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Abstract A lot of research efforts have been made to model the diffusion process
in social networks that varies from adoption of products in marketing strategies to
disease and virus spread. Previously, a diffusion process is usually considered as a
single-objective optimization problem, in which different heuristics or approximate
algorithms are applied to optimize an objective of spreading single piece of informa-
tion that captures the notion of diffusion. However, in real social networks individu-
als simultaneously receive several pieces of information during their communication.
Single-objective solutions are inadequate for collective spread of several informa-
tion pieces. Therefore, in this paper, we propose a Multi-Objective Diffusion Model
(MODM) that allows the modeling of complex and nonlinear phenomena of multiple
types of information exchange, and calculate the information worth of each individ-
ual from different aspects of information spread such as score, influence and diversity.
We design evolutionary algorithm to achieve the multi-objectives in single diffusion
process. Through extensive experiments on a real world data set, we have observed
that MODM leads to a richer and more realistic class of diffusion model compared
to a single objective. This signifies the correlation between the importance of each
individual and his information processing capability. Our results indicate that some
individuals in the network are naturally and significantly better connected in terms of
receiving information irrespective of the starting position of the diffusion process.
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1 Introduction

A social network is a graph representing the interactions or interconnections among
individuals based on their common interests, activities, and demographic identities.
Diffusion process in social networks has attracted much attention and a lot of re-
search efforts have been made in this field from all areas of academic interest, such
as physics, mathematics and computer science [1–3]. It is widely believed that user-
to-user exchanges, also known as “word of mouth,” can spread contents, ideas, or
information widely and quickly throughout the network [4, 5]. The fundamental pur-
pose of each diffusion process is to differentiate a set of the individuals on the basis
of their social ability for information manipulation and propagation [6]. In most of
the diffusion models the notion of ‘information’ is restricted to a single unit during
the diffusion process to evaluate the importance of individuals in a social network.
Conversely, in real social networks, individuals communicate their ideas and feel-
ings in a spur of a moment with various people like family, friends, and relatives in
homes, offices, and universities. So in a true social network, a variety of information
like news, rumors, gossips, stories, and announcements is manipulated and spread at
the same time [7].

The collective diffusion process for these various information types seems chaotic.
Each piece of information1 has a separate spread process according to its type, asso-
ciated constraints, and importance. For example, some information is independent of
any competition (e.g., TV news) while some ideas, opinions, and products compete
with all the other content (e.g., product adoption, political elections) for the scarce
attention of the users. Previously, researchers simulated these types of information
independently in separate diffusion models as a single-objective problem to analyze
a social network [8, 9]. Most of the approaches spread ‘information’ as a single unit
with ‘active’ or ‘inactive’ status in order to group the individual into two categories.
Therefore, at the end of the diffusion process the individuals with the ‘active’ status
achieve the single objective of the diffusion, whereas ‘inactive’ individuals have no
effect on the diffusion process [7, 8]. However, it is intractable to distinguish among
‘active’ individuals in order to find the differences between them according to their
network property. Furthermore, in a real social network people do not lie between
two statuses of either ‘active’ or ‘inactive’ to show their significance in the network.
Instead, more granularity of individual importance is required to find the differences
between them that can reflect their information propagation capability in the network.
The situation becomes more complex for single-objective diffusion models when in-
dividuals propagate multiple types of information. At present, none of the existing
diffusion models are able to comprehensively handle the aforementioned problems.
Therefore, in this study, we first formulate the diffusion process as a multi-objective

1We use information and piece of information interchangeably throughout the paper.
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optimization problem to model the information spread closer to a real social net-
work. We propose a multi-objective diffusion model (MODM) that assigns a value of
importance to each individual according to his information manipulation and propa-
gation ability. The goal of MODM is to selfishly maximize the amount of information
possessed by each individual during communication. The key difference from earlier
studies is that we achieve multiple objectives in terms of diverse information spread
and calculation method to measure the propagation capabilities of individuals.

Our contribution in this work is fourfold. First, we propose a novel multi-objective
diffusion model based on evolutionary algorithm that is superior in terms of achiev-
ing more than one objective at a time in a social network. Second, we introduce
a method to propagate the multiple types of information (i.e., independent, mutu-
ally exclusive, and competing) in binary schema formats. This gives the flexibility in
terms of modeling the set of information with variations in bits of string according
to their types and constraints. Third, evolution fitness criterion is designed in order
to calculate the multi-objective score (value of importance) of each individual. We
believe that different aspects of information transmission are important to determine
which individuals have high worth in multiple types of information spread. There-
fore, the proposed evolution fitness criteria are based on information score, influence,
and diversity. Fourth, we maintain an information history log for each individual to
keep track of information flow during the whole diffusion process. This facilitates
the evolution fitness criteria to calculate the true information value of each individual
during their interactions. Our proposed MODM, to achieve multiple objectives by
propagating a set of information with various evaluation criteria, to the best of our
knowledge has never been applied before. We perform extensive experiments to val-
idate the advantages of MODM on a real-world data set. The solution given by our
model, more realistically reveals the modeling of complex and nonlinear phenomena
of information exchange to affect the total information worth of each individual. The
experimental results show superiority of MODM over single information propagation
and single evaluation criterion.

The rest of the paper is organized as follows. We briefly describe related works
and their limitations in Sect. 2. In Sect. 3, we formulate the multi-objective diffusion
problem. Section 4 presents our proposed multi-objective diffusion model. In Sect. 5,
we analyze our experimental results to validate the effectiveness of MODM. Finally,
the conclusion and future work are presented in Sect. 6.

2 Related work

Smart models of information diffusion and influence maximization have been studied
in many different forms, for example, the transmission of political opinions and news
in political science [10], the diffusion of innovations in management science [11], the
value of novel information in organizational behavior [12], and the propagation of
obesity and smoking behaviors in public healthcare [13]. In the past, several models
have been introduced to simulate information diffusion through a network [14–17].
The linear threshold model [14] and independent cascade model [15, 16] are the most
widely used diffusion methods. In the linear threshold model [14] a node is influenced
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by each neighbor according to a given weight. Each node chooses a threshold value
uniformly at random from interval [0,1]; this represents the weighted fraction of
node neighbors that must become active in order for a node to become active. Given
a random choice of threshold and an initial set of active nodes, the diffusion process
unfolds deterministically in discrete steps. In step ‘t’, all nodes that are active in
step ‘t − 1’ remain active and activation of any node depends on the total weight of
its active neighbors that must be above threshold value. In the independent cascade
model [15, 16], the diffusion process starts with an initial set of active nodes and the
process unfolds in discrete steps according to the following randomized rule. When
a node first becomes active in step ‘t’, it is given a single chance to activate each
currently inactive neighbor. It succeeds according to a probability value. If a node
succeeds then its neighbors become active in step ‘t + 1’. Regardless of whether or
not a node succeeds, it cannot make any further attempts to activate its neighbors
in subsequent rounds. However, it requires the parameters that represent propagation
probabilities through links to be specified in advance.

A genetic algorithm based diffusion model [18] was introduced to combine the
advantage of a genetic algorithm paired with a form of Holland synthetic hyperplane-
defined objective functions for a parameter-free diffusion process. Chromosomes in
the genetic algorithm represented individuals in a network, and the crossover oper-
ator modeled the interactions between them. Information diffusion proceeded in the
crossover operation in all timestamps. During a crossover process, the tail of a chro-
mosome containing some information is replaced when the sum of information is
lower than that of the new tail. This causes the original information on the chromo-
some to be totally lost, although it may not conflict with the new incoming informa-
tion. The information value of each individual is calculated by adding the score of
each gene within a chromosome.

In order to create realistic models for diffusion process, it is important to train with
a true picture of the social interactions between individuals and the parameters that
affect the propagation process. In the cases of independent cascade and linear thresh-
old models, two kinds of data, a social network and probabilities to the edges cap-
turing the degree of influence among individuals, are required. For example, if edge
(v,u) has 0.45 probability that user ‘v’ influences ‘u’, then v’s action will propagate
to ‘u’ with a fixed probability. In real life, edge probabilities are not available for a
social network, so previous work either makes assumptions about these probabilities
or uses other heuristics to calculate them. This poses a big problem of estimating
this probability from the real data. GADM [18] proposed a parameter-free diffusion
process with the help of genetic algorithm and Holland hyperplane-defined function.
However, the methods described above use the diffusion process to achieve single
objective according to their domain of interest. That is why these methods are not ap-
propriate to find the optimized diffusion solution for more than one objective under
single diffusion process. Therefore, we propose a multi-objective diffusion model
(MODM) to achieve a multi-objective optimized diffusion process that represents
multiple types of information propagation with evolution fitness criteria to make the
diffusion process closer to real social networks.
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3 Multi-objective diffusion in social networks

A social network is illustrated as a graphical representation of interactions between a
set of vertices. Some famous social networks include online social networks, where
vertices are user accounts and edges represent friendships among accounts. Similarly,
in communication networks, vertices represent e-mail addresses or telephone num-
bers and edges represent e-mails sent or telephone calls with the time of interaction.
A typical social network tends to expand over time, with newly added nodes and
edges being incorporated into the existing graph with time intervals.

Definition 1 A dynamic social network G = (g1, g2, . . . , gT ), is a directed multi-
graph, where gi = (Vi,Ei) represents the bag of vertices Vi and edges Ei , at a partic-
ular time interval ti ∈ T . A node v ∈ Vi shows an individual and an edge (u, v) ∈ Ei

represents an interaction between two individuals during their communication.

The information propagation in any social network depends on the type of a dif-
fusion model. A diffusion model accepts as input a graph structure and state of every
individual at a time ‘t’. It returns a new state of the individual on time ‘t + 1’ ac-
cording to its interaction with other individuals. The process continues until all the
interactions between individuals are exhausted. The conventional diffusion models
can be roughly divided into two categories: (1) an independent cascade model [15],
and (2) a linear threshold model [14]. In both models, the diffusion process can be
regarded as a single-objective optimization problem (Ω,D) as described below.

Definition 2 Single-objective diffusion model determines a set of individuals I ∗ for
which

D
(
I ∗) = max

I∈Ω
D(I) (1)

where Ω is the a unit of information propagated among all individuals I in the net-
work G, and we assume D to be the objective function for optimization.

The single-objective diffusion models have been widely applied, as most conven-
tional diffusion processes [14–17] are based on this single-objective optimization
problem. However, they have several disadvantages. (1) The single-objective diffu-
sion models attempt to solve the problem of diffusion in unitary format to fulfill
a single criterion and thus optimize a network on one direction. (2) The diffusion
process based on a single objective may fail to maintain the monotonicity property
of information during individuals’ interaction. (3) Many single-objective algorithms
require some prior information about the influence of vertices in the form of edge
weights in the network; this influential information is mostly missing in real world
networks. (4) A single-objective optimization cannot optimize the multiple types of
information on one evaluation criterion. (5) A single-objective diffusion model re-
turned by single-objective algorithms may not be suitable for networks with multiple
potential diffusion measures. The difficulty in selecting an appropriate criterion in
single-objective diffusion model can be handled using a more natural approach that
considers the diffusion process as a multi-objective optimization problem which can
be defined as follows.
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Definition 3 Multi-objective diffusion model determines a set of individuals I ∗ for
which

D
(
I ∗) = max

I∈Ω

(
D1(I ),D2(I ), . . . ,Dm(I)

)
(2)

where Ω is a set of multiple types of information (e.g., news, gossips, rumors, and re-
ports) and m is the number of objective functions for evolution fitness criteria. In the
above equation Di represents the ith objective function of multi-information. Com-
pared to the single-objective diffusion process, the multi-objective diffusion process
has the following advantages.

• The optimal solution obtained by the multi-objective diffusion process defined by
(Ω,D1, . . . ,Dm) always contains the optimal solutions of the single-objective dif-
fusion process defined by (Ω,D1), . . . , (Ω,Dm).

• The multi-objective diffusion process can always find a set of individuals that are as
good as or better than those of the single-objective diffusion process. Most specifi-
cally, in some situations where the best solution corresponds to a trade-off between
different objectives, only the multi-objective diffusion process is able to find it.

• The multiple objectives can measure characteristics of a diffusion process from
various perspectives, and thus avoid the risk that a single objective may only be
suitable to a certain kind of information spread. Moreover, the multi-objective op-
timization process achieves a balance of the multiple objectives and can effectively
avoid being trapped in a single dimension of the diffusion process.

• The multi-objective diffusion model reveals network analysis from different an-
gles, which help to discover complex and comprehensive information diffusion
trends in social network.

4 The proposed multi-objective diffusion model

For the multi-objective diffusion problem, both mathematical programming and
heuristic approaches can be applied to solve it. In this paper we designed the Genetic
Algorithm (GA), a type of heuristic approach, to solve the problem of multi-objective
diffusion. Compared to mathematical programming techniques, GA has many advan-
tages [19, 20], such as simultaneously generating a set of candidate solutions and
easily dealing with a discontinuous and concave solution [19]. Conventional evolu-
tionary multi-objective algorithm is designed for numerical optimization problems.
When it is applied to the multi-objective diffusion, many components of GA need
to be redesigned. This is not a trivial task, because the design of these components
directly determines the desired output in terms of algorithm performance.

Concretely, the multi-objective diffusion process with GA faces the following
challenges: (1) Modeling of multiple types of information, it is a set of informa-
tion with different adoption and diffusion criteria, and (2) selection of optimization
evaluation criteria. The fitness functions should reflect the semantic characteristics of
individuals from different aspects, such as score, influence and diversity. Ideal fitness
functions have to better contain intrinsic conflicts, such that the optimal set of individ-
uals could be obtained through the trade-off of multiple evaluation criteria. (3) For
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Fig. 1 The proposed architecture of MODM

effective genetic representation, the genetic representation should be delicately de-
signed according to the characteristics of the diffusion process, since it determines
the algorithm performance and scalability to a large extent. We now show how the
multi-objective GA with binary string chromosomes and one-point crossover can be
used as the framework for a multi-objective diffusion model. For this purpose, our
proposed architecture is represented in Fig. 1. It has six major modules: (a) multiple
types of information, (b) schema generation, (c) population initialization, (d) infor-
mation history log, (e) evolution fitness criteria, and (f) GA stochastic operations. The
details of each component are described in subsequent sections, and the pseudocode
of MODM is shown in Algorithm 1.

4.1 Multiple types of information

Social networks empower and inspire multiple types of information with separate dif-
fusion processes based on their characteristics. In MODM we propagate three kinds
of information: (a) independent information, (b) mutually exclusive information, and
(c) competing information. The difference between these information types is as fol-
lows.

4.1.1 Independent information

Independent information spreads autonomously, without any constraint, and an indi-
vidual can hold many independent pieces of information. For example, information
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Algorithm 1: Multi-objective diffusion model

about different news is independent and can diffuse independently in the network
without any spreading constraints. In the healthcare domain, information about dis-
eases like diabetes, heart attack, stroke, and blood pressure is independent from each
other. In the cellular market, information about cell phones such as Android phones,
Apple phones, and Windows smart phones is also independent.

4.1.2 Mutually exclusive information

Unlike independent information, an individual can hold only one piece of information
from a set of mutually exclusive information. Upon selecting a piece of information
from mutually exclusive set, he automatically denies other pieces of information from
the rest of the set. For example, two music concerts are going to be held at the same
time (i.e., mutually exclusive), and an individual can choose only one to attend. Upon
selecting one concert, he denies the other. In the healthcare domain a patient can
choose between surgery or laser therapy (mutually exclusive) to cure his illness. In
the cellular market a user can choose between postpaid or prepaid connection with
his contact number.
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4.1.3 Competing information

Similarly to mutually exclusive information, an individual can hold only one piece of
information from a list of competing information. However, competing information
can be updated with certain constraints. For example, two music concerts are going
to be held at the same time, and an individual can attend only one. One concert
is popular among people, so when an individual knows both pieces of information
he would update his choice to the most popular one and inform others about it. In
the healthcare domain, usage of antibiotics is updated according to their ranking in
different seasons, side effects and environments. In the cellular market a user can
update his data plan according to recent cost effective and usability offers.

4.2 Schema generation

Schema is generated using well-known Holland’s hyperplane defined functions
(HDFs) [21]. Each schema is a set of binary values that gives flexibility in terms of
modeling multiple types of information with variations in bits of the schema, where
‘∗’ represents “don’t care” terms that are either zero or one. Schema generation be-
gins from simple binary strings and becomes more complex to second and third levels
by combing previous levels. Each schema string has a start position, length, encoding
and score which make one schema unique from others. The sample schema of each
information type is shown in Table 1. The encoding of independent information has
no constraints, while mutually exclusive information is a set of identically scored in-
formation with the same start and length positions. However, the encoding for each
piece of mutually exclusive information is different, so an individual can hold only
one piece of information from the whole set. Once an individual receives any mutu-
ally exclusive information, he cannot update it. In the case of competing information,
start and end positions are same with different objective score and encodings. From a
set of competing information an individual can choose only one piece of information
at a time that can be replaced according to its score in later timestamps.

4.3 Population initialization

In the GA population, each individual is represented with a binary chromosome of
length β to characterize its state during the diffusion process. This can be initially

Table 1 HDF based schema
generation Information type Start

position
Length Encoding Score

Independent 4 12 ∗ ∗ 11 ∗ 0001 ∗ 11 0.23

25 9 11 ∗ ∗001 ∗ 0 0.15

Mutually exclusive 17 7 1 ∗ 00 ∗ 01 0.14

17 7 1 ∗ 10 ∗ 01 0.14

Competing 15 10 0111 ∗ ∗1100 0.26

15 10 0110 ∗ ∗0100 0.36
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Fig. 2 A representative chromosome of length β = 20

chosen according to some random distribution. Each chromosome is a set of n pieces
of information, where each piece of information is represented by a short binary string
that is used to indicate its spread in a network. Depending on the initial state string,
each individual in the network knows certain types of information. A vector (x, y, l)
is used to describe a piece of information, where x is its start-point on a chromosome,
y is its score in the form of a real value between [0,1], and l is the length of the infor-
mation. If the length of the chromosome is β , then x + l ≤ β , x ∈ [1, β]. The sample
chromosome of length β = 20 is shown in Fig. 2 and contains two pieces of infor-
mation, I1(2,0.25,7), and I2(12,0.45,8). If a chromosome contains an encoding
of information, we say that the corresponding individual carries the corresponding
information. An objective value of a chromosome is the sum of all the scores of in-
formation it contains. The process of initialization is shown in Algorithm 1, lines 9
to 12.

4.4 Information history log

In addition to the score assigned by a schema to each information type, other impor-
tant aspects in the calculation of an individual’s information worth are the diversity
and influence of information. Information diversity is measured by the types of in-
formation retained by an individual in total, whereas the influence is determined by
the frequency of the information generated for each individual during the diffusion
process. For example, if someone receives the same information multiple times, the
chances of adaptation for that information are high compared to the information re-
ceived fewer times from the same neighbors. To keep track of the information flow
from time ‘t1’ to ‘tn’, information history log is maintained that records information
identity, type, score, and influence. After each information exchange among individu-
als, the information history log is updated according to the new incoming information
and influence frequency of the existing ones as shown in Algorithm 2. This facilitates
the evolution fitness criteria for calculation of an individual information worth based
on the spread of numerous pieces of information.

4.5 Evolution fitness criteria

The fitness criteria guide the search process to quantify the optimality of the diffusion
process. Keeping the maximum amount of information as a foundational quality by
assigning a relative importance to individual criteria of a fitness function is defined
as follows:

F(x) =
n∑

i=1

wifi(x) (3)
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Algorithm 2: Information history log

where x is an individual, F(x) is a combined fitness function, fi(x) is the ith evalua-
tion criterion, wi is a constant weight for fi(x), and n is the total number of evaluation
criteria. In order to combine multiple evaluation criteria into a scalar fitness function,
a weighted sum approach is defined. Our objective is to maximize all the individual
evaluation functions. In the proposed model, the evaluation criteria are score, influ-
ence and diversity of information. Score is the HDF generated value for each piece
of information. Influence is maintained in the information history log by keeping a
record of the number of times a piece of information was received by a particular in-
dividual. Diversity measures the total types of information retained by an individual.
More specifically, the evolution fitness criterion is defined as

F(x) = argmax
[
wscrf Score(x) + winf f Influence(x) + wdvef Diversity(x)

]
(4)

where

f Score(x) =
n∑

i=1

(score.infoi )

fInfluence(x) =
n∑

i=1

(influence.infoi )

f Diversity(x) = Count(info.)

wscr + winf + wdve = 1

If we use constant weights in (4), the search direction in genetic algorithms becomes
fixed. Therefore we propose a selection procedure with random weights to search for
optimal solutions by utilizing various search directions for each evaluation criterion.
In Eq. (4), F(x) is the weighted sum of all evaluation criteria that assigned multi-
objective score to one individual at time t .
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4.6 GA stochastic operations

At each time t that a pair of individuals interacts, they exchange information, which
is modeled by a crossover operation. A uniform crossover point c is selected at ran-
dom from the integer range [1, β]. Two new state strings Ofsp1 and Ofsp2 are created
by swapping the tails of interacting individuals, where the tail is defined as all posi-
tions including and following index c. For example, if the value of c = 2 is selected
randomly as crossover point, we exchange the bits around that point (00|101101 and
10|001011 produce 00001011 and 10101101). The idea here is that we are swapping
some alleles and the resultant bit-strings are the offspring to represent the information
exchange as shown in Algorithm 3.

If the edges in the social network are bidirectional, exchange of individual inter-
action roles is performed, and the crossover repeats. If there are multiple interactions
at the same time for a single individual, one of the middle chromosome generated in
each interaction is randomly chosen as a parent for crossover operation. This parent
will adopt all other information existing on the other offspring and bring benefit to
it. The multi-objective score of each new offspring is evaluated according to Eq. (4).
If any of the offspring has a higher multi-objective score than their parents, the cor-
responding parent’s state string is replaced in the next iteration. In the case of ties in

Algorithm 3: fGAOperation—GA stochastic operations
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Algorithm 4: fanmsCal—average normalized multi-objective score calculation

the multi-objective scores of the original and an offspring, the original state string is
retained as shown in lines 10 to 14 of Algorithm 3.

After the crossover operation, the multi-objective score of each individual is cal-
culated for a particular generation. The high score of an individual could be the re-
sult of its network characteristic or based on its randomly assigned initial values.
To avoid the latter bias, GA is repeated multiple times and the Average Normalized
Multi-Objective score (ANMO) is calculated for each individual to show his infor-
mation worth irrespective of the start of a diffusion process. We iteratively calculate
the value of ANMO till the end of diffusion process. In each interaction the value of
ANMO for each individual is updated according to his previous ANMO and recent
multi-objective score in current population. A previous ANMO value is normalized
with numbers of GA iterations and a new objective score is normalized with the max-
imum score of the network in current population. The complete workflow to calculate
the ANMO score is shown in Algorithm 4.

The stopping criterion for GA is either a fixed number of generations or conver-
gence to a predetermined threshold value. After performing all interactions among
all the individuals the convergence test guides the MODM to continue or to stop.

5 Results and evaluation

This section will validate the effectiveness of MODM through experiments on a real
social network. The goal of the experiments is to estimate the information value of
each individual over multiple random state initializations using HDF schema and in-
formation history log. This identifies whether all individuals receive the same ANMO
score as a result of their interaction or their score varies according to their relative
position and information processing capabilities in the network.

5.1 Data set description

MODM is applied on publically available Enron email data set [22]. It is the large
dynamic repository of e-mails of the former Enron Corporation where vertices repre-
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sent e-mail addresses and directed time-stamped edges represent interaction between
individuals. It has 84,716 e-mail addresses, 1,326,771 total timestamps, and 215,841
unique timestamps covering a period of approximately four years. Moreover, the out-
degree and in-degree of the network are in a power-law distribution.

5.2 Experimental setup

We start by generating the schema for each information type with their scores. In the
beginning, each individual is initialized with random binary values in chromosome.
During the interaction of individuals at each timestamp initial multi-objective score is
calculated. At the end of single iteration of GA, MODM processes all time-stamped
edges and the final multi-objective score of each individual is normalized relative
to the maximum multi-objective score in the population. We run multiple trials of
GA in order to avoid any biases caused by the random assignment of initial values to
individuals. At the end of diffusion process, the Average Normalized Multi-Objective
score (ANMO) of each individual is calculated to show the relative information worth
of whole population.

5.3 Results and discussion

In this section, we performed five experiments to show the usefulness of MODM in
comparison with: (a) single-information propagation, (b) single-evaluation criteria,
(c) weighted and neutral weight factor of evaluation criteria, (d) conventional net-
work measures, and (e) an existing approach GADM [18]. In all the experiments x-
axis represents the Average Normalized Multi-Objective Score (ANMOS) and y-axis
represents the Fn(ANMOS) that is defined as the proportion of individuals having
ANMO score. The details of the experiments are as follows.

5.3.1 Comparison of MODM and single-information propagation

To show the significance of MODM in comparison to single-information diffusion
process, we separately propagate each information type from a set of multiple types
of information. The evaluation criterion during this experiment is based on Eq. (4),
with equivalent weights. In Fig. 3a, the initial ANMO score of each information type
and MODM is illustrated. The similar diffusion curve for initial ANMO show the
similar start of diffusion process in all cases and depend on the inherent position
of the network. However, for the final ANMO score, the diffusion curves in Fig. 3b
show that MODM is better obtaining the maximum diffusion objective as compared
to individual information types. The diffusion curve of mutually exclusive informa-
tion is strongly clustered and shows no dispersion in the ANMO score maximization.
The diffusion process for competing information finished quickly while independent
information is better as compared to the other two information types. However, nei-
ther of them can reach maximum ANMO score. The result shows that MODM can
be applied to model the information exchange based on a single-information type.
However, the multi-objective design of the proposed model combined the benefits
of multiple types of information propagation in single diffusion process that demon-
strate the better information maximization during the diffusion process.
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Fig. 3a Initial ANMO score for MODM and single-information types

Fig. 3b Final ANMO score for MODM and single-information types

5.3.2 Comparison of MODM and single-evaluation criteria

In this experiment, we estimate the importance of MODM in comparison of single-
evaluation criteria. We propagated multiple types of information in the network, but
calculated their diffusion values based on single-evaluation criteria. In Fig. 4a, the ini-
tial ANMO scores are shown for all evaluation measures; again, the diffusion curves
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Fig. 4a Initial ANMO score for MODM and single-evaluation criteria

Fig. 4b Final ANMO score for MODM and single-evaluation criteria

are very similar to each other. This shows that no matter whether the experiment
is performed on information propagation or evaluation criterion, the initial ANMO
curves are highly clustered, and there is no information dispersion in the network.
In Fig. 4b, the diffusion curves in terms of the final ANMO score are illustrated
for all measures. This signifies the MODM capability to propagate the information
on single-evaluation criteria in addition to its original goal of achieving the multi-
objectives during the diffusion process. The influence measure has very low disper-
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sion; it means that the influence of the information is not changing rapidly during
the interaction of individuals. Diversity measure is better than influence, as infor-
mation history log helps in calculation of the diversity of each individual after each
interaction. The diffusion curve for score measure gets clustered after a certain limit;
however, it shows better performance than the influence and diversity measure. The
diffusion curve for MODM represents its similar start with other evaluation criteria;
however, it achieves the highest ANMO score at the end of the diffusion process that
represents its significance in getting the objective of information maximization with
high dispersion.

5.3.3 Comparison of evaluation criteria with weighted and neutral weight factors

This experiment shows the effects of weight factor attached to each evaluation cri-
teria in Eq. (4) of MODM. In order to give high importance to particular evaluation
criterion, its weight factor can be increased at the start of diffusion process. In this ex-
periment, first, multiple types of information are propagated by assigning the equiv-
alent weights (a neutral weight factor) to each evaluation criterion and then a higher
weight of 0.6 is assigned to each evaluation criterion while the remaining weight of
0.4 is equally distributed in other measures. Diffusion curves for weighted and neu-
tral weight factor are shown in Figs. 5a, 5b and 5c for score, influence and diversity
measures, respectively. The high diffusion curves for each evaluation criterion illus-
trate that giving a high weight to a particular evaluation criterion thereby created a
high importance in multi-objective optimization. The results of this experiment show
that the proposed MODM gives flexibility to users to assign a high importance of any
evaluation criterion in order to mold the diffusion process in the intended dimension
for the analysis of the underlying social network.

Fig. 5a Score comparison for weighted and neutral weight factor
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Fig. 5b Influence comparison for weighted and neutral weight factor

Fig. 5c Diversity comparison for weighted and neutral weight factor

5.3.4 Comparison of MODM and conventional network measures

In this experiment, we compare the ANMO score of MODM with five conventional
network measures: (a) Betweenness centrality: it is the centrality measure for each
vertex of network that quantifies the control of an individual on the communication
with others in a social network [23]. Individuals, who have a high probability to oc-
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Table 2 Correlation Comparison of ANMO score with network measures

Network measures ANMO score Out-degree In-degree Clustering coef. PageRank

Betweenness centrality −0.006 0.0073 −0.0143 −0.0255 −0.0051

PageRank 0.188 0.4242 0.8206 −0.0588 –

Clustering coefficient 0.146 −0.1136 −0.0387 – –

In-degree 0.418 0.6401 – – –

Out-degree 0.294 – – – –

Fig. 6 ANMO correlation with conventional network measures

cur on a randomly chosen shortest path between two randomly chosen individuals
for interaction, have high betweenness. (b) PageRank: it is a link analysis algorithm
that assigns a rank to each individual within the social network based on its impor-
tance in communication [24]. If an individual has a lot of links with other high degree
nodes then he is assigned high ranking. (c) Clustering coefficient: it is a measure of
the degree to which vertices in a social network tend to cluster together [25]. It quan-
tifies position of an individual in how close his neighbors are to form a complete
community. (d) In-degree shows the number of incoming edges, and (e) out-degree
represents the number of outing edges for communication. It is shown in Table 2 that
high ANMO score cannot be explained by conventional social network measures.
The correlations between ANMO score and other network measures are very poor as
shown in Fig. 6. Intuition might suggest that an individual who receives e-mail from
many people (an individual with high in-degree) would be an accumulator of infor-
mation with corresponding high ANMO score, but the correlation between ANMO
and in-degree is 0.41 which shows a week correlation. Some of the measures show
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Fig. 7a Initial Score of MODM and GADM

high correlation with each other, for example the correlation between in-degree and
out-degree is 0.6401. The highest correlation of 0.8206 exists between PageRank and
in-degree, however correlation between out-degree and PageRank is comparatively
low. This shows that ANMO score and most of the conventional network measures
are weekly correlated with each other so the high ANMO score in diffusion process
is not dependent on the conventional measures of network.

5.3.5 Comparison of MODM and GADM

This experiment shows the effectiveness of MODM in comparison of GADM [18],
which used an evolutionary algorithm to diffuse the information in the network as
a single-objective optimization problem. We kept the settings unchanged during the
experiments. In Fig. 7a, the diffusion curves for the initial score are presented, the
internal processing of both the models are different. Although upon beginning the
diffusion process both models show a similar state, initial scores are highly clustered
and there is no dispersion. Figure 7b shows the final score curves: the diffusion curve
of MODM started at the similar position of GADM, however MODM finished with
high information maximization in more dispersion as compared to GADM diffusion
curve. It shows that MODM outperforms the GADM in achieving a high diffusion
rate in terms of an information maximization objective.

6 Conclusion and future work

In this paper, we proposed a multi-objective diffusion model that propagates multiple
pieces of information with evolution fitness criteria by designing an evolutionary al-
gorithm. In order to propagate multiple types of information in one diffusion process,
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Fig. 7b Final Score of MODM and GADM

we model the set of information into a binary schema where each schema represents
one type of information with its associated score. Furthermore, we maintain informa-
tion history log for each individual to keep track of all incoming and outgoing infor-
mation in all timestamps. This helps to predict a more accurate class of information
diffusion by holding the monotonicity property about information. The information
value of each individual is calculated based on evolution fitness criteria for each in-
formation type. Evolution fitness criteria utilize the benefits of score generated by the
schema and information history maintained in the information history log. Our ex-
perimental results on a real-world data set show that our model is able to simulate the
rich class of diffusion model and predict the information flow in the multi-objective
environment. Finally, the results show that a few individuals in the network always
obtain a high information rank irrespective of the start of the diffusion process.

In the future, we intend to enhance the MODM with a more realistic class of
diffusion model to better understand the dynamics of diffusion process based on the
underlying network. We shall investigate the possible use of genetic programming to
learn about a diffusion model that matches an observed spread.
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