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Abstract The abundance of semantically related information has resulted in seman-
tic heterogeneity. Ontology matching is among the utilized techniques implemented
for semantic heterogeneity resolution; however, ontology matching being a computa-
tionally intensive problem can be a time-consuming process. Medium to large-scale
ontologies can take from hours up to days of computation time depending upon
the utilization of computational resources and complexity of matching algorithms.
This delay in producing results, makes ontology matching unsuitable for seman-
tic web-based interactive and semireal-time systems. This paper presents SPHeRe,
a performance-based initiative that improves ontology matching performance by ex-
ploiting parallelism over multicore cloud platform. Parallelism has been overlooked
by ontology matching systems. SPHeRe avails this opportunity and provides a so-
lution by: (i) creating and caching serialized subsets of candidate ontologies with
single-step parallel loading; (ii) lightweight matcher-based and redundancy-free sub-
sets result in smaller memory footprints and faster load time; and (iii) implementing
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data parallelism based distribution over subsets of candidate ontologies by exploiting
the multicore distributed hardware of cloud platform for parallel ontology match-
ing and execution. Performance evaluation of SPHeRe on a trinode (12-core) private
cloud infrastructure has shown up to 3 times faster ontology load time with up to 8
times smaller memory footprint than Web Ontology Language (OWL) frameworks
Jena and OWLAPI. Furthermore, by utilizing the computation resources most effi-
ciently, SPHeRe provides the best scalability in contrast with other ontology match-
ing systems, i.e., GOMMA, LogMap, AROMA, and AgrMaker. On a private cloud
instance with 8 cores, SPHeRe outperforms the most performance efficient ontology
matching system GOMMA by 40 % in scalability and 4 times in performance.

Keywords Ontology matching · Semantic web · Matching performance · Parallel
matching · Parallel programming · Cloud computing

1 Introduction

In the era of globalization and automation, integration of information has become a
key tool for providing knowledge driven services [29]. With the abundance of infor-
mation over the web, problems regarding information heterogeneity have emerged.
The heterogeneity is classified into two types: data heterogeneity and semantic het-
erogeneity [36]. Data heterogeneity has solutions based on data definitions, types,
formats, and precision [36]. Tools like the Microsoft Biztalk Server [49] are also
used for data integration and heterogeneity resolution as described in [48] and [28].
Semantic heterogeneity; however, involves data’s intend [36], making it a challeng-
ing opportunity for integration [29]. The volume of data makes manual annotation of
concepts unrealistic; consequently, automated solutions based on ontologies are used
by software agents [34]. The most prominent solution for semantic heterogeneity
resolution is ontology matching, which determines conformity among semantically
related ontologies. Mappings drawn from ontology matching can be further used in
information systems and database integration, e-commerce systems, semantic web
services, and social networks [30].

Effective ontology matching is a computationally intensive operation requiring
Resource-based matching algorithms (Name-based, Hierarchy-based, Annotation-
based, and Property-based) to be executed over candidate ontologies. As mentioned
in [35], ontology matching between two ontologies is a Cartesian product of all
the concepts and their relationships leading to quadratic complexity with respect to
ontology size. In case of medium (∼3,000 concepts) to large-scale (10,000+ con-
cepts) ontologies [35], computation and memory utilization peaks due to the size of
the ontology and relationships among its concepts. In our experiments on relatively
medium-size ontologies (Adult Mouse Anatomy [37] with anatomical part of the
NCI Thesaurus [57]), matching algorithms have taken 20 minutes to obtain desirable
matched results. Over very large ontologies (whole FMA [62] with whole NCI [40]),
executing matching algorithms have taken 3 days to produce desirable results. This
delay makes ontology matching ineffective for applications with in-time processing
demands like interactive semantic web systems and systems with intelligent infor-
mation retrieval tasks [58]. Apart from computation needs, memory requirements for
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matching operations are also higher. Matching algorithms evaluating over the rela-
tionships of concepts require concept-graphs in the main memory, producing mem-
ory strains in gigabytes during execution. During our experiments over whole FMA
with NCI matching, JVM heap crashes and out-of-memory errors have occurred quite
often, even with 2 GB of heap memory available.

Several ontology matching systems have emerged over the years. Primary moti-
vation of these tools is higher accuracy complemented by efficiency in terms of per-
formance; however, the core techniques for achieving better performance are either
related to the optimization of matching algorithms or the fragmentation of ontologies
for matching algorithms [35]. The performance improvement based on exploitation
of newer technology has largely been missing. Among these technologies are parallel
and distributed platforms available for utilization [56].

In earlier years, parallel and distributed platforms were associated with High-
Performance Computing (HPC) [47]; however, today’s commodity hardware is
equipped with multicore processors, enabling them to utilize individual cores as
virtual processors, providing hardware parallelism. A great resource of affordable
commodity-based hardware infrastructure is today’s cloud platform. Cloud comput-
ing [23] has recently emerged as a computing platform with reliability, ubiquity, and
availability in focus [22]. The utility of cloud as resource and service provider has al-
ready been investigated; however, the benefits of cloud’s commodity hardware based
distributed infrastructure are still overlooked [22]. Cloud being a collection of mul-
ticore processors and utility-based pricing model, can provide an affordable yet ade-
quately efficient hardware infrastructure that can be used for ontology matching.

The problems mentioned in the above experiments and the opportunity of afford-
able commodity infrastructure in the form of cloud provides the motivation for an
ontology matching system with components to perform parallel matching and ex-
ecution on distributed multicore processors. A performance driven initiative is re-
quired that can be used in interactive and semi-real-time semantic-based systems.
SPHeRe (System for Parallel Hetrogeneity Resolution) is one such initiative that ex-
ploits multicore distributed computation resources of our private cloud [23] for paral-
lel matching and execution; consequently, providing better performance. This paper
contributes toward performance aspect of SPHeRe.1 It scores better performance by:

• creating subsets of ontologies depending on the needs of matching algorithms and
caches them in serialized formats, providing a single-step ontology loading for
matching algorithms in parallel,

• each subset is lightweight due to matcher-based and redundancy-free creation, pro-
viding smaller memory footprints and contributing in overall system performance,

• implementing data parallelism [51] based distribution on subsets of candidate on-
tologies over multicore hardware and providing a collection of mappings among
the ontologies as a bridge ontology file.

SPHeRe uses storage services of a public cloud [23] provider for bridge ontol-
ogy delivery. Serialized subset creation and caching of candidate ontologies enables

1Accuracy aspect of SPHeRe is beyond the scope of this paper and has been catered in another publication;
however, accuracy with performance results for FMA with NCI ontology are presented in Sect. 5.
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SPHeRe to outperform Jena [3], and OWLAPI [19] by providing 3 times faster on-
tology load time and 8 times smaller memory footprint. SPHeRe’s data parallelism
based distribution exploits computational resources most efficiently and provides best
scalability in contrast with GOMMA [9], LogMap [16], AROMA [4], and AgrMaker
[1]. With respect to overall system performance, one our private cloud [23] infras-
tructure, SPHeRe outperforms GOMMA, most scalable and performance efficient
ontology matching system available by 40 % in scalability and 4 times in perfor-
mance.

The rest of the paper is organized as follows. In Sect. 2, we describe the re-
lated work in the field of ontology matching from the perspective of performance. In
Sect. 3, we describe our proposed methodology of SPHeRe. In Sect. 4, we present the
implementation details of SPHeRe’s components. Section 5 describes the experimen-
tation performed over a trinode private cloud for SPHeRe’s performance evaluation.
Section 6 discusses the parameters contributing to SPHeRe’s performance in contrast
with other OWL frameworks and ontology matching systems. Section 7 concludes
this paper.

2 Related Work

Ontology matching has been an area of interest for researchers in the last decade.
Many tools and techniques have evolved over the years. From techniques perspective,
considerable amount of research has been driven toward optimization of ontology
matching algorithms for better performance [35]. Consequently, various structural
partitioning approaches have emerged. Falcon-AO [39], a famous tool for ontology
matching proposes an effective divide-and-conquer approach called PBM [39]. Sim-
ilarly a segmentation approach called Anchor-Flood is proposed by [55]. However,
[39] and [55] does not benefit from the exploitation of newer hardware for ontol-
ogy matching. For better performance during ontology matching, implementation of
parallelism over multicore platform like cloud has been missed.

From the perspective of cloud and parallelism, a suggested solution can be the
use of cloud-based data-intensive parallel platform called Hadoop [2]. Hadoop with
its MapReduce [27] programming model, queries efficiently on distributed data. In
case of large-scale ontology matching, it may be considered a candidate technology
over cloud platform; however, the essence of performance efficiency in hadoop is
coupled with the amount of available data typically in gigabytes and terabytes [11].
The ideal size of a single chunk of data in Hadoop is 64 MB, which is relatively
equivalent to a single OWL file making an ontology too small to be distributed over
hadoop file system (HDFS) [11], inflicting performance degradation instead. More-
over, Hadoop with MapReduce is still to be equipped with an efficient RDF and OWL
plugin. Projects like Reasoning-Hadoop [17], Heart [12], and Hadooprdf [10] have
yet to prove their usability and performance.

Although there are many ontology matching systems available; however, we are
focused toward the ones explicitly built with performance as primary considera-
tion without trading off precision. From the results of 2012s intermediary Ontology
Alignment Evaluation Initiative (OAEI) campaign, i.e., OAEI 2011.5 [53], LogMap,
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GOMMA, and AROMA recorded the fastest time matching over multicore systems
with adequate precision. LogMap, GOMMA, and AROMA have been able to scale
from 1-core to 4-cores by reduction of 55 %, 53 % to 61 %, and 67 % respectively.
AgrMaker, however, with highest precision and reduction of 55 %, lags over perfor-
mance. Systems including CODI [5], MAPSSS [25], Lily [61], and CSA [59] with
very high reduction prove to be poor in scalability and underutilizing the computa-
tional resources. MassMtch [54] provides best scalability with reduction of 37 %,
produces fairly low precision. SPHeRe on the other hand equipped with its preci-
sion matching algorithm and explicit concurrency control for data parallelism, pro-
vides reduction of 32 % in scalability. This reduction rate proves that SPHeRe utilizes
computational resources most efficiently.

LogMap, as described in [41] and [21], claims as highly scalable ontology match-
ing system, yet it does not implement any parallelism. Their associated research
group has proposed a concurrent classification approach for reasoning over ontolo-
gies in [42]; however, its utilization in LogMap is not clear. In a MapReduce like im-
plementation, a stream of unclassified axioms is provided and classified as processed
or unprocessed. The implemented loop that can be concurrently executed, maintains a
container like data structure to store the unprocessed axioms; consequently, increas-
ing the size of the container overtime that may contribute to unnecessary memory
stress. This classification of axioms is further utilized by the matching techniques
described in [41]. This classification is beneficial with respect to reasoning and in-
ference, but from pure ontology matching perspective, this process is a performance
overhead.

AROMA, as described in [26], is a simple and adaptable ontology matching tool
which utilizes Knowledge Discovery in Databases (KDD) [31] model. AROMA it-
self does not implement any concurrency control; however, KDD discusses parallel
clustering technique for incremental discovery of rules and structures in [32]. A pre-
sumption can be driven that such an implementation might be utilized by AROMA,
which in fact contributes to its better reduction score, though [26] fails to mention
any parallelism or concurrency involved for the benefit of AROMA’s performance.

GOMMA, as described in [45], is one of the most performance efficient ontol-
ogy matching tools. After a detailed research, it is safe to say that to the best of our
knowledge, GOMMA is the only other system that utilizes multicore architecture for
ontology matching. GOMMA’s parallel matching and data partitioning techniques are
mentioned in [35] and [20], respectively. GOMMA proposes inter and intramatcher
parallelism, which utilizes parallel and distributed infrastructure to achieve better per-
formance for ontology matching. As mentioned in [35], limitations of intermatcher
include; varying complexity of matchers that might lead to slower performance than
expected and higher memory requirements as all matchers evaluate complete ontolo-
gies. For intramatcher parallelism, internal decomposition of matcher parts is exe-
cuted after loading and prior to matching. This partitioning is never persisted, leading
to redundant partitioning operations for every matching request of a particular ontol-
ogy. Ontology model utilized for this implementation is briefly explained in [35];
however, it fails to mention the model’s thread-safety and mechanism of population
from an ontology file.

SPHeRe in contrast with above mentioned systems, is an end-to-end parallel sys-
tem. It avoids unnecessary memory strains by creating lightweight matcher-based and



M.B. Amin et al.

Fig. 1 SPHeRe’s proposed methodology

redundancy-free subsets of candidate ontologies. It provides faster loading by caching
serialized subsets of candidate ontologies. It utilizes data parallelism based distribu-
tion for matching over available computational resources providing better scalability.
All these attributes collectively contribute to overall system performance.

3 Proposed Methodology of SPHeRe

SPHeRe is an implementation of computation intensive data parallelism, i.e., each
processing core performs ontology matching on a different piece of candidate ontolo-
gies. Matching algorithm executes across multiple cores and processors on a parallel
computing enabled cloud platform. For performance improvement, SPHeRe imple-
ments parallelism at operational level, i.e., ontologies are not only matched in paral-
lel, they are loaded, parsed, cached, and delivered in parallel too. Figure 1 illustrates
the multiphase design of SPHeRe’s execution flow and Table 1 describes the notations
used. From left to right, it can be seen that system’s execution has been divided into
3 phases: (i) loading and management; (ii) distribution and matching; and (iii) accu-
mulation and delivery. All phases are equipped with components to perform parallel
operations according to the requirements of the running tasks. This design eases the
development and addition of newer components by following the standard input out-
put interfaces among all the phases. Functionalities of each phase are described in
following subsections.

3.1 Phase-I, Loading and Management

Source (Os ) and target (Ot ) ontologies are provided to the system either by using
SPHeRe’s web-based UI or SPHeRe’s ontology matching web-service. These on-
tologies are loaded in parallel by multithreaded ontology load interface (OLI). OLI
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Table 1 Terminologies and Notations used in the paper

Notation Description

Os Source Ontology provided by the user for matching

Ot Target Ontology provided by the user for matching

Ox |x ∈ {s, t} Candidate Ontologies, set of ontologies to be matched

O ′
xC

|x ∈ {s, t}, O ′
xC

⊆ Ox Serialized subset of candidate ontologies, collection of
concept names

O ′
xH

|x ∈ {s, t}, O ′
xH

⊆ Ox Serialized subset of candidate ontologies, Hierarchical
data structure of concepts describing relationships

O ′
xL

|x ∈ {s, t}, O ′
xL

⊆ Ox Serialized subset of candidate ontologies, collection of
concepts with labels

O ′
xP

|x ∈ {s, t}, O ′
xP

⊆ Ox Serialized subset of candidate ontologies, collection of
concepts with properties

O ′
s = O ′

sC
∪ O ′

sH
∪ O ′

sL
∪ O ′

sP
· · · ∪ O ′

sn Parsed source ontology, serialized to be persisted in
ontology cache

O ′
t = O ′

tC
∪ O ′

tH
∪ O ′

tL
∪ O ′

sP
· · · ∪ O ′

sn Parsed target ontology, serialized to be persisted in
ontology cache

Oi Updated ontology instance to be serialized and
persisted in ontology cache

Ti Thesaurus instance to be used for matching

Ai Matching algorithm instance

Sw,m Word-match set

Mr Matched results, mappings between candidate
ontologies

Ob Bridge Ontology

O ′
b

Aggregated Bridge Ontology from various matching
algorithms and computing nodes

mc Control Message sent to participating nodes

is responsible for parallel loading of candidate ontologies (Ox ), OWL file parsing to
create object model (ontology model), and ontology model serialization and deserial-
ization tasks. Prior to any parallel matching, necessity is a performance friendly and
thread-safe ontology representation. Without such representation, data parallelism
over multithreaded execution in Phase II cannot be achieved. OLI’s parser owns this
responsibility by generating a thread-safe performance friendly ontology model ob-
ject. This ontology model facilitates our system with the following benefits. Firstly,
an ontology representation with the knowledge of total associated information an
OWL file is encapsulating (classes, class relationships, properties, axioms, and an-
notations). Distribution and matching phase effectively uses this knowledge while
task distribution. Secondly, an ontology representation with thread-safety by provid-
ing immutable objects in a multithreaded environment. Thirdly, division of ontology
into multiple subsets according to the needs of matching algorithms, preventing the
system from loading information not required for matching. This technique reduces
the memory strain, avoiding the possibility of JVM heap crashes during execution.
Fourthly, no file IO during matching phase, avoiding the huge performance bottle-
neck of accessing OWL files numerously during matching process. Lastly, reducing
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the size of ontology by removing redundant information and unnecessary data, cre-
ating smaller memory footprint. For example, the namespace URI is redundant over
an OWL file, keeping a single attribute in ontology model that stores the namespace
URI reduces the actual size of concept names, which are essentially used entities
while matching in Phase II.

After parsing the candidate ontologies, OLI invokes parallel threads of custom
serializer (described in [24]) for ontology model caching. A single ontology is serial-
ized into subsets based on matching algorithms. In current implementation, four sub-
sets of Ox are created: (i) collection of class names for name-based ontology match-
ing (O ′

xC ); (ii) hierarchical data-structure for relationship-based ontology matching
(O ′

xH ); (iii) collection of classes with their corresponding labels for label-based
ontology matching (O ′

xL); and (iv) collection of classes with their properties for
property-based ontology matching (O ′

xP ). All these serialized subsets are individ-
ually persisted in ontology cache. OLI’s parser and serializer only get executed when
a new ontology is provided by matching request, i.e., in case of O ′

s and O ′
t already

been available in ontology cache, Conditional System Flow I (illustrated in Fig. 1)
gets executed. Parsing and serialization steps are skipped until a massively updated
version of a previously serialized ontology is received. Ontology cache provides per-
sistence to serialized ontologies and their corresponding MD5 [52] hash values. OLI
verifies whether the ontologies have already been serialized by calculating the hash
values of candidate ontologies. In case of smaller partial updates, update manager re-
news ontology contents of serialized ontologies and persists update ontology instance
Oi in ontology cache. An Oi can be obtained following the strategies mentioned in
[43] and [44]. Multiple serialized versions of a particular Os and Ot are maintained
by ontology cache. In case of multiple SPHeRe nodes, ontology cache is replicated
over every node, keeping all nodes synchronized. O ′

s and O ′
t are loaded in paral-

lel by deserializer threads, providing a single-step ontology loading and feeding to
distribution and matching phase.

3.2 Phase-II: Distribution and Matching

Serialized subsets of source (O ′
s ) and target (O ′

t ) ontologies are loaded in parallel
by multithreaded ontology distribution interface (ODI). ODI is responsible for task
distribution of ontology matching over parallel threads (Matcher Threads). ODI cur-
rently implements size-based distribution scheme to assign partitions of candidate
ontologies to be matched by matcher threads. These threads can be running over
multicore or multiprocessor architecture on single and multiple computing nodes. In
a single node, matcher threads correspond to the number of available cores for the
running instance. In multinodes, each node performs is its own parallel loading and
internode control messages (mc) are used to communicate regarding the ontology
distribution and matching algorithms. A set of matcher threads is assigned by ODI
to execute matching algorithm instance (Ai ) over individual ontology partitions. ODI
also facilitates matcher threads with a thesaurus interface to assign thesaurus instance
(Ti ). Multiple dictionaries and thesaurus can be plugged into ODI via thesaurus inter-
face. SPHeRe is currently using word-net dictionary [60] and also provides an open-
end web-service interface to plugin web-based and remote dictionaries. Remote re-
sources; however, can result in bandwidth issues and inflict performance degradation
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for matcher threads as multiple http requests will be generated for an individual case
of possible concept matching. ODI also facilitates matching threads with a match-
ing algorithm interface. Multiple algorithms can be plugged into ODI via matcher
interface. Matcher threads are customized to use single and multiple matching algo-
rithms concurrently on O ′

s and O ′
t subsets. Matched results (Mr ) provided by matcher

threads are submitted to accumulation and delivery phase for creation and delivery of
bridge ontology (Ob).

3.3 Phase-III: Accumulation and Delivery

Ontology Aggregation Interface (OAI) accumulates Mr provided by matcher threads.
OAI is responsible for Ob creation by combining Mr as mappings and delivering Ob

via cloud storage platform. OAI provides a thread-safe mechanism for all matcher
threads to submit their matched results. After the completion of all matched threads,
OAI invokes Ob creation process which accumulates all the matched results in a sin-
gle Ob instance. In case of multinode distribution, OAI also accumulates results from
remote nodes after completion of their local matcher threads. Ob creation is cus-
tomizable from single Ob per matching algorithm to an aggregated bridge ontology
O ′

b from all matching algorithms running locally and remotely. In case of aggregated
O ′

b , OAI is also responsible for redundancy resolution among mappings drawn by
multiple matching algorithms. After the creation of Ob , it is delivered by utilizing
Storage-as-a-Service based cloud service platform. An active link (URL) is provided
for Ob to be shared or downloaded by the user.

OAI also persists Ob in ontology cache for future matching requests. For un-
changed Os and Ot matching requests, Conditional System Flow II (illustrated in
Fig. 1) gets executed. In this execution flow, loading and management, and distribu-
tion and matching phases are skipped and URL to Ob is provided to the user. This
mechanism prevents the system from performing redundant operations and preserves
memory usage and CPU cycles.

4 SPHeRe’s Implementation

This section provides the implementation details of SPHeRe. Its components imple-
ment several object-oriented design patterns [33] for high cohesiveness and minimal
coupling. Utilization of design patterns also contributes largely towards SPHeRe’s
extensibility and iterative development. To explain the working details, UML Class
Diagrams [46] and algorithms are used.

4.1 SPHeRe’s Ontology Model

SPHeRe’s Ontology Model is an object-oriented representation of an ontology file
(OWL). Ontology model’s design has been kept generic yet concise to support the re-
quirements of the system. It is reused by all phases of SPHeRe as it encapsulates the
OWL file by providing higher-level abstraction to ontology resources, annotations,
and axioms for matching algorithms. For correctness, expert evaluation of this on-
tology model has been done at design, implementation, and testing stages. Ontology
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Fig. 2 Ontology Model class diagram

model represents the object model for serialized subsets of candidate ontologies. Fur-
thermore, finalized bridge ontology is also serialized as ontology model by ontology
cache. Ontology model’s class diagram is illustrated in Fig. 2.

Ontologies are structures with an abstract root concept called Thing. All the re-
sources exist under the umbrella of Thing, which is defined, but not a usable con-
cept. The proposed ontology model follows the similar representation and provides
Thing object that aggregates triples of individual ontologies. ModelType enumeration
classifies a Thing object as collection of concepts, collection of concepts with anno-
tations, collection of concepts with properties, and a hierarchical data structure for
triples. For a single ontology file, subsets of ontology models exist simultaneously.
This technique stores redundant concepts in all subsets; however, a set of match-
ing threads will load the subset required by its matching algorithm. For distribution
and matching phase, ontology model provides accessor methods to all resources via
read-only interface preventing mutability for thread-safety, avoiding the possibility
of inconsistency in a multithreaded execution environment.

Resource, Property, and Concept implements Composite design pattern [33]. This
implementation facilitates Concept to mimic triples and Property to aggregate objects
of its own type, providing a self-containing-object data structure. Resource abstract
class is extended by Concept and Property object, which aggregates itself as subcon-
cepts and subproperties, respectively. Concept and Property object also provides iter-
ators to their respective associated instances, i.e., providing Concept with a concept
name will return the required Concept object, its subconcepts, annotations, axioms,
and associated properties. Annotation object encapsulates associated labels and com-
ments to Resource. Axiom object encapsulates associated constraints to Resource.

MatchedRecord represents a single matched result (concept names and similarity)
evaluated by matcher threads in Phase II. BridgeOntology contains a thread-safe col-
lection of MatchedRecord objects fed by individual matcher threads. OAI in Phase
III iterates over BridgeOntology object to create finalized Ob . Thing object is an
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Fig. 3 SPHeRe’s execution controller

aggregation to a single ontology; however, OModel object provides a higher level ag-
gregation over multiple ontologies (collection of Thing) and their corresponding Ob .

4.2 SPHeRe’s Execution Flow

To provide a flow sequence to systems execution, a workflow object called SPHeRe
Execution Controller (SEController) is implemented and illustrated in Fig. 3.
SEController is a shared object binding the communication between all three phases
(Loading and Management, Distribution, and Matching, and Accumulation and De-
livery) of the system. SEController is an implementation of Singleton design pattern
[33]. SEController is responsible for invoking OWL loading via OLI in Phase I,
distribution via ODI in Phase II, and accumulation and delivery of Ob via OAI in
Phase III. SEController also implements a socket server to send mc and receive Mr

from remote SPHeRe instances.

4.3 Loading and Management component

Class diagram for loading and management component (LMC) is described in Fig. 4.
Classes are packaged into two categories; (i) ontology loading and (ii) ontology man-
agement. Ontology loading package is responsible for parsing new ontologies into
ontology models, serializing, and deserializing them for distribution and matching in
Phase II.

SEController routes candidate ontologies to LMC via OLI. Utility class is used by
OLI to calculate hash values for candidate ontologies and match the values against
persisted ontologies hash values in ontology cache. If serialized versions of any
or both candidate ontologies are already present in ontology cache, OLI invokes
Deserializer object for loading O ′

s and O ′
t in parallel for distribution and matching

phase. Algorithm 1 for the owlLoad method describes this process.
In case of absence of serialized versions for candidate ontologies, Parser ob-

ject is invoked. Parser object has a composition relationship with ParserThread and
SerializerThread objects, i.e., parser and serializer threads are created with the cre-
ation of Parser object. Number of threads to be created for parsing and serialization
can be customized by request, by default it is the number of cores on an available
processor; however, a single thread parses a single subset of Ox . Parser object loads
the ontology in memory and assign parsing algorithms to parser threads via Parsable
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Fig. 4 Class diagram for loading and management component

Algorithm 1 Method owlLoad
Require: Os �= NULL and Ot �= NULL

Hashs ← Utility.calculateHash(Os)

Hasht ← Utility.calculateHash(Ot )

ontologyCache ← OntologyCache.getInstance()
parser ← Parser.createInstance()
if Hashs , Hasht !in ontologyCache then

parser.parse(Os , Ot )
parser.serialize(Os , Ot )

else
if Hasht !in ontologyCache and Hashs in ontologyCache then

parser.parse(Ot )
parser.serialize(Ot )

else if Hashs !in ontologyCache and Hasht in ontologyCache then
parser.parse(Os )
parser.serialize(Os )

end if
end if
deserialize(Hashs , Hasht )
return
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Algorithm 2 Method nameParser
Require: Ox �= NULL, x ∈ {s, t}

thing ← Thing.createInstance(url)
while Ox has classes do

concept ← OClass.createInstance(currentClassName)
thing.addConcept(&concept)

end while
return thing

Algorithm 3 Method labelParser
Require: Ox �= NULL, x ∈ {s, t}

thing ← Thing.createInstance(url)
while Ox has classes do

concept ← OClass.createInstance(currentClassName)
while currentClass has labels do

label ← Annotation.createLabel(labelName)
concept.addAnnotation(&label)

end while
thing.addConcept(&concept)

end while
return thing

Interface. Parsable is an implementation of Strategy design pattern [33]. Parsing al-
gorithms can be plugged according to the needs, adding to the agility, extensibility,
and customization of the system over time.

Four algorithms currently implement Parsable interface: (i) Name parser;
(ii) Hierarchy parser; (iii) Label parser; and (iv) Property parser. Name, Label, and
Property parser provide implementation by reading the class-names (described in Al-
gorithm 2), their labels (described in Algorithm 3) and properties (described in Algo-
rithm 4), respectively. However, the hierarchy parser implements multistep bottom-up
ontology parsing approach. All classes from the ontology are read with reference to
their parent classes. A class may not have a child; however, every class has a parent.
Parent class references are maintained by every class in the hierarchy. Algorithm 5
describes the implementation of hierarchy parser.

After parsing of candidate ontologies in ontology models, parser object forks se-
rializer threads to persist in parallel the serialized versions of ontology models in
ontology cache via OntologyCache object. OLI requests Deserializer object to in-
voke deserializer threads for loading the serialized subsets of Os and Ot from ontol-
ogy cache. SEController receives Os and Ot from OLI and passes them to ODI for
distribution and matching phase.

Ontology management package is responsible for partial updates in ontology
model over time. Instead of serializing the whole ontology for every slightest update,
UpdateManager receives the updated instances on candidate ontologies from OLI
and implements the change by: firstly, deserializing the candidate ontology; secondly,
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Algorithm 4 Method propertyParser
Require: Ox �= NULL, x ∈ {s, t}

thing ← Thing.createInstance(url)
while Ox has classes do

concept ← OClass.createInstance(currentClassName)
while currentClass has properties do

property ← OProperty.createInstance(propertyName)
concept.addProperty(&property)

end while
thing.addConcept(&concept)

end while
return thing

Algorithm 5 Method hierarchyParser
Require: Ox �= NULL, x ∈ {s, t}

thing ← Thing.createInstance(url)
while Ox has classes do

concept ← OClass.createInstance(currentClassName)
while currentClass has parents do

if !thing.exists(parent) then
parent ← OClass.createInstance(parentName)
thing.addConcept(&parent)

else
parent ← thing.getConcept(parentName)

end if
concept.addConcept(&parent)

end while
thing.addConcept(&concept)

end while
return thing

implementing the changed instance. A change can be an addition of new triple(s), up-
date in original triple(s), and deletion of triple(s) via Create and Delete objects; and
thirdly, serializing the updated ontology and placing it back into ontology cache. On-
tology management package implements the Command design pattern [33], which
facilitates the update manager to undo and redo ontology changes.

4.4 Distribution and Matching Component

Distribution and matching (DMC) component is responsible for distributing O ′
x over

available computational resources and invoking matching algorithms on them. The
class diagram of DMC is described in Fig. 5. O ′

x are fed to ODI that invokes
a distribution strategy from Distributable interface. Distributor object implements
Distributable interface and encapsulates distribution algorithm. Distributor object
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Fig. 5 Class diagram for distribution and matching component

currently implements static distributor based on ontology size (described in Algo-
rithm 6). Size-based partitioning is an optimal mechanism for distributing matching
tasks among available computational resources, as every resource gets an equal share
of workload. Distributor object and Distributable interface is an implementation of
Strategy design pattern, which increases the flexibility and extensibility of the system
by providing interface to add more distributor objects over time without propagating
changes.

Distributor object has two responsibilities: (i) Create matcher threads. Distributor
evaluates the current runtime for the availability of computation resources and cre-
ates multithreaded environment of matcher threads to execute. Each MatcherThread
records a MatchedResult object of ontology model in a thread-safe collection of
matched records in BridgeOntology object. (ii) Assign matching algorithms to
matcher threads. Distributor implements two design patterns, i.e., Abstract Factory
[33] and strategy to assign instances of matcher algorithms to individual matcher
threads.

Matching algorithms are implemented with two levels of abstraction, a fine grain
implementation of matching algorithms and a coarse grain aggregation of family
of matching algorithms based on utilization. Individual matching algorithms imple-
ment Matchable interface. Strategy pattern is again utilized here for systems flex-
ibility and extensibility. Plug-n-play nature of strategy pattern facilities the system
to add more algorithms for matching to improve accuracy. Coarse grain aggrega-
tion of individual algorithms is implemented via MatcherFactory (Abstract Factory).
Individual algorithms are classified into three categories; Primary, Secondary, and
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Algorithm 6 Method distributor
Require: start = 0, thingOne �= 0, thingTwo �= 0

cpuCount ← Runtime.getNumberOfProcessorse()
executorService ← Executors.newFixedThreadPool(cpuCount)
sizeOfOne ← thingOne.getSize()
sizeOfTwo ← thingTwo.getSize()
if sizeOfOne > sizeOfTwo then

big ← &thingOne
partitionSlab ← sizeOfOne/cpuCount
small ← &thingTwo

else
big ← &thingTwo
partitionSlab ← sizeOfTwo/cpuCount
small ← &thingOne

end if
for i = 0 to cpuCount do

SPAWN THREAD:
executorService.submit(start,partitionSlab,big, small)
start ← start + slab

end for

Complimentary algorithms. Primary family instantiates a set of algorithms that are
executed for every matching request that currently are; StringBased, LabelBased, and
ChildBased. Secondary family instantiates a set of algorithms that are executed by
request to dig deeper into ontologies for higher accuracy; this set currently includes
the PropertyBased, Synonym, and Hyponym algorithms. Complementary family in-
stantiates a set of algorithms that are executed by request in context with domain,
for example, two ontologies from medical domain have higher chances of match-
able concepts, so by executing complimentary set of algorithms might contribute in
the accuracy. These algorithms currently are Overlap and Polysemous. The research
findings for the accuracy of the different categories of matching algorithms are cur-
rently under review in another paper.

4.5 Accumulation and Delivery component

Accumulation and delivery component (ADC) is responsible for accumulating the
matched results, creating a corresponding Ob , and delivering it via cloud storage
services. Its class diagram is described in Fig. 6. OAI invokes Accumulator object to
create a corresponding Ob for candidate ontologies by reading matched records from
BridgeOntology object via OModel. Accumulator object writes Ob as a mapping file
and spawns a SerializerThread to store its serialized version in ontology cache for
future matching requests of same candidate ontologies. In parallel, the mapping file
object is returned to OAI for delivery via cloud storage services. SHPeRe is currently
using a public cloud storage provider Dropbox for Ob delivery. DropboxInterface
implements dropbox’s REST API for ontology delivery. A URL to the mapping file
of Ob is shared with the client via browser and email. In case of Ob already present
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Fig. 6 Class diagram for accumulation and delivery component

for candidate ontologies, Phase II and III are skipped and corresponding mapping file
is generated by Accumulator via DeserializerThread and is delivered via the same
process. Similar to candidate ontologies, bridge ontologies can also be updated by
UpdateManager in load and management component.

4.6 SPHeRe’s Deployment

SPHeRe can be deployed in single-node and multinode configurations. In single-node
configuration, deployment of SPHeRe is fairly straightforward, i.e., components, UI,
and web service as a single application instance. An ideal deployment of multinode
configuration is a cloud-based implementation that fully avails the distributed, yet
collaborative nature of cloud platform. SPHeRe is a SaaS-based service deployment
that currently uses the hybrid cloud [23] deployment model for ontology matching
and bridge ontology delivery; however, SPHeRe’s implementation is not bound to
hybrid cloud model only, any cloud-oriented distributed platform will be adequate
for SPHeRe’s deployment and execution.

Our current deployment model is illustrated in Fig. 7. SPHeRe is deployed in
multinode configuration on virtual instances (VMs) over a trinode private cloud
equipped with commodity hardware. Each node is equipped with Intel(R) Core(TM)
i7 CPU, 16 GB memory with Xen Hypervisor. For ease of description, in the rest of
the paper, term node is used to describe a running VM over a physical cloud node.
All nodes are equipped with complete deployment of SPHeRe components except the
user interface and web service, which are hosted over an Apache server on primary
node. Ontology cache is also replicated over each node via cloud-based file-system
synchronization services. For multinode configuration an initialization process is ex-
ecuted, which shares the connectivity information among the participating nodes.
Each running instance of SPHeRe creates a socket table with a Universal(ly) Unique
Identifier (UUID) and socket object of every participating node. These objects can
be used to send mc to the peers regarding ontology distribution and assignment of
matching algorithms.

SPHeRe’s agility facilitates the system to process under dual execution models;
(i) Stand-alone model in which matching requests are received by primary node, seri-
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Fig. 7 SPHeRe’s deployment setup

alized in parallel if required and synchronized with all available instances of ontology
cache. Sets of matcher threads are assigned with matching algorithm in each partic-
ipating node, with every node responsible for one or more bridge ontologies. Every
Ob corresponds to an algorithm executing over a particular node by multiple threads.
Each node is responsible for delivering their Ob to the client via dropbox. (ii) Contri-
bution model, similar to (i), except all participating nodes deliver their corresponding
bridge ontologies to primary node. Primary node accumulates these ontologies to
generate an aggregated O ′

b for delivery via dropbox.

5 Experiment

In this section, we describe the experimentation performed for end-to-end evaluation
of SPHeRe by matching FMA with NCI ontologies from OAEI 2012 as a concrete
example. We have used the cloud infrastructure illustrated in Fig. 7. Results drawn
from this experimentation are described in Table 2.

To evaluate SPHeRe, we have performed experimentation on small, extended and
full ontologies of FMA and NCI as real-world test cases. As SPHeRe implemen-
tation is performance focused by exploiting parallelism for its benefit, every compo-
nent during the execution flow contributes to performance efficiency by large. Table 2
provides results of individual components and overall system performance. For pre-
cision, end-to-end evaluation process has been repeatedly executed for 20, 10, and 5
times over small, extended, and whole versions of FMA and NCI ontologies respec-
tively.

For an end-to-end execution, SPHeRe has to perform four computationally ex-
pensive operations. First of these operations is to load the candidate ontology files,
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Table 2 FMA with NCI evaluation over SPHeRe

Parameter Small Ext. Whole

Component Performance Parsing Time 10.73 s 8.40 m 51.4 m

Loading Time 0.49 s 2.10 s 4.98 s

Matching Time 19.24 s 16.46 m 228 m

Accumulation Time 0.06 s 0.11 s 1.05 s

Overall Execution Time Regular System Flow 30.47 s 24.23 m 4.65 hr

Conditional System Flow I 19.73 s 16.83 m 3.80 hr

F-Measure Refined UMLS 0.857 0.739 0.710

Original UMLS 0.863 0.744 0.715

parse them to generate ontology model objects, and persist these objects as serialized
subsets. This operation is performed by LMC (Sect. 4.3). Maximum time taken by a
candidate ontology to be parsed into ontology model and serialized to ontology cache
is defined as the parsing time. In Table 2, the Parsing Time parameter represents the
time, taken by SPHeRe to perform parsing task over small, extended, and full on-
tologies of FMA and NCI. Parsing of both of the ontologies is done in parallel by
serializer threads.

Second of the above mentioned operations is loading of serialized subsets of can-
didate ontologies for matching algorithms. This operation is performed by DMC
(Sect. 4.4). Maximum time taken by a serialized subset of candidate ontologies to
be loaded in main memory is defined as the loading time. In Table 2, Loading Time
parameter represents the time taken by SPHeRe to load all serialized subsets of FMA
and NCI ontologies required by matching algorithms. Loading of these subsets is
done in parallel by deserializer threads.

Third of the above mentioned operations is to distribute the matching tasks among
multiple computational resources (cores) across the cloud platform. This operation is
also performed by DMC. Parallel matcher threads, assigned with instance of match-
ing algorithms, execute over designated partition of candidate ontologies. Maximum
time taken by these threads is defined as the matching time. In Table 2, the Match-
ing Time parameter represents the time taken by SPHeRe to distribute the subsets of
FMA and NCI ontologies over multicore cloud platform where each core is exploited
to perform parallel matching.

Last of the above mentioned operations is to accumulate matched results from
matcher threads running across cloud platform. These results are aggregated to cre-
ate the final bridge ontology. This operation is performed by ADC (Sect. 4.5). Time
taken to accumulate all results and persist them as bridge ontology is defined as the
accumulation time. In Table 2, Accumulation Time parameter represents the time
taken by SPHeRe to accumulate matched results of FMA and NCI ontologies; con-
sequently, creating bridge ontology and persisting it in ontology cache.

Time taken by individual operations is aggregated to measure the overall execution
time. In Table 2, Overall Execution Time parameter represents the end-to-end execu-
tion time of SPHeRe for a regular system flow. In case of Conditional System Flow I
(illustrated in Fig. 1), the execution time is improved as parsing operation is skipped.
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Execution time is largely improved in case of Conditional System Flow II (illustrated
in Fig. 1), as the computationally expensive operations of parsing and matching are
skipped and URL for already processed bridge ontology is delivered in a fraction of
a second.

From the perspective of accuracy, we obtained the results using large biomed
track provided by OAEI 2012 to calculate F-Measure. Table 2 describes SPHeRe’s
F-Measure on FMA and NCI ontologies calculated on refined and original UMLS
mappings. The results reflect SPHeRe’s primary algorithms such as StringBased, La-
belBased, and ChildBased, executed in parallel over cloud platform.

In this experimentation, we evaluated SPHeRe to resolve a real-world ontology
matching problem by executing over small, extended, and whole ontologies of FMA
and NCI. End-to-end evaluation has been performed over multicore cloud platform.
The results provided in Table 2, describe the performance of the individual compo-
nents and over-all execution time taken by SPHeRe. These results provide a concrete
proof of SPHeRe, evaluating over a concrete ontology matching problem. Further-
more, SPHeRe’s individual components implement parallelism to contribute toward
overall performance efficiency of the system.

6 Discussion

In this section, we discuss the evaluation of SPHeRe by conferring the contributions
of different aspects of SPHeRe’s implementation. For improved performance, com-
ponents from end-to-end execute in parallel and contribute in overall performance
by large. We evaluate the performance related aspects (loading, memory strain, and
matching) of SPHeRe over cloud infrastructure illustrated in Fig. 7 and discuss in
contrast with representative OWL frameworks and ontology matching systems. In
our experiments, we have considered three large scale ontologies, whole FMA with
78,989 concepts, whole NCI with 66,724 concepts, and small SNOMED CT [18]
with 49,622 concepts; and two medium scale ontologies Adult Mouse Anatomy with
2,737 concepts and anatomy part of NCI Thesaurus with 3,289 concepts as candidates
for SPHeRe’s benchmarking. These are the most widely used ontologies for bench-
marking and evaluating ontology matching tools. OAEI also uses these ontologies for
evaluation purposes. SPHeRe is evaluated against three types of experiments: (i) on-
tology’s load time and memory footprint; (ii) scalability; and (iii) parallel matching’s
performance.

6.1 Load Time and Memory Footprint Evaluation

In this subsection, we compare SPHeRe’s ontology loading time and memory foot-
print created by ontology model, against two most widely used OWL frameworks
Jena and OWL API. Whole NCI, whole FMA, and small SNOMED CT are used as
candidate ontologies for this evaluation. For precision during evaluation, loading pro-
cess has been repeatedly executed for 100 iterations over primary node (illustrated in
Fig. 7).

As mentioned in Sect. 3.1, SPHeRe has its own implementation of ontology
model, built for performance and thread-safety. Parser and Deserializer objects of
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loading and management component are equipped to parse OWL files and its seri-
alized subsets to populate ontology model. Already available and most widely used
Apache’s Java-based framework for semantic web applications Jena is equipped with
an ontology parser. Development of Jena is focused around its strongest component,
i.e., Inference API. To facilitate Inference API, all other components including the
parser are built for inference support. Jena provides an object model (OntModel);
however, firstly, due to its parser’s memory hungry implementation, overflow in JVM
heap while working with larger scale ontologies occurs quite often. During our stress
testing on Jena’s parser by loading FMA with NCI ontology for matching, JVM heap
crashes occurred even after providing a 2 GB of heap memory to the virtual machine.
Secondly, Jena’s OntModel and APIs are not thread-safe [6] resulting inconsistency
and throughput bottleneck issues for applications utilizing multithreaded execution
models. Concurrency in this respect can lead to reduction in performance instead.
Thirdly, Jena is built with graph-based OntModel, resulting an overload of not re-
quired information even for trivial operations like class retrieval. The cost of informa-
tion retrieval with respect to memory footprint and retrieval time in this regard is too
high [15]. These bottlenecks and implausible nature of Jena’s parser and OntModel
makes it ill-equipped to integrate with SPHeRe’s performance oriented parallel on-
tology matching techniques and provides a valid justification to continue research in
this regard.

Another available and most widely used framework for parsing OWL is OWL
API [38], which also provides an ontology model for information retrieval. Contrary
to Jena, OWL API and its ontology model has a lighter memory footprint and cost
of ontology loading and information retrieval is far efficient. OWL API can be an
excellent candidate; however, the ontology model for OWL API is also not thread-
safe [8], leading us to the options of either building a thread-safe ontology model with
an associated parser for parallelism needs or updating OWL API and its ontology
model for thread-safety. Although the first option enables us to have more control
over the model, its accessibility, and extensibility. We have an ongoing research for
the resolution of this aspect which includes evaluation of both techniques at different
scales. For our current implementation, we have created our own thread-safe ontology
model by using OWL API’s parsing components.

SPHeRe implements parallel loading for OWL files and their serialized subsets.
Figure 8 describes the loading time of serialized subsets of candidate ontologies in
parallel. The longest time taken is compared to the load time taken by Jena and OWL
API, described in Fig. 9. Loading time in this evaluation is the sum of time taken by
a system to load ontology in the memory and retrieve all of its classes. Performance
of class retrieve time is directly related to the time consumed over concept match-
ing, providing a significant impact on overall system’s performance. Because of the
subsets and serialized nature of SPHeRe’s ontology cache, it achieves better per-
formance to its comparable systems. SPHeRe only parses the candidate ontologies
for the first time. For every following matching request, SPHeRe uses the cached
candidate ontologies avoiding the re-parsing of OWL files. Results from Fig. 9 val-
idates that loading from cached serialized subsets take less time to load ontologies
and retrieve classes. This technique ensures that following requests for matching of
candidate ontologies will have better performance.
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Fig. 8 Ontology load time for
serialized subsets

Fig. 9 Ontology load time
comparison

For memory footprint experiment on same ontologies, results from SPHeRe, Jena,
and OWL API are described in Fig. 10. Memory footprint has been calculated by
measuring the difference between the amounts of free memory available in Java heap
after the ontology load. Java’s runtime library is used for this evaluation as described
in [7], [13], and [14]. SPHeRe’s cumulative memory footprint of all subsets is eval-
uated in contrast with memory footprint by Jena and OWL API. With the removal
of redundancy of information and classification of ontology into subsets, SPHeRe
produces up to 8 times smaller memory footprint than Jena and OWL API. This eval-
uation also complements to our remarks regarding the lightweight nature of SPHeRe,
giving the system an edge over the existing systems to be a better option for ontol-
ogy matching using commodity hardware and commodity hardware based distributed
systems like cloud platforms.
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Fig. 10 Memory footprint
comparison

Fig. 11 Scalability comparison

6.2 Scalability Evaluation

In this subsection, we evaluate SPHeRe’s scalability performance in contrast with
existing scalable ontology matching systems from OAEI 2011.5 campaign. For mea-
surement, as explained in [53], SPHeRe was executed over virtual instances with one,
two, and four cores; however, each with lesser memory (4 GB) in contrast with [53].
Figure 11 indicates the reduction rate achieved by SPHeRe when executing over 4-
core environment. Reduction value is computed by dividing the execution time on
four cores by execution time on one core. System with the best scalability will score
a value around 25 %. SPHeRe outperforms other scalable systems by scoring 32 %,
which is closest to the optimal value. SPHeRe outperforms the most scalable on-
tology matching system GOMMA by 40 %. For precision, this evaluation has been
repeatedly executed for 20 iterations.
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Fig. 12 Performance
comparison with GOMMA

Size-based partitioning of static distributor of SPHeRe is a major contributor in
achieving better scalability. This partitioning technique ensures that every matcher
thread gets equal share of tasks by distribution. Distributor invokes matcher threads
depending upon the runtime availability of the computing cores and assigns equal
number of matching tasks with matching algorithm instances among all the avail-
able matcher threads. Each matcher thread is responsible for ensuring the execution
of matching algorithm on its own partition, preserving the overall accuracy of the
system.

6.3 Performance Comparison with GOMMA

In this subsection, we evaluate SPHeRe’s performance against one of the most
performance efficient ontology matching system GOMMA. Figure 12 describes
SPHeRe’s overall performance results in contrast with GOMMA’s as presented
in [35]. GOMMA’s matching algorithms NameSynonym (NS), Children (CH), and
NamePath (NP) are compared with similar (in complexity) matching algorithms of
SPHeRe, i.e., StringBased algorithm that calculates similarity by measuring edit dis-
tance [50] between concept names, ChildBased algorithm that calculates similarity
by comparing children of concepts, and a specialized LabelBased algorithms that
calculates similarity over tokenized and normalized labels of concepts. Algorithms
of SPHeRe scaling from 1 up to 8 threads (= number of cores) outperform GOMMA
by 4 times. For precision, this evaluation has been repeatedly executed for 100 itera-
tions.

SPHeRe is able to achieve this performance by creating subsets of ontologies
and distributing these subsets over sets of matcher threads. This technique en-
ables a matcher thread to avoid loading information in the memory that is out of
matcher’s scope by loading only the information it requires. In complement, all
the subsets of ontologies are serialized and optimized to redundancy free ontology
model by SPHeRe’s ontology loading and management component, resulting in a far
smaller memory footprint and much faster information retrieval for matching. Un-
like GOMMA, these subsets are created depending upon the matcher algorithms and
cached, avoiding the repartitioning of ontology for the following matching requests,
providing a much efficient solution.
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Fig. 13 FMA-NCI matching
problem, performance
evaluation

6.4 Performance evaluation with respect to FMA-NCI matching problem

Performance evaluation of FMA-NCI matching problem is described in Fig. 13. All
primary algorithms (StringBased, ChildBased, and generic LabelBased algorithm
that compares the concept labels) are executed over multinode configuration, utiliz-
ing all 12-cores provided by our trinode cloud platform. In case of sequential access,
matching process takes around 25 hours to complete; however, by utilizing SPHeRe’s
scalability features (distributor and matcher threads), this time has been reduced to
couple of hours. In an optimal distribution over our tri-node cloud platform for this
problem, i.e., the distribution of 65 % of computation resources (8-cores) to Child-
Based matching algorithm, which is by far the highest in complexity, 25 % of the
computation resources (3-cores) to StringBased matching algorithm and 10 % of the
computation resources (1-core) to a generic LabelBased algorithm that compares the
concept labels, took less than 4 hours to complete the whole matching process. For
precision, this evaluation has been repeatedly executed for 5 iterations. Same prob-
lem has been considered as one of tasks evaluated by [53]. Systems have solved this
quicker than 4 hours; however, to the best of our knowledge the difference of per-
formance is because of the underlying hardware. As mentioned in [53], experiments
have utilized high-performance computational resources, equipped with 16 CPU’s
and 10 GB RAM. In contrast, our experimental setup is fairly primitive, evaluating
over commodity hardware of 3 CPUs only.

7 Conclusion and Future Work

In this paper, we presented SPHeRe, a lightweight, scalable, and performance effi-
cient ontology matching tool for commodity infrastructure of cloud platform. The
increasing interest in heterogeneity resolution by ontology matching over web-based
interactive and semireal-time systems, demands a performance-oriented lightweight
ontology matching tool that can exploit the low-cost yet effective computational re-
sources for its benefit. SPHeRe implements end-to-end parallelism across its exe-
cution flow. It provides better performance by caching redundancy-free lightweight
serialized subsets of candidate ontologies. These subsets are distributed by size-based
partitioning and matched by matcher threads executing in parallel over cloud-based
commodity hardware, i.e., multicore processors. We have benchmarked SPHeRe
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against various ontology matching systems and OWL frameworks. Our results have
shown that SPHeRe is able to achieve better performance to Jena and OWL API
in ontology loading with smaller memory footprint. Our results have also shown
that SPHeRe outperforms other ontology matching systems (AgrMaker, GOMMA,
LogMap, and AROMA) in scalability. In comparison with most performance effi-
cient ontology matching system GOMMA, SPHeRe is 40 % more scalable and pro-
vides better overall performance. SPHeRe has also been evaluated over commodity
hardware to evaluate over large-scale ontologies, whole FMA with whole NCI. By
evaluating in parallel, substantial performance improvement has been achieved by
SPHeRe over a cloud platform.

SPHeRe is an in-progress implementation with opportunity areas still under re-
search. We have initiatives working over the accuracy of matching algorithms, ontol-
ogy repositories with synchronization services, and several data partitioning schemes
for ontology distribution over parallel hardware. The outcomes of these initiatives
will be covered in future research papers. Further information regarding SPHeRe and
its progress are available at SPHeRe’s website, i.e., http://uclab.khu.ac.kr/sphere.
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