
Grid Access Middleware for Handheld Devices

Saad Liaquat Kiani1, Maria Riaz1, Sungyoung Lee1, Taewoong Jeon2, and
Hagbae Kim3

1 Computer Engineering Department, Kyung Hee University, Giheung, Yongin,
Gyeonggi 449-701, Korea

{saad, maria, sylee}@oslab.khu.ac.kr
2 Department of Computer & Information Science, Korea University, Korea

jeon@selab.korea.ac.kr
3 School of Electrical & Electronic Engineering, Yonsei University, Korea

hbkim@yonsei.ac.kr

Abstract. Grid technology attempts to support flexible, secure, coor-
dinated information sharing among dynamic collections of individuals,
institutions, and resources. The use of Grid services requires a resource-
ful workstation, specialized software installed locally and expert inter-
vention. Mobile handheld devices in general do not posses enough com-
putational and communication assets to meet the criteria for utilizing
the Grid infrastructure services. We present the design of a middleware
approach that aids handheld devices in this regard by wrapping the com-
putational and resource intensive tasks in a surrogate and shifting them
to a capable machine for execution1. Reduction in computational burden
at the handheld device is analyzed in a test scenario.

1 Introduction

Grid [1] computing harnesses the abundant spare, and sometimes dedicated com-
putational resources in a globally distributed computing environment and puts
them to effective and optimal use. Grid setup is clearly a value addition to any
organization, commercial or research. One of the main motivations behind the
Grid infrastructure is to provide ”a hardware and software infrastructure that
provides dependable, consistent, pervasive and inexpensive access to high-end
computational capabilities” [2]. Grid infrastructure has been put to use in ar-
eas like high energy physics [3], bio-medicine [4], aerospace and earth sciences,
health-care [5] etc and is continuing to evolve and expand. Similar technology
adoption trends are seen at the smaller scale. With ever decreasing costs and in-
creasing functionality of small sized chips, mobile handheld devices e.g., Personal
Digital Assistants (PDA) and smart phones, are becoming mainstream now. For
a mobile user, a PDA takes place of his home/office PC while he is on the move;
he can not only use the internet and check emails through wireless connectivity
but can also write documents, play games, find street maps, make reservations
1 This work is supported in part by the Korea Ministry of Information and Commu-

nications’ ITRC program in joint collaboration with ICU Korea.

at hotels and restaurants and perform similar utility tasks. A broad spectrum
of internet services has become available for a mobile user. Grid and mobile
computing however remain two disjoint phenomenons as yet, keeping users of
both technologies from utilizing some propitious mutual benefits. While mobile
elements will improve in absolute ability, they will always be resource-deprived
relative to their static counterparts (desktops/workstations). In [6], the author
argues that for a given cost and level of technology, considerations of weight,
power, size and ergonomics will exact a penalty in computational resources such
as processor speed, memory size, and disk capacity. These devices do not have
enough resources in effect to utilize the Grid services comprehensively. The po-
tential benefits of facilitating mobile devices in interacting with Grid services in
the numerous fields are:

– Health care: A physician submitting digital charts to mammography Grid
services [7] for analysis

– Emergency medical services: Submitting vital characteristics, medical his-
tory of a trauma patient to Grid services for identification

– Research: A physicist who needs to see graph plots of data produced as
a result of high energy collisions between atoms and sub-particles on his
PDA. The amount of information in data-stores, from which graphs are to
be generated, will be in the range of several gigabytes or even tera bytes

– Weather: Forecasting and analyzing local weather conditions, storm forma-
tions while on the move

– Geology: Geologists sampling rocks and terrain and using handheld devices
to submit data to Grid services for analysis

All these domains represent scenarios where a user wants to execute a re-
source intensive task at a location where computation resources are not available
at hand. With ever increasing mobility of users and greater adoption of hand-
held devices, job submission to the Grid through handheld devices presents a vi-
able solution for maximizing efficiency. Constraints that hinder handheld devices
from such interactions include limited network bandwidth, CPU power, memory
(small network buffers) and intermittent connectivity. Keeping the limitations in
mind, we aim to define a middleware approach that will allow handheld devices,
e.g. PDA units, to interact with Grid services while inducing minimal burden on
the device itself. We demonstrate a solution based on Jini Network Technology’s
[8] Surrogate Architecture [9] which provides a network framework in which a
device can deploy a client or a service on a device other than itself. Since we
are stepping in a new realm of Grid access through handheld devices, many de-
sign and performance challenges need to be considered and countered. In the
domain of Grid infrastructure, where services and data resources are replicated
across geographical boundaries [10, 11], communication costs can be minimized
by careful selection of intermediate network. The communication mechanisms
involved in job submission, execution and resource access are optimized at three
levels: 1) Selection of the host to which the device will submit the job/task for
execution, 2) Resource access by the surrogate during execution and 3) filtering

and optimization of intermediate results that are to be transferred to the de-
vice from the remote machine. One possible approach for facilitating handheld
device interaction with the Grid is to narrow down the criteria for Grid access
and make it less resource hungry; but doing so will also take away several ben-
efits. How can a resource constrained device be configured and supplemented
with software based techniques to make it Grid-interaction capable? A hand-
held device wishing to host a service and unable to do so can be allowed to
delegate this task to a relatively powerful machine (desktop, server). Conversely,
if the interaction with remote Grid services proves too much for limited local
resources of a handheld device, it can deploy the actual client functionality at
an intermediate machine and receive the results in a form that is in keeping with
its hardware resources. This second scenario has a greater probability of being
used in real world applications and is the focus of our research. The ’service’
or ’client’ process, transferred from the device, is called a ’surrogate’ (The term
’surrogate’ is used to describe an entity that performs some action on behalf
of another entity). The middleware component at intermediate machine, which
provides the execution environment and access to extensive resources for the
handheld device’s surrogate, is called the ’Gateway Surrogate Host’ or simply
’Host’. An interconnect mechanism, defined as ”logical and physical connection
between the surrogate host and a device” [12], also needs to exist. A handheld
device that can communicate over IP (wireless or wired) can be programmed to
shift its task processing to a host capable machine. An overview of our middle-
ware approach is presented in Sect. 2. Section 3 deals with the communication
mechanisms and the proposed optimizations in the middleware. Prototype imple-
mentation and test results are presented in Sect. 4. We conclude our discussion
in Sect. 5 and also list relevant related work.

2 The Grid Access Middleware Architecture

A handheld mobile device having wired/wireless connectivity can utilize the
functionality of its more capable computing peers for resource demanding tasks
such as Grid service access, with the device itself only managing less intensive
tasks like displaying the tailored results. The main concept driving our approach
is to shift the 1) access to generic Grid services and 2) intensive task processing,
from a resource constrained handheld device to a resource rich system (i.e. the
Surrogate Host). This is to be achieved by wrapping the access and processing
mechanisms in a ’surrogate’ module and transferring to the host. Consider the
example of a physicist provided in Sect. 1, where he needs to see graph plots, on
his PDA, of data produced as a result of high energy collisions between atomic
particles. The amount of information in data-stores from which graphs are to be
generated will be in the range of several gigabytes or even tera bytes. Analysis
of such data for the plotting of graphs is not a job for the handheld device.
Moreover, the handheld device may have reduced network bandwidth, further
diminishing the prospects of a successful remote analysis by the user. By utilizing
the Jini Surrogate Architecture based middleware support, one can ’pack’ the

functionality for data-stores’ access mechanisms and graph plotting routines in
a surrogate and transfer this surrogate to a host machine. The host machine will
provide the surrogate with necessary resource rich execution environment and
network connectivity. The surrogate is able to communicate back to the device
(PDA) through available interconnects e.g. IP, USB, Bluetooth etc. In this way,
the aforementioned tasks of service access and intensive processing can be shifted
from the handheld device to a more appropriate host machine, with the device
only managing less intensive tasks of displaying the tailored results returned by
its surrogate. Figure 1 shows the middleware framework which consists of three
distinct stacks deployed at the Gateway Surrogate Host, the Device and the
surrogate. These are discussed one by one in the subsequent paragraphs.

Fig. 1. Grid Access Middleware Stacks at the Device, Surrogate and Host

2.1 Gateway Surrogate Host

Major technical hurdles make it impossible for Devices to exploit the benefits
made available by the computational and data Grids, including the ability to ex-
ecute applications whose computational requirements exceed local resources and
reduction in job turn around time through workload balancing across multiple
computational facilities. Gateway Surrogate Host is the middleware component
that aids the Device to overcome these hurdles by accepting tasks, packed as
surrogates, for execution. The middleware provided at these hosts consists of
three main sub-modules. Host Adapter sub-module offers an interface to client
devices for accessing the Gateway Surrogate Host. It enables the initial commu-
nication between the device and the host so that both can agree on the transfer of

surrogate after authenticating the device and its corresponding surrogate. Once
the surrogate is available at the host, it is delivered to the Execution Engine
sub-module. It consists of a Surrogate Wrapper that exposes the functionality
of the surrogate that is required to facilitate surrogate’s execution at the host.
Dispatcher allocates a separate thread for the execution of the surrogate from
a thread pool and then activates the surrogate. Resources required for surro-
gates’ execution are resolved and handled by the Resource Manager module.
These include memory and disk space, JVM (form Java based surrogates, as is
the case with our implementation), network resources etc. The Access Gateway
sub-module provides interface to the external resources e.g. discovery of avail-
able Grid services and resources. A Gateway Surrogate Host announces relevant
attributes including, but not restricted to:

– ID, Location, Currently hosted surrogates etc
– Network address and Discovery/Listening port for incoming Device/Client

requests
– Available/Allocated Resources e.g. CPU, Memory, Storage, Network through-

put
– Environment e.g. Java VM availability and version, SOAP/WSDL [13, 14],

XML parser etc
– Grid services available through this Surrogate Host
– Proximity to service and client side

Advertising these attributes allows clients to locate appropriate hosts based
on their location, network proximity and other desired features. This is further
elaborated in section 3.1. Administrator of a host can restrict the number of
surrogates that are allowed to execute, restrict memory, bandwidth allocation
etc on per surrogate basis. Security policies can be configured based on pub-
lic/private key pairs and digital certificates. The Gateway Surrogate Host is an
extension of the basic Surrogate Host with added functionality for Grid access
through the Access Gateway. It overcomes the major technical hurdles that keep
the Devices from exploiting the benefits made available by the computational
and data Grids [13, 14] by providing an interface to the Devices on one hand
and to the Grid services on the other.

2.2 Device Stack

At the Device, a lightweight middleware stack is provided for facilitating coor-
dination with its exported surrogate. The stack consists of a Surrogate Handler
module which has three sub modules for providing services complementary to
the middleware at the Gateway Surrogate Host. Registration Handler discovers,
selects and registers with the Host, and transfers the surrogate. Once the surro-
gate is transferred, Keep Alive Monitor keeps track of the status of the surrogate.
Data Handler retrieves the results from the surrogate-side corresponding module,
and makes them available to the application executing at the device. Surrogate
to be transferred can be stored at the Device itself or at a URL accessible store
e.g. a web server or an FTP server.

2.3 Generic Surrogate

A generic surrogate for Grid service access contains the following features:

– Client authentication based on public/private key pairs
– Generic functionality to communicate and interact using WSDL/SOAP for

web service based Grid services
– Persistency safe i.e. to be put to persistent storage if its functionality is

periodic
– Migration - To be able to stop and save current execution, mark restore

points and migrate to a different Surrogate Host

Functionality of the generic surrogate is incorporated at the top layer of
the surrogate stack as shown in Figure 1, along with the specific logic of the
extended Surrogate. Moreover, the surrogate has complementary modules for
communicating with the middleware stack at the Device. The downloadable
Surrogate can be located in the file system of the Device or at a URL accessible
store e.g. a web server or FTP server. Some clients may be void of any Surrogates.
These clients/devices are still able to use other deployed surrogates if they can
provide valid credentials as rightful owner or users.

3 Discovery and QoS

There is a critical requirement for the clients/devices to be able to discover
available Gateway Surrogate Hosts. Absence of a discovery mechanism has the
potential to pose as a single point of failure. For reasons of efficiency and fault
tolerance, multiple discovery techniques are provided in the architecture. The
foremost method of discovery is multicast announcements from Gateway Surro-
gate Hosts. This automatically provides for locating ’nearby’ hosts to the devices
(as multicast is often geographically limited to a network boundary by most ad-
ministrators). HTTP based discovery is provided as a supplement. All available
Gateway Surrogate Hosts register with a web service hosted on a known location.
Client devices/applications can inquire about a particular host by submitting
appropriate parameters to this service over HTTP.

The surrogate paradigm will function most efficiently when the network de-
lays between the device/client and surrogate are minimal. Moreover, efficiency
also depends on the proximity of surrogate to the service being accessed. Since
the user may be mobile with respect to the Gateway Surrogate Host and Grid
resources, support is needed in the architecture to optimize the proximity based
parameters. Each Gateway Surrogate Host will keep track of its access qual-
ity towards known/available Grid service hosts/networks. On the other hand,
before deploying a surrogate, client side application can determine its network
connectivity and temporal efficiency with a specific host. This procedure poses a
certain one time per start-up burden, but offers better QoS relative to a scenario
where such optimizations are left to good luck.

4 Implementation Overview

The authors have provided a bare-bones implementation of the proposed ar-
chitecture. Before this design is tested for actual Grid service interaction, it
is necessary to validate its viability in a general scenario which involves con-
siderable CPU, memory and network utilization. Simple Network Management
Protocol [15] is a widely accepted and utilized way of monitoring network entities
and we have chosen to verify our approach by monitoring a remote server for
14 system statistics periodically, through a handheld device. Handheld device
has network connectivity through a wireless LAN interface. A desktop machine
is configured to act as a Gateway Surrogate Host. A Surrogate has been coded
for the handheld device with the functionality of monitoring the remote server
through SNMP queries and adjusting the results to be sent back to the De-
vice. The results of these queries are to be displayed at the handheld device in
the form of dynamic line, bar and pie charts/graphs. Performance of the device
and the impact of our executing system will be measured and the benefits and
shortcomings of the approach will be highlighted.

Fig. 2. (a) Main window of the client application executing on the device. (b) Remote
host’s CPU usage statistics by category (user, system, idle) over a period of time, as
seen on the device.

The Gateway Surrogate Host module has been implemented by modifying
and extending the Surrogate Host provided with the reference implementation
of Jini Surrogate Architecture specification. The extensions include addition of
useful attributes to be announced, additional discovery mechanism and addition
of an SNMP agent. IBM’s J9 VM for java is used to implement the surrogate

for the handheld device and contains classes which implement the task that
the Device wishes to execute. Moreover, it contains the ’device-to-surrogate’
interconnect implementation which, in the case of this scenario, is based on IP
Interconnect Specification.

4.1 Performance Measurements

Measurements taken to analyze the performance of the Device during the course
of execution are presented in Table 1.

Table.1. Result parameter count and size comparison at Gateway Surrogate
Host and Device

Query Type Number of val-
ues received at
Host

Intermediate
result size at
Host (bytes)

Number of
values sent
to Device

Result size
sent to Device
(bytes)

CPU Usage 22 132+ 3 24+2
CPU Avg. Load 3 24+ 3 24+2
HDD Utilization 12 48+ 3 16+2
RAM Utilization 17 68+ 3 16+2
Network I/O 2 16 2 16+2
Total 56 288+ 14 106

The size of result object depends on the type of values stored in the fields.
The 14 statistical values are received in 5 ’Result’ objects and amount to, on
average, 62 bytes of results per 5 seconds with additional 44 bytes after every
minute. An interesting comparison is made by considering the number of result
parameters and their size as retrieved by the surrogate (executing at the Gate-
way Surrogate Host) with the corresponding values at the Device. A significant
amount of information can be condensed by applying intermediate calculations
and filtration of values at the surrogate module.

It can be observed that the number of parameters is reduced by 75 percent (4
times reduction) when transferring results to the Device. Similarly, more than
64 percent of the data has been filtered out in intermediate calculations and
trimming at the surrogate. This performance markup is in addition to the com-
munication reduction achieved by careful selection of host machine and resources
access mechanisms throughout the surrogate’s lifetime, as explained earlier. The
burden on PDA has been reduced to a few hundred bytes of data and graph
formation.

5 Conclusion and Related Work

Research and development for facilitating handheld held devices to interact with
Grid services is in early stages. Signal [16] proposes a mobile proxy-based ar-
chitecture that can execute jobs submitted to mobile devices, in-effect making
a grid of mobile devices, but this approach may affect the fault tolerance of the

Fig. 3. (Left) Comparison between number of values at the Host and values sent to
the Device; (Right) Comparison between size of intermediate results at the Host and
size of results at Device.

system as the mobile device hosting the proxy also has to deal with the adverse
conditions of a mobile/wireless environment. Moreover, the proxy has to sched-
ule the jobs submitted to it by other mobile devices. In our case, the middleware
has far more resources at its disposal, so the scheduling can be more flexible
and concurrent. GridBlocks [17] builds a Grid application framework with stan-
dardized interfaces facilitating the creation of end user services. They argue that
SOAP usage at mobile devices may be 2-3 times slower than a proprietary com-
munication protocol, but the advantages of using SOAP (such as overcoming
device heterogeneity) may be far more profitable than its limitation.

A solution based on Jini Surrogate Architecture to access Grid services is
demonstrated in this paper. In the proposed approach, a resource constraint de-
vice wishing to access a resource-demanding service is allowed to delegate this
task to a relatively powerful machine (desktop, server). Specifically, CPU inten-
sive, network oriented tasks can be efficiently delegated to such systems when
network connectivity is available. In case of intermittent connectivity, applica-
tions and services requiring on-demand or periodic network access can benefit
from this approach. The implementation has been tested for a moderately inten-
sive task. We intend to extend and implement the architecture to interact with
existing Grid services and analyze the performance of our framework. These in-
clude HTTP discovery, client authentication, and surrogate migration support.
A notable constraints suffered by our approach include the requirement of Java
virtual machine at the device. Furthermore, at present we have not addressed the
notions of client/surrogate authentication and authorization and are the focus
of our future work.

References

1. Foster, I.: What is the Grid? A Three Point Checklist. In: GRIDToday (2002)
2. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure.

In: Morgan Kaufmann Publishers, San Fransisco (1999)
3. Bunn J., Newman H.: Data-intensive Grids for High-Energy Physics. In: Berman,

F., Fox, G.E., Hey, A.J.C. (eds.): Grid Computing: Making the Global Infrastructure
a Reality, Wiley (2002). 859-906

4. Hastings, S., Kurc, T., Langella, S., Catalyurek, U., Pan, T., Saltz, J.: Image
Processing for the Grid: A Toolkit for Building Grid-enabled Image Processing Ap-
plications. In: 3rd International Symposium on Cluster Computing and the Grid,
May 12 - 15, 2003, Tokyo, Japan.

5. Breton, V.: Health Grid. In: International Symposium on Grid Computing 2003,
Academia Sinica, Taipei, Taiwan (2003)

6. Satyanarayanan, M.: Fundamental Challenges in Mobile Computing. In: Proceed-
ings of the 15th Annual ACM Symposium on Principles of Distributed Computing,
Philadelphia (1996)

7. Amendolia, S.R., Brady, M., McClatchey, R., Mulet-Parada, M., Odeh, M.,
Solomonides, T.: MammoGrid: Large-Scale Distributed Mammogram Analysis. In:
Proceedings of the XV111th Medical Informatics Europe conference (MIE’2003). St
Malo, France May 2003. Volume 95 of Studies in Health Technology and Informatics,
pp 194-199 IOS Press, Amsterdam.

8. Sun Microsystems, Inc.: JiniTM Architecture specification.
http://www.sun.com/jini/specs/

9. Sun Microsystems, Inc.: JiniTM Technology Surrogate Architecture Specification.
http://surrogate.jini.org/sa.pdf (2003)

10. S. Vazhkudai, S., Tuecke, S., Foster, I.,:Replica Selection in the Globus Data Grid.
In: Proceedings of the first IEEE/ACM International Conference on Cluster Com-
puting and the Grid (CCGRID 2001), IEEE Computer Society Press,(2001) 106-113,

11. Lee, B., Weissman, J.B.: Dynamic Replica Management in the Service Grid. In:
High Performance Distributed Computing 2001 (HPDC-10”01), San Francisco, Cal-
ifornia (2001) p. 0433

12. Sun Microsystems, Inc.: JiniTM Technology IP Interconnect Specification.
http://ipsurrogate.jini.org (2001)

13. Lee, S., Gerla, M.: Dynamic Load-Aware Routing in Ad hoc Networks. In: Proceed-
ings of The Third IEEE Symposium on Application-Specific Systems and Software
Engineering Technology (ASSET 2000), Richardson Texas (2000)

14. Godfrey, B., et al.: Load Balancing in Dynamic Structured P2P Systems. In: IEEE
INFOCOM 2004, Addis Ababa, Ethiopia (2004)

15. Stallings W.: SNMP, SNMPv2, SNMPv3, and RMON1 and RMON2. 3rd Edition
Addison-Wesley, California (1999) 71-82

16. Hwang, P. Aravamudham Middleware Services for P2P Computing in Wireless
Grid Networks. In: IEEE Internet Computing vol. 8, no. 4, July/August 2004, pp.
40-46

17. Gridblocks project (CERN) http://gridblocks.sourceforge.net/docs.htm

