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Abstract: In recent years, activity recognition in smart homes is an active research area 

due to its applicability in many applications, such as assistive living and healthcare. 

Besides activity recognition, the information collected from smart homes has great 

potential for other application domains like lifestyle analysis, security and surveillance, and 

interaction monitoring. Therefore, discovery of users common behaviors and prediction of 

future actions from past behaviors become an important step towards allowing an environment 

to provide personalized service. In this paper, we develop a unified framework for activity 

recognition-based behavior analysis and action prediction. For this purpose, first we propose 

kernel fusion method for accurate activity recognition and then identify the significant 

sequential behaviors of inhabitants from recognized activities of their daily routines. 

Moreover, behaviors patterns are further utilized to predict the future actions from past 

activities. To evaluate the proposed framework, we performed experiments on two real 

datasets. The results show a remarkable improvement of 13.82% in the accuracy on 

average of recognized activities along with the extraction of significant behavioral patterns 

and precise activity predictions with 6.76% increase in F-measure. All this collectively help 

in understanding the users‖ actions to gain knowledge about their habits and preferences. 

Keywords: activity recognition; smart homes; behavior analysis; action prediction; 

lifestyle analysis; u-healthcare 
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1. Introduction 

A smart home is an intelligent environment that proactively and sensibly perceives the state of 

residents and the physical environment using sensors. It is one of the best solutions allowing the 

provision of monitoring and health assistance for persons with special requirements and the elderly to 

receive services in their own home environments within the limits of their abilities [1]. In the recent 

years, several smart homes have been developed such as MavHome [2], CASAS smart home [3], 

Aware Home [4], The Adaptive House [5], House_n [6] and House A [7]. The aim of this smart home 

technology is to provide ambient assisted living for care delivery, remote monitoring, early detection 

of problems or emergency cases and promotion of residential safety and quality of life [2–7]. The 

advancement of sensor technology has proven itself to be robust, cost-effective, easy to install and less 

intrusive to fulfill the needs and preferences of inhabitants and respond intelligently in seamless and 

unobtrusive manner. For this purpose, several machine learning-based probabilistic and statistical 

algorithms have been previously used to identify the performed activities with acceptable accuracy 

according to their specific intentions [8–11]. With the quest of developing more accurate classification 

for activity recognition, nowadays, researchers have realized the importance of utilizing the recognized 

activities for a list of other applications such as behavioral analysis, lifestyle prediction, interaction 

monitoring, and security and surveillance [12–14]. In order to provide these services, the environment 

should learn about the routines and habits of inhabitant from the patterns of performed activities. 

Therefore, activity recognition-based behavior analysis and lifestyle prediction is an important 

research topic to identify significant behaviors and life threatening complications in the daily routines 

of inhabitants marked by deviations in normal activity patterns and forthcoming actions (we use the 

terms activity and action interchangeably throughout the paper).  

Usually, inhabitants perform routine actions in a sequential manner characterized by preceding and 

following activities to identify their influence on each other [15]. For example, taking medicine is very 

likely followed by eating, and brushing teeth is usually preceded the face washing activity. Therefore, 

the activity log in terms of performed activities can be effectively analyzed to discover the sequential 

behavior patterns. The identified patterns provide the significant list of action that mostly occurs 

together in daily routine to support the health maintenance and functional capability of individuals. For 

example, in the daily routine of inhabitant Mr. Ben, if the significant sequential behavioral pattern is: 

(wakeup, exercise, bathing, breakfast, medication), this it reflects that Mr. Ben’s activities includes 

daily exercise before breakfast and he is on constant medication. In this case, the care givers can easily 

identify the missing exercise and medication routines after analyzing his lifestyle based on frequently 

performed activities. Furthermore, assuming that human beings perform behaviors based on habits, it 

could be inferred that patterns describing past and present behaviors will define future actions as well. 

Thus, learning of user behavior by means of a sequence of actions is highly desirable and is not yet 

available. The prediction about future actions allows caregivers to take proactive actions for the 

wellbeing of inhabitants after analyzing their healthy or unhealthy routines. Thus, according to  

the routine of Mr. Ben, after his exercise activity the most likely activity is of having a breakfast and 

the framework can remind him to measure his blood pressure and heart rate just before breakfast, if 

required. However, there is a shortage of formal, systematic and unified behavior modeling and 
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analysis methodologies based on daily life activities. So far, most of the existing applications [8–14] 

relate an action to the set of sensor values instead of relating the actions among themselves. 

Motivated by the lack of a comprehensive approach in smart home-based lifestyle analysis, in this paper 

we propose a novel and unified framework to analyze user behaviors and predict future actions by using 

daily life activities. For this purpose, first, we improve the accuracy of activity recognition by adopting a 

decision fusion mechanism through multiple Support Vector Machine (SVM) kernels [11]. The proposed 

method transforms the activity recognition problem into higher features space by combining the output of 

each individual kernel for the final consensus about the activity class label. Our approach is able to 

recognize activities more efficiently in a reasonable amount of time using a fast Sequential Minimal 

Optimization (SMO) training method instead of Quadratic Programming (QP). Furthermore, for 

behavioral analysis, we extract the behavioral pattern from the day to day performed activities in a 

sequential manner with the help of data mining techniques. We apply the SPAM [16] sequential 

pattern mining algorithm by modifying it according to the requirements of behavior modeling from the 

activity log. In our proposed framework, each sequence is a set of activities performed in a temporal 

order of three days for consistent sequence prediction. Finally, the sequential activity trace is utilized 

for behavior learning to predict the future actions. A Conditional Random Fields (CRF) algorithm is 

designed for ongoing activities as labeled sequences and future actions as observations. Therefore, the 

analysis of the history information transmitted by users‖ activities helps in discovering the routine 

behavior patterns and future actions of inhabitants in a home environment. For empirical evaluation, 

we performed experiments on two real datasets from the CASAS smart home [3]. The results show 

that our proposed framework first yields a significant improvement in accuracy for the recognized 

activities as compared to the single kernel function. Then the identification of significant behavioral 

sequential patterns and precise action prediction enables the observation of the inherent structure 

present in users‖ daily activity for analyzing routine behavior and its deviations.  

The rest of the paper is organized as follows: Section 2 provides information about some of the 

existing approaches. Section 3 presents our proposed framework for activity recognition-based behavior 

analysis and action prediction in smart homes. In Section 4, we illustrate the experimental results 

followed by comparison and discussion. Finally the conclusion and future work are drawn in Section 5. 

2. Related Work  

In recent years, significant approaches for activity recognition have used audio/video sensors [17], 

wearable sensors [18,19] and embedded sensors [20,21]. However, several problems are associated 

with the first two approaches; for instance, audio/video sensors are not practical due to privacy issues, 

require a large storage space for recording streams, and their accuracy also depends on appropriate 

location of the sensor while considering the day/night vision problems and the complex environment. 

Wearable sensors are uncomfortable and inconvenient for users, and their accuracy depends on the 

body attachment position. Embedded sensors are an acceptable solution for sensing the environment 

(e.g., smart homes) without disturbing inhabitant privacy and without adding the extra burden of 

wearing sensors. Therefore, several studies have been conducted to determine effective and accurate 

activity classification-based behavior analysis methods for smart homes. Rashidi et al. [15] tracked the 

regular activities to monitor functional health and detect changes in an individual’s patterns and 
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lifestyle. They described an activity mining and tracking approach based on Markov models and 

validated their algorithms on data collected in physical smart environments. Similarly, Kasteren et al. [22] 

used a probabilistic model dynamic Bayesian network using a less parametric approach to give better 

results. They showed how the use of a sensor observation history increased the accuracy in the static 

model case. Furthermore, the use of the observation history allowed their model to capture more 

correlations in sensor patterns. Nugent et al. [23] analyzed the user’s interaction with technology and 

environment in order to provide useful information relating to lifestyle trends and how the 

environment can be adapted to improve the user’s experience. They proposed homeML, an XML 

based cross-system standard, to support information exchange between intra- and inter-institutional 

levels. Their proposed XML-based schema improved the accessibility and analysis of the collected 

data for meaningful analysis of person’s life within smart home environments. Rashidi et al. [24] 

applied data mining techniques to solve the problem of sensor selection for activity recognition along 

with classifier selection in smart homes. They examined the issue of selecting and placing sensors 

effectively in order to maximize activity recognition accuracy. Chikhaoui et al. [25] applied sequential 

pattern mining for person identification in a multiuser environment. Their proposed approach is 

utilized for audiovisual and image files collected from heterogeneous sensors in smart homes.  

Fusion techniques play an important role to achieve high accuracy as compared to single  

classifiers and successfully produced more accurate results in different application domains such as 

image processing [26], and gene functional classification [27]. In the context of activity recognition, 

Xin et al. [28] addressed the fusion process of contextual information derived from the sensor data. 

They analyzed the Dempster-Shafer theory and merged with a weighted sum to recognize the activities 

of daily living. Rongwu et al. [29] proposed classifier fusion as a learning paradigm where many 

classifiers are jointly used to solve the prediction problem. They used seven wearable sensors 

including five accelerometers and two hydrophones. Their used classifiers are Linear Discriminant 

Classifier (LDC), Quadratic Discriminant Classifier, k-Nearest Neighbor (k-NN) and Classification 

and Regression Trees (CART). 

So far, most of the applications where a learning process is involved have treated it as an action to 

map the overall situation instead of relating the actions among themselves. They process independent 

pieces of information instead of complete and comprehensive representation of user behavior. 

However, some of the research groups started to create methods to relate user actions. Fernández et al. [30] 

applied the workflow mining technique to infer human behaviors. Their approach involved an expert 

user who can identify the changes in behavior of dementia patients. They validated their approach on 

synthetic data to identify the deviation from normal behavior. Aztiria et al. [31] focused on automatic 

discovery of user behavior as a sequence of actions. Their developed approach is based on discovery of 

frequent sets, identification of topology and temporal relations of performed activities with other 

constraints. Doctor et al. [32] focused on developing an application based on set of fuzzy rules to 

represent the users‖ patterns. They recorded changes caused by users in the smart environment and 

generated the membership functions that mapped the data into fuzzy rules. A survey of all these works 

can be found in [33,34]. The focus of all the above mentioned research is to discover the behavior 

patterns; however a step towards predicting the future actions from a set of performed activities is still 

need to be explored for better analysis of human lifestyle and intended services. 
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The methodologies commonly observed in the literature for activity recognition and behavior 

patterns discovery in smart homes are limited to a number of algorithms in order to select the one 

which gives relatively better results for a particular domain. Our objective is to overcome the 

limitation of existing methods by introducing a unified framework for behavior analysis of inhabitants 

that ranges from activity recognition to action prediction in order to support the smart home inhabitants 

in performing their daily tasks and providing personalized services adapted to their needs. 

3. The Proposed Framework 

In the proposed approach, an activity is defined as set of active sensors at a particular time that 

perform a certain task in a smart home environment. It can be recognized over the collected sensory 

data and annotated either at the micro level (i.e., book reading) or macro level (i.e., leisure) from the 

daily life of inhabitants. The proposed framework consists of three major modules, as shown in Figure 1: 

(1) Data preprocessing: to represent the sensory data as an observation vector for kernel functions.  

(2) SVM based kernel fusion for activity recognition: to recognize the daily life activities using 

decision fusion of four individual SVM kernel functions, where each kernel is designed to learn the 

performed activities in parallel. (3) Behavioral analysis and action prediction: to identify the sequential 

behavior patterns and then predict the future actions by utilizing the significant behavior of 

inhabitants‖ daily life. The details of each module are described in the following sections. 

Figure 1. The architecture of the proposed framework. 

 

3.1. Data Preprocessing 

Data preprocessing is an important step towards accurate training in machine learning techniques [35]. 

Data collected from ubiquitous sensors based on subject interactions are stored in sensor logs and 

annotation files with attribute start times, end times, sensor ids, sensor values and activity labels. In 

order to recognize the performed activities, a recorded dataset is preprocessed into the form 

                   . The term      represents the vectors whose components are the values of 

embedded sensors such as stove-sensor, refrigerator-sensor, and door-sensor. The values of ― ‖ are 

drawn from a discrete set of classes         such as a ―Leave Home‖, ―Read‖, and ―Sleep‖.  

In addition, excessive information such as multiple header lines is also removed from the sensor logs 

and annotation files. 
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3.2. SVM based Kernel Fusion for Activity Recognition 

SVM is a statistical learning method to classify activities through determination of a set of support 

vectors and minimization of the average error rate. It can provide a good generalization performance 

due to its rich theoretical basis and by transferring the problem to a high dimensional feature space [11]. 

Activity recognition is a multi-class problem so we adopt a ―one-versus-one‖ approach to recognize 

the performed activities. Given a training set of sensor values and activity pairs (i.e.,        ), we train 

our model through Sequential Minimal Optimization (SMO) for efficient performance. SMO avoids 

time consuming matrix calculation by dividing the optimization problem into the smallest possible 

portions and consequently resolves the memory issues for large training data [11]. The following 

optimization model is applied by using the Lagrangrian multiplier techniques and Kernel functions: 
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where   is the kernel function that satisfies                      . It is a function that transforms the 

input data into a high-dimensional space where the separation could be linear [36]. SVM can provide high 

performance, but usually far from the expected level of accuracy, due to its approximation algorithm 

and high data complexity. In order to achieve better accuracy in the classification, we train following 

multiple kernels [37,38] and fuse the individual results at decision level: 
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Equations (3–6) show the linear, polynomial, Gaussian (RBF) and multi-layer perceptron (MLP) 

kernel functions, respectively. In activity recognition, an ideal kernel function assigns a higher 

similarity score to sensor observations that belong to the same activity class. However, in real life 

scenarios, a kernel function behaves differently on the performed activities due to the complex 

situation of different active sensor events for an individual activity. As a result, a single kernel function 

is inadequate to perform well for all annotated activities. We trained different kernel functions and fuse 

the individual results on decision level. Before assigning the final class label, we get the confidence 

with the help of max rule as below: 

                             

 

   

    
(7) 

The recognized activities are stored in an activity log repository and can be effectively utilized by 

caregivers and service providers to assist the inhabitants adequately after analyzing their lifestyles. 
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Therefore, routine patterns discovery and future actions‖ prediction are the main sources to acquire 

knowledge about the inhabitants‖ lifestyles. 

3.3. Behavior Analysis and Action Prediction 

This module has further two sub-modules: (a) behavior patterns discovery: to discover the behavior 

patterns by applying the sequential pattern mining algorithm on the activity log data collected from 

activity recognition module and (b) action prediction: to identify the next actions in a series of 

consecutive actions. The detail of each sub-module is given in the subsequent sections. 

3.3.1. Behavior Patterns Discovery  

Representing the inhabitants’ actions by means of ordered sequence of activities facilitates our 

understanding of the significant behavior patterns in daily lifestyles. Therefore, the objective of this 

module is to identify the set of actions that frequently occur together. One intuitive way for behavior 

pattern generation is to apply a sequential pattern mining technique. For this purpose, we are given a 

repository of activity log ―Al‖ where activities are stored in sequential order with respect to activity 

time. Let D = {a1, a2, …, am} is a set of m activities performed in a particular day in a temporal manner T. 

Let each sequence in the ―Al‖ be S = {D1, D2, …, Dn}, where Di is a set of performed sequences of 

activities on different days. For instance a set of sequential activities is defined as an individual who 

comes to the bedroom to sleep is likely to read or watch TV before the sleep activity. The sample 

activity log is shown in Table 1. In our proposed data modeling, the monitoring window is a list of 

activities performed in three days ordered by activity time. 

Table 1. Representative repository of an activity log. 

Sequence ID Days Activities 

S1 

1 Read, Sleep 

2 Kitchen, Master Bedroom , Read 

3 Kitchen, Master Bedroom , Watch TV 

S2 

4 Read, Sleep, Chores 

5 Master Bedroom , Read, Sleep 

6 Kitchen, Master Bedroom, Watch TV, Master Bathroom 

Here, the problem is to discover all sequential patterns with a specified minimum support, where the 

support of a pattern is the number of data-sequences that contain the pattern as shown in Equation (8). 

Therefore, a sequence pattern is a non-empty set of ―Al‖ and a day Di is said to contain pattern P if P⊆Di: 

          
                                           

                             
 (8) 

The pseudocode for the frequent sequential behavior patterns is shown in Algorithm 1 for activity 

log Al and support threshold  . Here, Sk is the candidate set for level k, genrated by fGenCanSet(Al) 

method and fGenActivitySequence (Sk) method is assumed to generate the candidate sets CS from the 

large activities of the preceding level. The downward closure count (CS) accesses a field of the data 

structure that represents candidate set CS, which is initially assumed to be zero. Therefore, all the 
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activities in an element of a sequential pattern necessarily present in a single day activities for the  

data-sequence to support the pattern. A pattern is regarded as persistent if it has the highest support. 

This demonstrates the most significant behavior of inhabitant due to its high continued or repeated 

ratio as compared to other identified patterns under same support threshold. 

Algorithm 1: Frequent Sequential Behavior Patterns 

Input:   Al: Activity log 

   : Support threshold 

Output: Bp: Behavior patterns 

Begin 

1 S1 = fGenCanSet(Al) 

2 k=2 

3 While (Sk-1 != Null) 

4     CS = fGenActivitySequence(Sk) 

5     for j= 1:length (CS) 

6         if (Supp. (CS (j)) >  ) 

7            Count (CS (j)) = Count (CS (j)) +1 

8            Sk=CS(j) 

9  k = k+1 

10       end  

11   end 

12   Bp = Union(Sk) 

13end 

End 

The analysis of frequent user behaviors Bp reveals the significant habits of inhabitants from their 

daily routines and provides the basis for behavior learning to predict their future actions. 

3.3.2. Action Prediction  

The objective of this module is to predict the next action from the set of activities that occur 

together. For the learning process of action prediction, required data is extracted from the behavior 

pattern log. Let‖s consider activities shown in Table 2 are occurring together in different sets of actions 

and the same set of activities with their relationships among them is presented in Figure 2. It is obvious 

that the occurrence of each activity depends on the set of previous actions. For example, ―Meditate‖ 

comes after ―Sleep‖ or ―Chores‖, whereas, ―Sleep‖ comes after ―Watch TV‖ or ―Master Bathroom‖ 

and there could be the repetitive actions in the same sequence. Therefore, a decision about the next 

activity depends on the transition of previous actions. For instance, ―Kitchen‖ activity follows by 

―Meditate‖ or ―Sleep‖ represents breakfast while ―Kitchen‖ activity after ―Enter Home‖ represents 

dinner. So it is clear that a set of previous actions provide remarkable evidence to identify the 

meaningful behavior in terms of forthcoming action. In our proposed approach, sequences of 8 to 10 

activities are considered to predict the next action. 
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Table 2. Representative sequences from behavioral patterns. 

Sequence Prev. Activity 3 Prev. Activity 2 Prev. Activity 1 Next Activity 

1 Kitchen MasterBedroom WatchTV Sleep 

2 — WatchTV MasterBathroom Sleep 

3 WatchTV MasterBathroom Sleep Chores 

4 — Sleep Chores Meditate 

5 MasterBathroom Sleep Meditate Kitchen 

Figure 2. Set of sequences with activity relationships. 

 

Once the sequences of activities are selected, we utilize them for the learning process of action 

prediction. Prediction in smart environments is a challenging task and a variety of machine learning 

algorithms are available for effective learning for a particular domain [11–18]. In our proposed 

framework, we choose CRF as a learning classifier for predicting the future actions. It is a 

discriminative and generative probabilistic model for labeling the sequences under the conditional 

probability p(y|x). It is modeled as undirected acyclic graph that allows arbitrary, non-independent 

relationships among the observation sequences. A CRF flexibly capture the relation between a pair of 

observations and label sequences that do not explicitly model the marginal probability of observations. 

It uses a potential function instead of a joint probability. Suppose there are finite label sequences  

Y = (y1,y2,…,yT−1,yT) and observations X = (x1,x2,…,xT). In Figure 3 a design of CRF is shown for 

the activity sequences presented in Table 2. 

Figure 3. The design of CRF for activity sequences. 

 

In the CRF model, the conditional probabilities of next action with respect to previous activity 

observations are calculated as follows: 
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In Equation (9),   denotes normalized factor and               is a feature function that is computed as: 

                                      

 

   

 
(10) 

In Equation (10), the feature function depends on known observations       and is determined by 

any combination of input values instead of considering all arguments. To make the inference in the 

model, we compute the most likely activity sequence as follows: 

    
                    

          (11) 

Hence, the learning capability of CRF in terms of sequences of actions is able to capture long-range 

transition among activities collected from behavior patterns log for future action prediction. 

4. Evaluation and Results 

In this section, we present the results to evaluate and validate our proposed framework to measure the 

accuracy level of recognized activities, usefulness of behavior patterns and reliability of action prediction.  

4.1. Datasets Description 

The experiments are performed on the Milan2009 and Aruba datasets collected in the CASAS smart 

home, a project of Washington State University, with full-time residents [3]. In the case of Milan2009, 

31 motion sensors, one door sensor, and two temperature sensors were deployed at various locations 

and 15 activities were performed for 62 days. For Aruba, 31 motion sensors, three door sensors, five 

temperature sensors, and three light sensors were deployed and 11 activities were performed for  

220 days. The details description of the datasets and annotation method can be found in [3]. 

In Table 3, the characteristics of the Milan2009, and Aruba dataset are shown. The ―Num.‖ column 

shows activities count, ―Time‖ column shows the time in seconds and ―Sensor‖ column shows 

generated sensor events. 

Table 3. Characteristics of the annotated activities of CASAS smart home datasets. 

Milan2009 

Activities Num. Time Sensor Activities Num. Time Sensor 

Idle - 911.233 5760 Evening Medicines 19 10.56 250 

Bed to Toilet 89 379.37 1255 Guest Bathroom 330 952.31 10601 

Sleeping 96 37,217.9 22172 Kitchen Activity 554 7,526.81 128942 

Leave Home 214 4,229.47 4946 Master Bathroom 306 1,946.33 15071 

Watch TV 114 5,919.72 23688 Master Bedroom  117 2,168.97 27337 

Chores 23 684.82 7587 Meditate 17 109.94 1315 

Desk Activity 54 743.74 7628 Morning Medicines  41 45.97 1023 

Dining Rm Act 22 330.37 4295 Read 314 10,942.75 50281 
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Table 3. Cont. 

Aruba 

Idle - 59,495.15 903669 Enter Home 431 48.84457 2041 

Meal Preparation 1,606 12,588.53 299300 Housekeeping 33 670.6926 11010 

Bed to Toilet 157 428.833 1483 Leave Home 431 45.75227 1954 

Relax 2,919 97,813.58 387,851 Respirate 6 51.38585 571 

Sleeping 401 139,659.9 63,792 Wash Dishes 65 465.5383 10682 

Eating 257 2,610.955 19,568 Work 171 2,920.759 17637 

4.2. Performance Measures 

In order to evaluate our proposed framework, four standard metrics of precision, recall, F-measure 

and accuracy are used as performance measures. They are calculated using the values of the confusion 

matrix [39] and computed as: 
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where Q is the number of performed activities, TP is the number of true positives, NI is the total 

number of inferred labels and NG is the total number of ground truth labels. 

4.3. Experiments and Discussion  

In this section, first we evaluate the kernel fusion method for recognizing the daily life activities. 

We split the dataset using the ―leave one day out‖ approach; therefore, the sensor readings of one day 

are used for testing and the remaining days for training. As can be seen from Figure 4, our proposed 

model achieves a significant improvement for Milan2009 in all recognized activities except ―Eve 

Meds‖ and ―Morning Meds‖ in comparison to individual kernel functions.  

It is obvious from the results that different kernel functions show performance variations for the 

recognition of the same activities. The overall performance of ―MLP‖ is low as compared to other 

individual kernel functions and in some cases such as ―Bed to Toilet‖, ―Chores‖, ―Dining Rm 

Activity‖, ―Eve Meds‖, ―Meditate‖ and ―Morning Meds‖, ―MLP‖ fails to identify even a single 

instance of the  corresponding activity class label. The performance of the ―Linear‖ kernel function is 

better than ―MLP‖ for all recognized activities, however its overall performance is not significant even 

for the identification of single activity class label. ―RBF‖ is good for the recognition of ―Chores‖, 

―Leave Home‖, ―Meditate‖ and ―Read‖ activities, while ―Polynomial‖ is better than ―RBF‖ in 

recognition of ―Dining Rm Activity‖, ―Guest Bathroom‖ and ―Morning Meds‖ activities. Therefore, 
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this comparison represents that the proposed ―kernel fusion‖ outperforms all individual kernel methods 

for overall accuracy and shows similar or high class level accuracy. 

Figure 4. Individual class accuracy of different kernel functions for Milan2009. 

 

Figure 5. Individual class accuracy of different kernel functions for Aruba. 

 

Similarly, for Aruba the kernel functions show variation in their performance for the recognition of 

different activities, as shown in Figure 5. However, a remarkable improvement is achieved by our 

proposed ―kernel fusion‖ method for the recognition of all activities except ―House Keeping‖ and 

―Wash Dishes‖ compared to ―RBF‖. The ―Linear‖ outperforms others kernel function in overall 

accuracy however ―RBF‖ and ―Polynomial‖ are better than ―Linear‖ in recognition of some activities 

such as ―Bed to Toilet‖, ―Enter Home‖, ―Leave Home‖ and ―Sleeping‖. The performance of ―RBF‖ 

shows its significance as compared to others kernel functions for the recognition of ―House Keeping‖, 

―Wash Dishes‖ and ―Work‖ activities. The overall low accuracy of ―MLP‖ represents its inability to 

identify a list of activities. It is able to recognize only ―Eating‖, ―Enter Home‖, ―Meal Preparation‖, 

―Relax‖, ―Sleeping‖ and ―Work‖ activities. The overall accuracy of ―kernel fusion‖, 94.11% (Milan) 
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and 92.70% (Aruba), is significantly better than that of the individual kernel functions for both the 

datasets, as shown in Table 4. 

Table 4. Overall kernel functions accuracy. 

Kernels Milan2009 Aruba 

Linear Kernel 86.86% 89.60% 

RBF Kernel 91.34% 87.85% 

Polynomial Kernel 91.90% 88.45% 

MLP Kernel 37.88% 62.79% 

Kernel Fusion 94.11% 92.70% 

The above results and statistics clearly show that dataset characteristics highly affect the ―kernel 

functions‖ individual class level accuracy and thus their overall performances. In the case of 

Milan2009 ―Polynomial‖ outperforms other kernel functions and for Aruba the performance of 

―Linear‖ is better than others. However, our proposed ―kernel fusion‖ outperforms all kernel function 

and validates that fusing the individual decisions strengthens the confidence to assign the final activity 

class label. Once activities are recognized, they can provide the basis to analyze the behavior of 

individuals from their daily routines. For clear understanding of user behavior, we represent 8 to 10 of 

the most significant sequential behaviors for Milan2009 and Aruba in Figures 6 and 7, respectively. 

Here, red and gray bars show sequential patterns in monitoring windows of three days with user specified 

support. In both the datasets the annotation frequency of activities varies significantly as shown in ―Num.‖ 

column of Table 3. To discover the sequential patterns we set the support to 0.8% in order the get the 

most significant behaviors of daily life after patterns pruning. As a result the activities that are 

annotated with low frequency cannot be identified in the sequential behavior patterns. For instance, 

―Chores‖, ―Dining Rm Activity‖, ―Eve Meds‖ and ―Meditate‖ have very few occurrences in the 

Milan2009 data. Similarly, the occurrences of ―House Keeping‖, ―Respirate‖ and ―Wash Dishes‖ in 

Aruba are much fewer compared to the other annotated activities. 

It is obvious from Figure 6 that in sequential behavior the existence of ―Kitchen Activity‖, ―Master 

Bathroom‖ and ―Read‖ are more noticeable due their high annotation ratio in the dataset. The 

performed experiments on the Milan2009 activity log represent that the most prominent user behavior 

such as ―Read‖ activity symbolizes that the user habit of reading before sleep is significant as 

compared to ―Watching TV‖. Similarly, ―Kitchen Activity‖ shows its sequence prior to ―Desk 

Activity‖ and ―Leave Home‖ that represents the users‖ eating behavior. Furthermore, ―Bed to Toilet‖ 

and ―Master Bathroom‖ activities show bathroom usage habits before and during ―Sleep‖.  

In Figure 7, a list of ten most significant sequential behaviors is shown for Aruba. The most obvious 

activities are ―Enter Home‖, ―Meal Preparation‖, ―Relax‖ and ―Leave Home‖. The behavior analysis 

of the Aruba activity log shows the most substantial activities in the user routine such as ―Meal 

preparation‖ illustrate the user’s habit of cooking after coming home. The ―Relax‖ activity represents 

his behavior of relaxing before sleep and ―Bed to Toilet‖ characterizes user’s habit to go to the toilet 

during sleep. Although, the ―Work‖ activity is not noticeable in most of the activity patterns but ―Enter 

Home‖ activity after ―Work‖ signifies that user go out of home for ―Work‖ activity most of the times.  

The above frequent sequential patterns can be effectively utilized to analyze the lifestyle of inhabitants 

in terms of significant routine discovery. Furthermore, these routine behaviors facilitate the 
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personalized service providers (i.e., caregivers) to estimate the forthcoming action of inhabitants in 

order to take proactive actions for their better lifestyle. 

Figure 6. Sequential behavioral patterns for Milan2009. 

 

Figure 7. Sequential behavioral patterns for Aruba. 

 

To evaluate the activity prediction method, we use the classification of future actions from the past 

sequential behaviors. The goal of the experiments is to determine how well our method performs in 

predicting the future actions of inhabitants. In our proposed approach, the sequences of 8 to 10 

activities are consider to predict the next action. The representative activity sequences with predicted 

activity for Milan2009 and Aruba are shown in Figures 8 and 9, respectively.  

Here, each activity is symbolized by a specific color and ―set of activities‖ represents the routine 

behaviors in different sequences and ―predicted action‖ represents the outcome for the particular 

behavior. For example, in the daily routine of the inhabitant in Milan2009, activities prior to ―Sleep‖ 

are ―Master Bedroom‖, ―Bed to Toilet‖, ―Watch TV‖, and ―Read‖, and subsequent activities to 
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―Sleep‖ are ―Kitchen‖, ―Morning Meds‖ and ―Desk Activity‖. This represents that prediction of 

―Sleep‖ as a forthcoming action depends on the order of priory performed activities as shown in Figure 

8. Similarly for Aruba, ―Sleep‖ activity is in-between the ―Eating‖, ―Relax‖, ―Bed to Toilet‖, and 

―Meal Preparation‖, so the prediction for ―Sleep‖ as a future action depends particularly on the order in 

which these activities are performed in the daily routine of the inhabitant, as shown in Figure 9. 

Figure 8. Behavioral predictions for Milan2009. 

 

Figure 9. Behavioral predictions for Aruba. 

 

We compare our proposed method with the results of HMM [8] which is a well known generative 

probabilistic graph model for labeling sequences. The quality of a predicted activity is determined 

based on how closely the predicted activity resembles inhabitant’s real future action. We computed the 

precision, recall, and F-measure, as shown in Table 5. For both the datasets, the CRF performs better 

in comparison to HMM, the increase of 6.61% and 6.76% in F-measure is achieved for Milan2009 and 

Aruba respectively. 
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Table 5. Accuracy performance for action prediction. 

Dataset Model Precision Recall F-measure 

Milan2009 
HMM 0.7796 0.7363 0.7574 

CRF 0.8478 0.8006 0.8235 

Aruba 
HMM 0.7261 0.7356 0.7308 

CRF 0.7971 0.7996 0.7984 

5. Conclusions and Future Work 

Personalized service providers need to know the common behaviors and preferences of the inhabitants 

in leveraging the use of smart home technology for different application domains. In this paper, we 

proposed a unified framework for activity recognition-based behavior analysis and action prediction. 

This informs the service provider about inhabitants‖ significant behavior in order to perform meaningful 

interventions. In the proposed framework, first, we introduced the kernel fusion method to overcome the 

learning effects of different kernel functions for recognition of individual activities. Furthermore, the 

recognized activity log is utilized for behavioral pattern discovery with the help of frequent sequential 

mining technique on a set of activities that are performed in a temporal sequence of three days. Finally, 

we investigated CRF for the actions that occur together in order to predict the next activity from a 

current situation. Our study found that identification of behavior patterns and prediction of 

forthcoming action with high precision signifies the possibility of helping people by analyzing the 

long-term data of one’s behavior to fulfill his needs in the current circumstances and in future. 

To investigate further, we intend to define our own activity domain specific kernel function to 

refine the accuracy rate and incorporate the extraction of interleave and parallel activities to understand 

the user behavior in more depth. Moreover, we aim to design the system for predicting a future 

situation based on a set of forthcoming actions instead of a single activity. 
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