 14.623 3.7203 22.5516 4.7044 16.344 2.4627
Low 29.0289 3.944 43.6205 4.8321 23.2049 4.5916
Medium 31.0961 5.305 49.4905 5.9332 30.1824 6.7669
High 45.6145 9.9425 66.0577 6.8354 41.65 8.7217
Very high 70.3286 16.7727 74.1976 15.804 65.2823 13.0504

Axi, xj) = (xy, xz,2)
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Fig. 4 The number of fuzzy sets estimation in EFM

Details of the derivation of our defined parameters are
presented in the appendix section at the end of this pa-
per. After estimation, we obtain the parameters: center
(ur) and standard deviation (8x) for each fuzzy set as
shown in Table 2. Figure 4 represents the fuzzy sets of
the statistical features defined over the estimated param-
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eters. It is employed for analyzing the effect of statis-
tical features drawn from our proposed Gaussian mem-
bership function estimation method (i.e., as shown in Ta-
ble 2). It specified the degree of membership between
the value of statistical features along each axis and fuzzy
sets.



EFM: evolutionary fuzzy model for dynamic activities recognition using a smartphone accelerometer

481

T T T
weryLow low redium

1t ./—\\ E

o g o
I = o

Degree of membership

o
%

04 06

xzCorr

(1) Estimation of Corr (xz-axis)

T T
veryHigh
> )
//

T
low medium

T
high

= o ot
I @ @

Degree of membership

bt
i

20 30 40 50 60 70 80
xEngy

L I L

(k) Estimation of E (x-axis)

T

I weryHigh )
D s -1

%
\ -

rhigll

T T
feryLow  low  medium

Degree of membership

u‘nryLow ! Iawm:rdbum high ) v‘sryHigh !
08 .
a N
[
£ 06 E
@
£
304 ]
g
8
[a]
02 B
0
-04 02 0 02 04 06
xyCorr
(h) Estimation of Corr (xy-axis)
varyll.uw : ; low : me:iluln ? high : veryl'lligh :
1 - -
08 .
e
:
£ 086 .
@
E
?—:- 04 E
o
g
[s]
02F -
0
04 -03 -02 -01 0 01 02 03 04 05
yzCorr
(j) Estimation of Corr (yz-axis)
\IferyLuw I ) low medilum high : veryHigh )
— B
A N\

/ N
= \
3 y
[
£
=]

g 4
&
[s]

20 20 40 50 80 70 20 90
yEngy

(1) Estimation of E (y-axis)

Fig. 4 (Continued)

4.3.3 Rule learning using the genetic algorithm

In evolutionary methods, GA has the ability to learn if-then
rules based on a survival of the fittest mechanism. The im-
portant consideration is representing the problem as a chro-
mosome structure and applying stochastic operators. We de-

(m) Estimation of E (z-axis)

signed the representation strategy and stochastic operators
of the GA in the EFM as follows:

Representation The well-known Michigan approach [25]

is used to encode the features and treat them as a single
gene. A set of genes is a chromosome that presents a sin-
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Fig. 5 Chromosome encoding of the activity rule

gle activity rule. Each activity rule consists of two portions.
The antecedent is the logical combination of fuzzy sets and
fuzzy operators in the form of fuzzy value; N fuzzy value, N
fuzzy value,, ..., fuzzy value;,, and the consequent repre-
sents the activity label. Each fuzzy variable-defined linguis-
tic value of the fuzzy set is mapped onto a value 1-5 to rep-
resent each of the five terms and 0 for the “don’t care” term.
Chromosome encoding is shown in Fig. 5.

Fitness function The representation scheme encodes the
problem into the integer-genotype, and the fitness function
measures the quality of the solution. The fitness function is
problem-dependent so we evaluated the fitness of each indi-
vidual rule using reinforcement learning. The fitness func-
tion “F” evaluates the candidate rules on the basis of a re-
ward and payoff mechanism [26] as follows:

n m
F= Z Z[reward (Activity rule; [Search space ;)
i=1 j=1
— payoff (Activity rule; |Search space j)] )
where

1 if Activity rule = Search space

reward = N classLabel = Correct,
0 otherwise.
—1 if Activity rule = Search space
payoff = N classLabel = Incorrect,

0 otherwise.

In (8), the accuracy-based fitness function is defined to find
the optimal score of the activity rules. In the fitness score of
the activity rule, a reward of +1 is added for correct classi-
fication, and a payoff of —1 is deducted for incorrect classi-
fication of each training instance.

Stochastic operators Ranked-based selection [26] is im-
plemented when the whole population is sorted from best
to worst according to the fitness value. After ranking, one
parent is randomly selected from the top 50 % of the ranked
population, while the other is randomly selected from the
remaining population. This guarantees exploration of the
whole search space for producing better offspring in the next
generation. Crossover is performed on the selected parents
to create new offspring. A dynamic single point crossover is
applied as a reproduction operator. We adopt the fittest re-
placement mechanism to every iteration of the GA so that
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Algorithm 1 Rule Learning using the Genetic Algorithm

Input: C— Crossover rate
A — Mutationrate
G — Number of generations
p—Population size
Output: OFR - Optimized Fuzzy Rules
Rule Learner
p=rand (1)

while ('max(G) || convg(G)) do
fitness = fRankFitness(p)
if !(fitness) then

for m=1: (|p(C)]) do
pOne = rand(upper(p/2))
pTwo = rand(lower(p/2))
Offspring = ferossover (pOne, pTivo)
mut = rand(|p(A)])
OFR = offspring(mut)

end

the entire generation is replaced with a new population by
retaining the best fit in the last generation. The proposed ap-
proach also inaugurates diversity in activity rules by using a
uniform mutation operator. It assigns a “don’t care” term—
a value of 0 or any other membership value—on randomly
selected genes of the activity rule.

The stopping criterion for GA is either a fixed number
of generations or correct passage of all training instances.
Later in the experimental and discussion section, we discuss
the convergence and stochastic operator’s parameters. The
pseudocode for rule learning is depicted in Algorithm 1.

Due to a large number of activities and overlapping re-
gions in the search spaces, some conflicting rules may be
generated. The conflicting rules have the same antecedent
conditions but lead to different class labels. Therefore, we
had to choose one from two or more conflicting rules in each
class. We chose the rule that was supported by a maximum
number of training examples. After the rules are generated,
they are stored into the rule repository for the recognition
phase. Once the fuzzy rule base is established, EFM is able
to recognize the performed activities by mapping the actual
input feature values to the output values by means of infer-
encing and the defuzzification process.

4.3.4 Fuzzy inference and defuzzification

Fuzzy inference is a logical process by which new facts
are derived from the known facts by applying the inference
rules. A set of rules are fired during the fuzzy inference. In
order to draw conclusions from a set of rules, a method is
required to produce an output from a collection of rules.
In the proposed EFM, the output of each rule is aggregated
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Algorithm 2(a) Evolutionary Fuzzy Model (Training Phase)

Input:
Output:
Activity Learner
for m=1:3 do

S(x, ¥, z) — Accelerometer raw signals

[dGaussianIlnput MF, RuleGeneration ] — Membership functions and fuzzy rules

JfeatVector = [rms(S(m)), var(S(m)), cor(S(m)), energy(S(m))]
MFEstimation(u, 6) = fComputeDistribution(featVector(m))

dGaussianInputMF = MFEstimation(u(m), 6(m))

RuleGeneration =fGALearner(dGaussianlnputMF, C, 4,G, u)

end

Algorithm 2(b) Evolutionary Fuzzy Model (Recognition Phase)

Input: S(x, ¥, z) — Accelerometer raw signals
Output: ACL — Activity Class Label
Activity Recognizer

findMFvalue = dGaussianInput MF (featVector)
firedRules = RuleRepository(findMFValue)
unionImplication = firedRules

defuzzification = centeroid(unionlmplication)
ACL = defuzzification

end

SfeatVector = [rms(Sx, Sy, S3), var(Sx, Sy, Sz), cor(Sy, Syz Sxz), energy(Sx, Sy, Sz)]

by an implication method that is based on a union operator.
The output of fuzzy inferencing is a fuzzy set. The process
of converting the fuzzy output into a scalar value is called
defuzzification. We applied the fuzzy Centroid method that
is most commonly used and is very accurate [27]. In this
method, each membership function is clipped at the corre-
sponding strengths of the activated rules. The centroid of the
composite area is calculated, and the horizontal coordinate
is used as the output of our evolutionary fuzzy model. The
complete pseudocode for an EFM training and recognition
phase is depicted in Algorithms 2(a) and 2(b), respectively.

5 Evaluation and results

In this section, we present the results to evaluate and vali-
date the EFM in order to measure the accuracy level of rec-
ognized activities and to investigate the feasibility of Gaus-
sian membership estimation in the activity recognition do-
main. The three standard metrics of precision, recall, and
F-measure are used as performance measures. They are cal-
culated using the values of the confusion matrix [28] and are
computed as:

Q

1 TP;
Precision = — Z d 9)
Q7 Nk

0
1 TP;
Recall = — (10)
2 - precision - recall
F-Measure = (11)

precision + recall

where Q is the number of performed activities, TP is the
number of true positives, NI is the total number of inferred
labels and NG is the total number of ground truth labels.

5.1 Experiments and discussion

A set of experiments was conducted to evaluate the perfor-
mance of the proposed model. The accelerometer data un-
der consideration included both indoor and outdoor activi-
ties of different human subjects. EFM was implemented in
MATLAB 7.6. The configuration of the computer was an
Intel Pentium(R) Dual-Core 2.5 GHz with 3 GB of mem-
ory and Microsoft Windows 7. We split the dataset using the
‘10-fold-cross-validation’ approach and evaluated different
parameter values for GA in order to determine the optimal
points. On the basis of our analysis, we determined the op-
timal parameters to be 0.8 for crossover, 0.1 for mutation,
55 for population, and 500 for generation. In order to calcu-
late the feature vectors from the raw signals, no overlapping-
sliding windows take placed over the accelerometer data,
which had a length of 150 data samples (about 3 sec). Within
a window, root mean square, variance, correlation and en-
ergy features were extracted from each axis of the signal.
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Then, these values were fuzzified by finding the membership
values for the fuzzy input variables. Applying the fuzzy op-
erators to the different parts of the antecedents, implication,
aggregation, finally produced a crisp output. Table 3 shows
how the activity can be recognized using the crisp output.
The results of our experiments are summarized in Tables 4
and 5.

In Table 4, the recognition results of the proposed EFM
are presented in a confusion matrix. The activities ‘walking’,
‘jogging’ and ‘running’ are recognized with high accuracy.
They are sometimes slightly confused with each other but
never confused with other activities. It shows the effective-
ness of the EFM to deal nicely with the dynamic activities.
The most confusion takes place during the ‘up stairs’ and
‘down stairs’ activities, but these complex activities were
recognized accurately more than 90 % of the time.

Table 3 Activity recognition

In the case of the individual subject, ‘walking’, ‘jogging’,
‘running’ and ‘cycling’ activities were recognized with high
accuracy, as shown in Table 5. We demonstrated a single day
activity routine of a person with a ground truth and recog-
nized activities, as is shown in Fig. 6.

Figure 6 illustrates the smooth recognition rate of the per-
formed activities with ground truth. In the whole day, our
system confused running and going down stairs with jog-
ging one time.

Two recent previous studies were identified that are simi-
lar to our work in terms of recognizing the same dynamic ac-
tivities or using a fuzzy inference system as a classification
method. Preece et al. [6] studied the same set of dynamic
activities, but their experimental setup was different. They
collected the data using multiple accelerometers mounted
on different body locations so that their results are not di-
rectly comparable to our study. However, we achieved an
almost same level of accuracy by utilizing the embedded

from the crisp output Activity Crispoutput , celerometer in the smartphone and overcoming the lim-
Walking 0.00-0.29 itations of a.Vldeo—based apnotatlon method. Ouf 1?1.ethod is
. more realistic for annotating the performed activities, and
Jogging 0.30-0.45 . ) K A
Running 0.46-0.60 unobtrusive device selection makes our model superior to
. P the existing one. Helmi et al. [10] proposed a model that is
Cycling 0.61-0.80 . . . .
) based on a fuzzy inference system to recognize with quite
Downstairs 0.81-0.86 . e . .
Homoi 0.87-0.90 high accuracy a small group of activities including moving
UOpp{ng 0' 1_1'00 forward, jumping, going up stairs and going down stairs.
pstairs — They defined the membership functions and fuzzy rules with
Table 4 The confusion matrix . - - - - - - -
of activity recognition Activity Walking Jogging Running Hopping Cycling Up stairs Down stairs
Walking 6585 145 5 - - - -
Jogging 4 3628 56 - - - -
Running 3 25 2572 - - - -
Hopping 2 24 14 990 21 - 22
Cycling - 19 14 11 2819 10 22
Up stairs 9 5 15 6 1084 48
Down stairs 10 6 14 9 20 572
Table 5 Individual subject - - - - - - - -
activity recognition accuracy Subjects Walking Jogging Running Hopping Cycling Upstairs Down stairs  Avg.
Subject 1 0.9958 0.9947 0.9714 0.8596 0.9932 0.9152 0.9012 0.9473
Subject 2 0.9452 0.9673 1.0000 0.9382 0.9930 1.0000 0.8889 0.9618
Subject 3 0.9958 0.9947 0.9821 0.8596 0.9932 0.9491 0.9012 0.9537
Subject 4 0.9736 0.9934 1.0000 0.9459 0.9430 0.8739 0.9230 0.9504
Subject 5 0.9734 0.9618 0.9852 0.9444 0.9671 0.9145 0.9125 0.9513
Subject 6 0.9452 0.9673 1.0000 0.9496 0.9930 1.0000 0.8888 0.9634
Subject 7 0.9901 1.0000 0.9810 0.8260 0.9967 0.9056 0.8235 0.9318
Subject 8 0.9945 0.9869 1.0000 0.8765 0.9449 0.8956 0.9491 0.9496
Subject 9 0.9736 0.9934 1.0000 0.9459 0.9430 0.9159 0.9230 0.9564
Subject 10 0.9734 0.9618 0.9852 0.9444 0.9671 0.8974 0.9125 0.9488
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the help of domain expert knowledge along with a trial and
error-based strategy to refine the fuzzy boundaries so di-
rect comparison of classification is not possible. However,
our model relaxes the domain expert knowledge conditions.
EFM is able to estimate the membership functions through
a statistical method and fuzzy rules using a GA optimization
algorithm.

The classification accuracies reported in Tables 4 and 5
represent the confusion between the activities and the aver-
age recognition of activities across all subjects. To validate
and investigate EFM further, we compared it with one of
the most reliable and powerful techniques, the Naive Bayes
(NB) classifier. Our dataset activities classes are imbalanced
due to some activities that appear much more frequently
than others. Class-accuracy [29] is the primary way to eval-
uate the performance of an activity classifier rather than us-
ing time slice accuracy. For instance, the total instances of

Walking Jogging  Running

Hopping Cycling Up stairs Down stairs

‘walking’ were 6736 and total instances of going down stairs
were 636 in our dataset. If a classifier correctly classified
6585 instances of ‘walking’ (accuracy = 97.75 %) and 400
instances of ‘going down stairs’ (accuracy = 62.89), then
the time slice accuracy would be 94.75 %, whereas the class-
accuracy would be 80.32 %, since walking is more frequent
than downstairs activity. Therefore, we reported the class-
accuracy results in Figs. 7 and 8 and kept all the data set-
tings unchanged. This comparison shows that a remarkable
improvement in terms of accuracy was achieved compared
to the state-of-the-art method.

As seen in Fig. 7, our EFM model achieves significant
improvement for all recognized activities except the down
stairs activity in comparison to NB. We achieved remarkable
improvement for the comprehensive group of dynamic ac-
tivities including ‘walking’, ‘jogging’, ‘running’, ‘hopping’
and ‘cycling’ as compared to existing methods. Our pro-
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Fig. 8 Class-accuracy comparisons (Avg, Max and Min)

Table 6 Precision, recall, F-measure and accuracy

Model Precision Recall F-Measure
EFM 0.9551 0.9540 0.9545
NB 0.8350 0.8619 0.8482

posed model recognized the activity correctly most of the
time, but probability-based methods did not perform very
well in all cases. It can be seen from Fig. 8 that our proposed
model EFM shows stable results, with high maximum, min-
imum and average class-accuracy.

On the basis of the confusion matrix presented in Table 4,
we computed three performance measures: precision, recall,
F-measure, as shown in Table 6. The EFM performed bet-
ter for all three measures. In addition to the precision and
recall, we performed the non-parametric Wilcoxon Signed-
Ranks Test [30] for rigorous comparison to detect the dif-
ferences between the existing and our proposed model be-
havior. The p-value is computed (i.e., p-value = 0.0313)
for the pairwise comparison concerning EFM. It shows
our model achieves a significant improvement over the ex-
isting Naive Bayes method with a level of significance
a =0.05.

6 Conclusion and future work

The proposed model utilized the embedded accelerometer
sensor of a commercial smartphone to recognize dynamic
activities. Dynamic activity recognition becomes a chal-
lenge due to the use of a single accelerometer and vague
class boundaries. We proposed a novel evolutionary fuzzy
model to measure the uncertainties between imprecise de-
cision boundaries. Unlike the conventional methods that

@ Springer

are unable to handle complex situations with high class-
accuracy, this model is able to distinguish dynamic activ-
ities. Our model relaxes domain expert knowledge con-
straints and estimates the membership function through a
statistical method. EFM is evaluated on a comprehensive
group of dynamic activities, and the optimal parameters for
in-depth investigation are determined. In every experiment,
approximately 9 % higher class-accuracy was observed and
p-value < 0.05. Experimental results demonstrate that han-
dling the issues discussed above consistently increased the
overall accuracy.

In this study, fixed position of a smartphone is consid-
ered; therefore, complications may arise due to different po-
sitions. This limits the applicability of this model at present;
however, the generic nature of training and implementa-
tion will lead to the success of EFM for conceivable com-
plex situations. Our future plan includes handling position-
independent recognition by deriving novel features using the
proposed framework.
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Appendix

In this section, we present details of the parameters for
Gaussian membership estimation for expectation maximiza-
tion algorithms, which are used for computing py and 8.
The log-likelihood of the observed data Y = {Y,,}, m =
1,..., M is calculated as:

M
1(©) =" 10gpmix(Yn|O) (12)

m=1

Expectation Step (E-Step)

K K

Pix(Ym | @)= p(Yyy | 0wt and Y wy =1
k=1 k=1

(13)

To fit an observed set of data points {Y,}, the mixing por-
tion “wy,;” and the components “K” that generated each
data point “Y,,” is unknown. The objective is to find the pa-
rameter vector 0y = g, 8x].
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Inserting (13) into (12) gives,

M K
1©)= log ) p(Yu | ) wmk

m=1 k=1
For Expectation step, use Jensen’s inequality,

M K

1©)= Y 1> walogp(Yu | 0)

m=1Lk=1
= E[log(p(Yn | 64)]
At the Maximization step (M-Step)

M K
Vo, )Y wnklogp (Y | 6)) (14)
m=1[=1

At maximum, the partial derivations w.r.t. all parameters
vanish:

M
] Wik
Vo l(©) =) :p(mek) Vo ? Y | 6k) (15)
m=1

In order to find the parameters of accelerometer data, our
problem is a similar problem to the one dimensional Gaus-
sian mixture, where we do not know the variances or mix-
ture portions either. The parameter vector is 6y =[x, 5k] is
computed as:

P | 6p) =

_ 2
(Y — ) } 6

=l
exp 5
2718,% 255

The Expectation step is easily defined by inserting (16) into
(13). For Maximization, inserting (16) into (15) and taking
the derivative w.r.t. ) gives,

d
0=-2"1(®)
ok

M

= e T
m—1 Pk (Ym16k) 27‘[81%

—2(ym — k)
* i —
28}

m — ,uk)z
exp —725]%

M
= Wik Om — 114
m=1

M
1w
[y = § m;,ll mk Ym (17)
Zm:l Wik

Taking the derivative w.r.t. §¢

d M Wik
—l(@) _ m
08k ,; P (Ym 10k)

L {_ (m — 1)? }
2
278} 25;

1 _ 2
% |:__ + Ym 3//”() i|
Ok 87

M 2
Wik L (m— )
=y — [——+7ym 3 }*p(ymIGk)
Sk 5;

= p(ml6p)
M 2 2
—8; + (Ym — Mk)
= Z IUmk|: k 8? =0
m=1 k
52— Z,Ale Wik Om — 14k)2
k= M
Zm:l Wik
M _ 2
8 = D om=1 w]:]nk()’m i) (18)
Zm:l Wink

Equations (17) and (18) are required parameters for the
Gaussian membership function.
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