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Abstract Spectral clustering (SC) is currently one of the
most popular clustering techniques because of its advantages
over conventional approaches such as K-means and hierar-
chical clustering. However, SC requires the use of comput-
ing eigenvectors, making it time consuming. To overcome
this limitation, Lin and Cohen proposed the power iteration
clustering (PIC) technique (Lin and Cohen in Proceedings
of the 27th International Conference on Machine Learning,
pp. 655–662, 2010), which is a simple and fast version of
SC. Instead of finding the eigenvectors, PIC finds only one
pseudo-eigenvector, which is a linear combination of the
eigenvectors in linear time. However, in certain critical sit-
uations, using only one pseudo-eigenvector is not enough
for clustering because of the inter-class collision problem.
In this paper, we propose a novel method based on the de-
flation technique to compute multiple orthogonal pseudo-
eigenvectors (orthogonality is used to avoid redundancy).
Our method is more accurate than PIC but has the same
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1 Introduction

Clustering is an important task in data mining. It has many
applications in various fields such as image processing
[27, 30], social network analysis [21], biomedical data pro-
cessing [12], and signal processing [4, 13]. The function of
clustering is to identify the hidden structure inside the data
so that better representation, stronger and more flexible se-
curity, and smaller compression can be achieved. Clustering
is the task of dividing the data points into clusters so that
similar data points are grouped in the same cluster, and dis-
similar data points are grouped in different clusters.

Generally, conventional clustering algorithms can be
divided into two categories: hierarchical clustering such
as single linkage and CURE [34], and partitional cluster-
ing such as K-means. Hierarchical clustering algorithms
produce a hierarchy of nested clusters, whereas partitional
clustering algorithms directly output a one-level clustering
solution. However, K-means, the best-known method in par-
titional clustering algorithms, has limited accuracy when ap-
plied to nonlinear data, as shown in Fig. 1. Furthermore, it
can be trapped easily in a local optimal solution because of
random initialization [24].

To overcome the limitation of K-means, spectral cluster-
ing (SC), which is the focus of this paper, has been proposed
and developed. SC is the relaxation of the NP-hard normal-
ized cut problem in graph theory. Whereas K-means works
directly on data points, SC starts from an affinity matrix
that shows the pairwise similarity of the data points. It then
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Fig. 1 The K-means’ output on
nonlinear data, and the PIC’
limitation which is solved by
our proposed additional
pseudo-eigenvector.
(a) A 3-spiral dataset;
(b) the output of K-means;
(c) the pseudo-eigenvector
produced by PIC. The
horizontal axis represents the
indexes of all data points. The
vertical axis shows the
representative values of the data
points in the
pseudo-eigenvector. The data
points are sorted in a sequence
in which close data points are in
the same cluster. The
representative values of red
square cluster and black star
cluster are merged because of
the blue triangle cluster; (d) the
output of PIC using the PIC’
pseudo-eigenvector; (e) the
additional pseudo-eigenvector
produced by our method is
orthogonal to the PIC’
pseudo-eigenvector, hence the
square cluster and the star
cluster are totally separated;
Using (c) and (e), the exact
clustering solution (f) is found
(Color figure online)

computes the Laplacian matrix from the affinity matrix and
finds the eigenvectors from this matrix. The effort required
to compute the eigenvectors is relatively high, O(n3), where
n is the number of data points. Given the high computational
cost, several researchers have focused on developing fast SC
techniques (using the sampling method [3, 28, 32, 33, 36],
the Nyström method [5, 8, 38, 39], or the power iteration
method [16, 20]).

Among all fast SC techniques, power iteration cluster-
ing (PIC) [16] is not only simple (it only requires a matrix-
vector multiplication process), but is also scalable in terms
of time complexity, O(n) [17]. Using the assumption [22,
37] about the eigenvalues of the Laplacian matrix, instead

of finding all the k biggest eigenvectors, PIC can sim-
ply and quickly compute their linear combination to con-
struct a pseudo-eigenvector. Eigenvectors are mapping vec-
tors that transform all data points from a linearly insep-
arable domain into a linearly separable domain in which
data points in different clusters are most weakly connected.
A pseudo-eigenvector is not a member of the eigenvectors
but is created linearly from them. Therefore, in the pseudo-
eigenvector, if two data points lie in different clusters, their
values can still be separated. Different from the sampling
method and the Nyström method, PIC does not modify the
original data distribution; thus, no information is lost. Nev-
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ertheless, PIC has a limitation when dealing with multi-class
datasets, as shown in Fig. 1.

In this paper, we propose a novel algorithm that has bet-
ter accuracy than PIC in multi-class datasets and is nearly
equal in accuracy to that of the original implementation of
SC. More importantly, the computational time of our algo-
rithm is significantly smaller than that of the fast imple-
mentation of SC (i.e., SCIRAM [14]). Our contributions
are twofold. First, by using the deflation method, instead
of finding only one pseudo-eigenvector similar to PIC, we
find additional pseudo-eigenvectors with interesting proper-
ties. Similar to the PIC’ pseudo-eigenvector, each contains
useful information for clustering. Pseudo-eigenvectors can
be used together, and they are non-redundant because they
are mutually orthogonal. Moreover, the computational time
for finding each pseudo-eigenvector is as small as that for
finding the PIC’ pseudo-eigenvector. We also provide the-
oretical proofs for these properties. Second, we justify our
method by conducting experiments on various handwritten
digit, human face, document, and synthetic datasets. Specif-
ically, in clustering the sci topic of a 20-newsgroup dataset,
we improve the accuracy of PIC from 58 % to 69 % while
keeping the computational time 16 times smaller than that
of SCIRAM.

The rest of the paper is organized as follows. Section 2
discusses the related works. Section 3 presents the back-
ground of SC and PIC along with their limitations. Sec-
tion 4 outlines our algorithm, and Sect. 5 examines its per-
formance. Section 6 concludes the paper and summarizes
future research directions.

2 Related works

Sampling-based SC A large number of studies have been
conducted to reduce the computational time of SC. Most of
these studies used the sampling method to determine some
representative data points over the dataset [28, 32, 33, 36].
In particular, finding eigenvectors from n data points takes
O(n3). However, if we use sampling, the number of repre-
sentative points is k � n, and this time complexity is only
O(k3). One of the sampling-based SC techniques is pre-
sented in [36] in which Yan et al. also provide an end-to-
end error analysis for the method. In the first step, they use
K-means to find k centroids as k representative points. In
the second step, SC clusters these centroids together. In the
post-processing step, each data point is classified in the same
cluster with its centroid. The drawback of sampling-based
methods is that the sampling step may not properly detect
some representative data points for nonlinear datasets.

Nyström-based SC Another branch of fast SC research is
the Nyström method [5, 8, 38, 39] that uses the rank reduc-
tion technique. This framework involves three steps. First,

a sampling technique is used to select some data points. Sec-
ond, by using the affinity matrix between these data points
and all data points, the eigenvectors are found through the
low-rank approximation technique. The last step is extrap-
olating these eigenvectors to a full set of data points. Typi-
cally, the works are different in the first step in which the is-
sue is what sampling technique to use. The Nyström-based
methods have two drawbacks: the memory requirement is
high because a large number of high-dimension matrices
have to be stored, and the sampling method in the first step
may ignore all data points in a small cluster; thus, this cluster
cannot be detected.

Power iteration-based SC Our approach lies in the third
branch of fast SC algorithms. This direction is taken from
the assumption in data distribution [22, 37] that, if the
dataset has k clusters, the (k + 1)th eigenvalue of the
Laplacian matrix will be considerably larger than the kth.
The wider the gap is, the faster the algorithm converges.
Mavroeidis et al. [20] use this assumption to build a semi-
supervised power iteration-based clustering algorithm. Us-
ing supervised labels for several data points from the orig-
inal Laplacian matrix, they created a new Laplacian matrix
with a wider gap between the two eigenvalues. Although the
convergence time of this algorithm is significantly reduced,
the drawback is the high cost of obtaining supervised labels.

Dominant set clustering Similar to SC, dominant set clus-
tering [23] is a well-known clustering technique that utilizes
the affinity matrix. Specifically, from the affinity matrix,
without a normalization step like SC, dominant set cluster-
ing iteratively updates a vector that can be used to sequen-
tially filter out the most compact clusters. Generally, similar
to the rare class analysis [10], the dominant set method is
effective in finding a strongly connected cluster even when
it overlaps with other clusters. PIC, without the normaliza-
tion step, can also be used to sequentially detect rare classes.
However, we do not focus on this modified version of PIC in
this paper. The limitation of the dominant set method is that
only excessively compact data points can be obtained inside
the compact clusters [23].

3 Background

3.1 Spectral clustering

Assuming that we have a set of vectors X = {xi}ni=1 and
each xi is in Rd space, which represents a data point in a
dataset, we define a similarity function s(xi ,xj ) to show the
similarity between xi and xj . A matrix A = {aij }ni,j=1, and
each aij = s(xi ,xj ), is called an affinity matrix. We define
an affinity graph G as an undirected graph in which a vertex
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Fig. 2 PIC result for a dataset
of 3 classes in Fig. 1. (a) is the
initialization vector. (b) is the
iterative vector after 55
iterations. (c) is the iterative
vector after 108 iterations. (d) is
the constant vector after 5,000
iterations. Around the 108th
iteration is the local
convergence phase. Around the
5,000th iteration is the global
convergence phase. The
transition from the initialization
to the local convergence phase
is rapid (107 iterations), but the
transition from the local
convergence phase to the global
convergence phase is very slow
(4,892 iterations)

vi representing the data point xi . The weight of the edge be-
tween vi and vj represents the similarity between xi and xj .
The affinity matrix and the affinity graph can be sparse if
we consider only the similarity between a data point xi and
its t nearest neighbors while setting the similarity between
xi and the others to zero. We define the diagonal matrix D,
with Dii = ΣjAij , and the normalized affinity matrix W ,
with W = D−1A. The Laplacian matrix is computed based
on L = I − W , where I is the unit matrix.

The goal of SC is to divide the data into groups in which
the data points in each group have a similar property. SC has
several versions [22], but we focus only on the normalized
cut version in which SC is a relaxation of the normalized cut
problem in graph G. We find the k smallest eigenvectors of
L, which are also the k largest eigenvectors of W . Hereafter,
when we say k eigenvectors, we refer to the k largest eigen-
vectors of W . Based on these eigenvectors, we use K-means
to obtain the final SC result.

3.2 Power iteration clustering

Instead of computing k individual eigenvectors, PIC finds
only one pseudo eigenvector, which is a linear combina-
tion of the eigenvectors. Power iteration, a method to com-
pute the largest eigenvector of W , is the main technique in
PIC. This section describes the process of finding the largest
eigenvector of W and uses this process to find the pseudo-
eigenvector.

Initially, an iterative vector is set as equal to the random
initialization vector v0. In each iteration, the iterative vector
is updated based on the multiplication of W with itself. To
prevent the vector from becoming too large in each iteration,
we need a normalization step. Specifically,

vt = W ∗ vt−1, (1)

vt = vt /
∥
∥vt

∥
∥, (2)

where vt is the iterative vector. If there is no change between
two continuous iterations, the iterative vector converges to
the largest eigenvector of W . However, because W is a nor-
malized matrix, its largest eigenvector is a constant vector
that is useless for clustering [16]. Fortunately, Lin et al. [16]
found that the aforementioned iteration process to become
the largest eigenvector of W has two phases, as illustrated in
Fig. 2.

• In the first phase, if two data points are in different clus-
ters, their values in the iterative vector will be far apart.
Therefore, this iterative vector is useful for clustering.
This phase is called the local convergence phase, which
is reached at an extremely fast pace from the beginning.

• In the second phase, the iterative vector slowly becomes
the largest eigenvector, which is a constant vector. At this
time, the iterative vector is useless. This phase is called
the global convergence phase, which is reached at an ex-
tremely slow pace from the local convergence phase.
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Algorithm 1 Power iteration
Input: Normalized Affinity Matrix W .
repeat

vt+1 = (Wvt )/‖Wvt‖1.
σ t+1 = |vt+1 − vt |.
acceleration = ‖σ t+1 − σ t‖.
Increase t .

until acceleration < ε

Output: Pseudo-eigenvector vt .

To determine when the local convergence phase should
stop, [16] computed acceleration. When the acceleration
is smaller than the predefined threshold, the iteration pro-
cess is stopped. The most interesting property of the iter-
ative vector, if we stop the iteration process at the end of
the local phase, is its being a linear combination of the k

largest eigenvectors of W [16]. Therefore, we call this vec-
tor the pseudo-eigenvector. The details of the power iteration
of PIC are presented in Algorithm 1.

However, if we use PIC in the multi-class dataset, we will
have an inter-class collision problem. As reported in Figs. 1
and 2, if we use the iterative vector v at the 108th iteration,
we will not find which data points are in the red square clus-
ter and which data points are in the black star cluster. In the
following section, we show our solution to overcome this
problem. Although there are emerging trends about parallel
and distributed computing, we do not particularly design our
algorithm for the parallel or distributed environment. How-
ever, such special deployment is an interesting topic for fu-
ture research.

4 The proposed deflation-based power iteration
clustering algorithm

Given the inter-class collision problem, we cannot use
only one pseudo-eigenvector for clustering. We need more
pseudo-eigenvectors, which are not only useful for cluster-
ing (i.e., they can be a linear combination of the k largest
eigenvectors) but also do not contain redundant informa-
tion (i.e., they can be mutually orthogonal). Moreover, as
PIC is fast and requires simple computation and low mem-
ory, our algorithm must retain these advantages of PIC. To
achieve this goal, we use the deflation technique and PIC
together. We call our algorithm Deflation-based Power Iter-
ation Clustering (DPIC). In the following subsections, we
present the deflation technique and then describe the work
flow and properties of our algorithm.

4.1 Deflation technique

Deflation is a technique that modifies a matrix by elimi-
nating the effect of a given eigenvector. After deflation, all

eigenvectors of the modified matrix are the same as those of
the old matrix with similar eigenvalues. However, the given
eigenvector, which is used for deflation, will have a new zero
eigenvalue. Deflation is commonly used in sparse PCA [19]
when determining the eigenvectors of a covariance matrix.
Sequentially, we find the first eigenvector of this covariance
matrix and then eliminate its effect on the matrix through
deflation. Therefore, in the next step, the second eigenvector
that we obtain contains non-redundant information on the
first eigenvector.

A number of deflation techniques are used in [19] such as
Hotelling deflation, projection deflation, and Schur comple-
ment deflation. Schur complement deflation is used in this
paper because it is the only method that can ensure that the
outputs of our algorithm are mutually orthogonal pseudo-
eigenvectors.

Assuming that we have a matrix At−1 and its eigenvector
vt , the Schur complement deflation creates a new matrix At ,
which is computed by the following formula:

At = At−1 − At−1vtvT
t At−1

vT
t At−1vt

. (3)

The eigenvalue of vt on matrix At is zero because Atvt = 0,
indicating the elimination of the effect of vt on At−1 [19].

4.2 Deflation-based PIC

In this paper, we use Schur deflation to improve PIC ac-
curacy while ensuring that the time and memory complex-
ity does not change significantly. We propose a sequential
method to find k mutually orthogonal pseudo-eigenvectors,
where k is the number of clusters. First, from the original
affinity matrix W0, we still use power iteration as PIC to
find the first pseudo-eigenvector v1. Then, we apply defla-
tion to eliminate the effect of v1 on W0 to obtain the sec-
ond affinity matrix W1. From W1, we apply power iteration
again to obtain the second pseudo-eigenvector v2. Then, we
apply deflation again to eliminate the effect of v2 on W1.
This process is repeated k times. The flow of our algorithm
is presented in Algorithm 2. Our algorithm has the following
properties:

1. Each pseudo-eigenvector produced by our algorithm
(v1,v2, . . . ,vk) is a linear combination of the k largest
eigenvectors of the original affinity matrix W0, indicat-
ing that each pseudo-eigenvector is useful in clustering
the data. Proposition 2 proves this property.

2. These pseudo-eigenvectors are mutually orthogonal,
which means that they do not contain redundant infor-
mation about each other. Given the time it takes to com-
pute a new pseudo-eigenvector, we do not compute new
ones that contain redundant information about the old
pseudo-eigenvectors (e.g., the addition of old pseudo-
eigenvectors). The same idea is applied in PCA in which
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Algorithm 2 Deflation-based Power Iteration Clustering
(DPIC)

Input: Normalized Affinity Matrix W .
W0 = W.

repeat
vl = PowerIteration(Wl−1). //Power iteration: find vl

from Wl−1

Wl = Wl−1 − Wl−1vlvT
l Wl−1

vT
l Wl−1vl

. //Deflation: remove the ef-

fect of vl on Wl−1

Increase l.
until l > k

Use K-Means on pseudo-eigenvectors v1,v2, . . . ,vk .
Output: Clusters C1,C2, . . . ,Ck .

only orthogonal principle components are found to avoid
redundancy between the principle components. Proposi-
tion 3 proves this property.

3. The speed of computing every pseudo-eigenvector
(v2,v3, . . . ,vk) is the same as that of computing the first
pseudo-eigenvector v1. Section 4.4 justifies this property.

Note that the original normalized affinity matrix W has
eigenvectors x1,x2, . . . ,xn with the corresponding eigenval-
ues of λ1, λ2, . . . , λn. These eigenvalues are sorted in de-
scending order. References [22, 37] show that, if we have
k clusters, the first k eigenvalues will almost be equal, and
the gap between the kth and (k + 1)th eigenvalue will be
extremely large. Thus, to follow the proof more easily, we
assume that the first k eigenvalues are equal to λb. All the
remaining eigenvalues are equal to the (k + 1)th eigenvalue,
λs , which is considerably smaller than λb . (In reality, the
remaining eigenvalues are significantly smaller than λs , jus-
tifying the following proof.)

Moreover, note also that different datasets have differ-
ent eigenvectors and eigenvalues. Nevertheless, we have to
prove that the abovementioned properties are true regardless
of the datasets. Thus, we consider x1,x2, . . . ,xn, λb, λs as
variables.

Let F be a group of vectors. Each vector is a linear
combination of (x1,x2, . . . ,xk). Specifically, F = {c1x1 +
c2x2 + · · · + ckxk | ∀c1, c2, . . . , ck ∈ R}.

Let G be a group of vectors. Each vector is a multipli-
cation of λb with a linear combination of (x1,x2, . . . ,xk).
Specifically, G = {λb(c1x1 + c2x2 + · · · + ckxk) | ∀c1, c2,

. . . , ck ∈ R}.

Proposition 1 The following conditions are true for each
loop lth of DPIC:

1. Wl−1xi ∈ G, for i ≤ k,
2. Wl−1xi = λsxi , for i > k,
3. vl ∈ F .

Proof We will prove this proposition by induction on l.
These conditions are true for the first loop: W0xi =

λbxi ∈ G for i ≤ k; W0xi = λsxi for i > k; v1 ∈ F [16].
Assuming that these three conditions are true until the lth

loop, we will prove that they are true for the (l + 1)th loop.

1. For i ≤ k

We multiply both sides of the Schur equation with xi

Wlxi = Wl−1xi − Wl−1vl

(
vT
l Wl−1xi

vT
l Wl−1vl

)

. (4)

According to the lth loop, vl ∈ F . As a result,

vl = c1x1 + c2x2 + · · · + ckxk. (5)

We multiply both sides with Wl−1

Wl−1vl = c1Wl−1x1 + c2Wl−1x2 + · · · + ckWl−1xk. (6)

Each factor on the right side of (6) is in G so the left side is
in G. Therefore,

Wl−1vl = λb(e1x1 + e2x2 + · · · + ekxk), (7)

where eh ∈ R,∀h ≤ k.
Note that x1,x2, . . . ,xk are in norm 2 and are mutually

orthogonal [22], and that Wl−1 is symmetric. Therefore,
from (4), (5), and (7),

Wlxi = Wl−1xi − Wl−1vl

ei

c1e1 + c2e2 + · · · + ckek

. (8)

Both factors on the right side of (8) are in G. In sum,

Wlxi ∈ G, for i ≤ k. (9)

2. For i > k

Given that Wl−1xi = λsxi for i > k, from (4),

Wlxi = λsxi − Wl−1vl

(
vT
l λsxi

vT
l Wl−1vl

)

. (10)

Note that xi and xj are orthogonal for j ≤ k. Therefore,
from (5) and (10),

Wlxi = λsxi − Wl−1vl

(
0

vT
l Wl−1vl

)

= λsxi . (11)

From (11), we have

Wlxi = λsxi , for i > k. (12)

3. Computing vl+1



Deflation-based power iteration clustering 373

According to the (l + 1)th loop of Algorithms 1 and 2, to
compute the (l + 1)th pseudo-eigenvector, we start with a
random initialization vector:

v0 = d1x1 + d2x2 + · · · + dkxk + dk+1xk+1 + · · · + dnxn,

where dh ∈ R, ∀h ≤ n.
After running the power iteration on v0, where t is a large

number of iterations

vl+1 = (Wl)
t (d1x1 + d2x2 + · · · + dkxk)

+ (Wl)
t (dk+1xk+1 + · · · + dnxn). (13)

Considering (9), (12), we can derive the following from
(13):

vl+1 = λt
b × f+λt

s × (dk+1xk+1 +· · ·+dnxn), with f ∈ F.

(14)

Note that λt
s � λt

b , with t being large. The coefficient λt
b will

disappear after the normalizing step in Algorithm 1. There-
fore, vl+1 ≈ f and vl+1 ∈ F . �

Proposition 2 Each pseudo-eigenvector produced by our
algorithm is a linear combination of the k largest eigenvec-
tors of the original affinity matrix.

Proof The proof is straightforward based on the third con-
dition of Proposition 1. �

Proposition 3 The pseudo-eigenvectors produced by our al-
gorithm are mutually orthogonal.

Proof From the Schur equation on the lth loop of Algo-
rithm 2, we obtain

Wl = Wl−1 − Wl−1vlvT
l Wl−1

vT
l Wl−1vl

.

We multiply both sides with vl

Wlvl = Wl−1vl − Wl−1vlvT
l Wl−1vl

vT
l Wl−1vl

= 0. (15)

From the Schur equation on the (l + 1)th loop of Algo-
rithm 2,

Wl+1 = Wl − Wlvl+1vT
l+1Wl

vT
l+1Wlvl+1

.

We multiply both sides with vl . From (15), Wlvl = 0

Wl+1vl = Wlvl − Wlvl+1vT
l+1(Wlvl )

vT
l+1Wlvl+1

= 0. (16)

We prove this in the same manner as that in (15), (16), with
∀s ≥ l + 1. Therefore, we have

Ws−1vl = 0. (17)

From Algorithm 2, the pseudo-eigenvector of the sth loop is

vs = (Ws−1)
tv0, (18)

where v0 is the initialization vector and t is the number of
iterations.

Given that the Schur deflation preserves the symmetry
and using (17), we obtain

vT
l vs = (

vT
l WT

s−1

)

(Ws−1)
t−1v0 = 0. (19)

In sum, the DPIC’ pseudo-eigenvectors are mutually orthog-
onal:

vT
l vs = 0. �

4.3 Computational time for each DPIC’
pseudo-eigenvector

In this section, we show that the speed of computing each
DPIC’ pseudo-eigenvector is the same as that of computing
the first pseudo-eigenvector. From Algorithm 2, to find the
(l + 1)th pseudo-eigenvector vl+1, we perform the power
iteration on affinity matrix Wl . Similarly, to find the first
pseudo-eigenvector v1, we perform the power iteration on
affinity matrix W0. The structure of Wl is different from that
of W0, however, we will show that it takes the same time to
run the power iteration on them.

In general, the main computing cost of the power itera-
tion comes from a number of matrix-vector multiplication
steps between the affinity matrix and the current iterative
vector. Therefore, first, we show that the computational time
for each step between Wl and the iterative vector is equal to
that between W0 and the iterative vector in Sect. 4.3.1. Sec-
ond, we show that the number of steps for Wl is equal to that
for W0 in Sect. 4.3.2.

4.3.1 Computational time for each step of power iteration
for each DPIC’ pseudo-eigenvector

This section shows that the time to perform a matrix-vector
multiplication step between Wl and an iterative vector is
equal to that between W0 and the iterative vector. In Algo-
rithm 2, although W0 is sparse, all the other matrices from
the second loop are not. Consider the Schur complement for-
mula again:

Wl = Wl−1 − Wl−1vlvT
l Wl−1

vT
l Wl−1vl

.
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Indeed, even if W0 is sparse, W1,W2, . . . ,Wl are not. We
need O(n2) for a matrix-vector multiplication step if the ma-
trix is dense. However, if the matrix is sparse, this step will
only take O(tn) with t as the number of non-zero items in
one row of the matrix on average. W1 has two parts: the
sparse matrix W0 and the multiplication of two vectors:

p = W0v1

vT
1 W0v1

, qT = vT
1 W0.

Even if W1 is not sparse, we can perform the matrix-
vector multiplication on it quickly. Let us refer to the cur-
rent iterative vector as vc. Specifically, instead of multiply-
ing W1vc directly, we compute two factors W0vc and pqT vc

then perform subtraction:

W1vc = W0vc − W0v1vT
1 W0

vT
1 W0v1

vc = W0vc − pqT vc.

The computational time of pqT vc is O(n). The computa-
tional time of W0vc is O(tn). In this manner, the computa-
tional time for the W1vc multiplication is only O((t + 1)n)

≈ O(tn), which is almost equal to the computational time
for the W0vc multiplication. Based on this analysis, even if
the new affinity matrix is not sparse, after deflation, we can
guarantee that the speed of the matrix-vector multiplication
between the new affinity matrix and the iterative vector re-
mains unchanged.

4.3.2 Number of iterations for computing each DPIC’
pseudo-eigenvector

In this section, we point out that the number of matrix-vector
multiplication steps for computing each of our pseudo-
eigenvectors is equal to that of the first pseudo-eigenvector.
In other words, the number of iterations, t , for performing
the power iteration on the lth loop of Algorithm 2 is equal
to that in the first loop, ∀l ≥ 2.

From (14), vl = λt
b × f + λt

s × (dk+1xk+1 + · · · + dnxn),
∀l ≥ 1. Therefore, on the one hand, in the first loop, l = 1,
we can stop the iteration process with a sufficiently large
value of t to remove the second factor, as λt

s � λt
b. On

the other hand, in the lth loop, the value of t is equal to
that of the first loop because it is enough to make λt

s � λt
b .

Specifically, this value of t is chosen when the acceleration
is small, as in Algorithm 1. Therefore, we need the same
number of matrix-vector multiplication steps to find every
pseudo-eigenvector even though the matrices in each loop
are mutually different.

4.4 Time and space complexity of DPIC

As proved in Sect. 4.3, the computational time for each
of our pseudo-eigenvectors is equal to PIC’, which is

O(n) [17]. Therefore, according to Algorithm 2, for a
dataset having k classes, our algorithm computes k pseudo-
eigenvectors, with an overall time complexity of O(nk).
Currently, alongside the original SC, which is cubic in
time, is a fast implementation using the Implicitly Restarted
Arnoldi Method (SCIRAM), with a time complexity of
O(n2) [17]. Therefore, our algorithm is faster than SCI-
RAM and SC in general because the number of classes k is
much smaller than the number of data points n.

Our memory complexity is linear in space. To compute
pseudo-eigenvectors, first, we need to store one sparse ma-
trix whose size is O(nt), where t is the number of neighbors
for each data point. The sparse matrix is updated to compute
each pseudo-eigenvector. Second, we need to store one it-
erative vector that is O(n) in size. Third, two intermediate
vectors p and q, which cost O(2n), should be stored for each
pseudo-eigenvector. Therefore, the total memory required to
compute k pseudo-eigenvectors is O(n(t + 2k + 1)), where
t and k are small with respect to n. In our experiments, on
average, n, t , and k are 3123, 10.71, and 5.14, respectively.

5 Experiments

In this section, we conduct various experiments on realistic
and synthetic datasets to empirically justify the advantages
in speed and accuracy of our algorithm over some conven-
tional implementations of SC. Our computing system is In-
tel Core i5 2.53 GHz, 2 GB of RAM, Matlab R2008a, and
Windows 7. We compare DPIC with PIC and two versions of
SC. The first version is the original implementation SC [22]
which finds all eigenvectors and then selects k eigenvectors
with the largest eigenvalues. The second version is the fast
implementation SC called SCIRAM [14]. SCIRAM directly
approximates k eigenvectors without finding all eigenvec-
tors. Hence, the computational time of the second version is
significantly smaller than that of the first version. The fol-
lowing sections will briefly introduce these datasets.

5.1 Datasets

We use document, human face, and handwritten digit
datasets in our experiments to test our algorithm over a wide
range of domains. These datasets are as follows:

• The first dataset is the USPS handwritten digit [31] that
contains 9,298 images, each of which has a handwritten
digit from 0 to 9. Every image in this dataset measures
16 × 16 pixels. Therefore, each image is modeled by a
256-attribute vector. We use three datasets from USPS.
The first is USPS49 that contains 4 and 9 digit images;
the second is USPS3568 that contains 3, 5, 6, and 8 digit
images; the third is USPS0127 that contains 0, 1, 2, and 7
digit images.
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• The second dataset is a 20-newsgroup dataset [26], which
is a collection of 20,000 documents from 20 different
newsgroups. Some of these newsgroups are related be-
cause they have the same topic, and some are completely
unrelated. We use four datasets from the 20-newsgroup
dataset. The first is Newsa that covers the computer topic
including ms-windows, ibm-hardware, mac-hardware,
and window-x newsgroups. The second is Newsb that cov-
ers the rec topic including autos, motorcycles, baseball,
and hockey newsgroups. The third is Newsc that covers
the sci topic including crypt, electronics, med, and space
newsgroups. The last is Newsd that covers the talk topic
including guns, mideast, politics.misc, and religion.misc
newsgroups. Each document in these datasets is repre-
sented by a 26,214-attribute vector. Each attribute of this
vector is the frequency of a word in this document.

• The third dataset is the MNIST handwritten digit [1] that
contains 70,000 handwritten digit images from 0 to 9. The
dataset is divided into 60,000 training images and 10,000
test images. We select the first 10,000 training images for
the purpose of clustering in our experiment. We use three
datasets from MNIST. The first is MNIST49 that contains
4 and 9 digit images; the second is MNIST3568 that con-
tains 3, 5, 6, and 8 digit images; the last is MNIST0127
that contains 0, 1, 2, and 7 digit images.

• The fourth dataset is Reuters [15], a benchmark dataset
for document clustering. All documents in Reuters ap-
peared on the Reuters newswire in 1987. The dataset
contains 21,578 documents in 135 categories. After re-
moving documents from multiple categories, the dataset
contains 8,293 documents in 65 categories. We use one
dataset from this version that contains six categories,
namely, acquisitions, crude, trade, money, interest, and
ship. Each document in this dataset is represented by a
18,933-attribute vector.

• The fifth dataset is UMist [29], a dataset for the purpose
of human face clustering. The dataset consists of 575 face
images of 20 different persons in 20 labeled folders in-
cluding 1a, 1b, 1c, . . . , 1t . Each image is a grayscale
8-bit, 112 × 92 pixel image that shows the face of a per-
son in one view. Therefore, each image is represented by
a 10,304-attribute vector.

• The sixth dataset is Yeast in the UCI machine learning
repository that contains 1,484 labeled protein sequences
in 10 classes. Each protein sequence is described by one
vector having 8 attributes. We select one major class nu-
clear and three minor classes from Yeast, namely, extra-
cellular, vacuolar, and peroxisomal.

• The last dataset is TDT2 [2, 11], a collection of doc-
uments taken from different sources in 1998 such as
newswires (e.g., APW and NYT), radio programs (e.g.,
VOA and PRI), and television programs (e.g., CNN and

ABC). The dataset contains 11,201 documents in 96 cat-
egories. After removing documents from multiple cat-
egories, the remaining documents total to 9,394 in 30
categories. We select 4,981 documents in six categories
with corresponding labels, namely, 20015, 20002, 20013,
20070, 20044, and 20076. Each document in this dataset
is represented by a 36,771-attribute vector.

The detailed information on our datasets is listed in Table 1.

5.2 Evaluation measure

We use three measures, namely, purity, normalized mutual
information (NMI), and rand index (RI), to evaluate clus-
tering performance. These measures calculate the similarity
between the result of each clustering algorithm and the exact
clustering solution of the dataset. By using these measures,
we can determine how well each clustering algorithm per-
forms on a dataset and compare their performances. These
metrics are widely used to measure clustering quality [3, 12,
16, 25, 32, 35].

5.2.1 Clustering purity

Each cluster in the predicted clustering result is reassigned
to the exact label that is most frequent in the cluster to
compute for the purity. Then, we count the number of cor-
rectly assigned data points. After summarizing, we divide
this number by the number of all data points in the dataset
to obtain the clustering purity. Specifically,

purity(Ω,C) = 1

N

∑

k

max
j

|wk ∩ cj |, (20)

where Ω = {w1,w2, . . . ,wk} is the predicted clustering re-
sult, and C = {c1, c2, . . . , ck} is the exact clustering solution.
The larger the purity, the better the algorithm performance.
The largest value of purity is 1, and the smallest value is 0.

5.2.2 Normalized mutual information

NMI is a popular information theory measure used to eval-
uate the clustering quality. If we have two random variables
X and Y, the NMI between them is computed as follows:

NMI(X,Y) = I (X,Y)√
H(X)H(Y)

, (21)

where I (X,Y) is the mutual information between X and Y;
H(X) and H(Y) are the entropies of X and Y, respectively.
The mutual information between X and itself is 1. The larger
the NMI, the better the performance. Specifically, NMI can
be computed as

NMI =
∑c

l=1
∑c

h=1 nl,h log(
n×nl,h

nl n̂h
)

√

(
∑c

l=1 nl log nl

n
)(

∑c
h=1 n̂h log n̂h

n
)

, (22)
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Table 1 Detailed information on our datasets. For each dataset, the number of data points n, the data dimensionality d , the number of classes c,
the class distribution, and the class label are provided

Dataset n d c Class distribution Class label

USPS0127 4,543 256 4 1,553/1,269/929/792 0/1/2/7

USPS3568 3,082 256 4 824/716/834/708 3/5/6/8

USPS49 1,673 256 2 852/821 4/9

MNIST0127 4,189 784 4 1,001/1,127/991/1,070 0/1/2/7

MNIST3568 3,853 784 4 1,032/863/1,014/944 3/5/6/8

MNIST49 1,958 784 2 980/978 4/9

Newsa 3,918 26,214 4 985/982/963/988 ms-windows/ibm-hardware/
mac-hardware/window-x

Newsb 3,979 26,214 4 990/996/994/999 autos/motorcycles/baseball/
hockey

Newsc 3,952 26,214 4 991/984/990/987 crypt/electronics/med/space

Newsd 3,253 26,214 4 910/940/775/628 guns/mideast/politics.misc/
religion.misc

Reuters 3,258 18,933 6 2,055/321/298/245/
197/142

acquisitions/crude/trade/
money/interest/ship

TDT2 4,981 36,771 6 1,828/1,222/811/
441/407/272

20015/20002/20013/
20070/20044/20076

Yeast 514 8 4 429/35/30/20 nuclear/extracellular/
vacuolar/peroxisomal

UMist 575 10,304 20 38/35/26/24/26/23/19/
22/20/32/34/34/26/30/
19/26/26/33/48/34

1a/1b/1c/1d/1e/1f/1g/
1h/1i/1j/1k/1l/1m/1n/
1o/1p/1q/1r/1s/1t

where nl is the number of data points in cluster ωl of the
predicted clustering result, n̂h is the number of data points
in cluster ch of the exact clustering solution, and nl,h is the
number of data points in the intersection between cluster ωl

and cluster ch.

5.2.3 Rand index

RI is a measure used to compute clustering quality based on
counting the pair of data points that both the predicted clus-
tering result and the exact clustering solution agree and dis-
agree that the two data points are in the same cluster. Specif-
ically, we assume that the exact clustering solution of the
dataset is C and that the predicted clustering result of the
dataset is Ω . If the size of the dataset is N , then the number
of data pairs is N(N − 1)/2. Assume that N00 is the num-
ber of pairs that are in different clusters in both C and Ω and
that N11 is the number of pairs that are in the same cluster
in both C and Ω . RI can be computed as follows:

RI = 2 × (N00 + N11)

N(N − 1)
. (23)

The larger the RI, the better the clustering result.

5.3 Parameter setting and experiment process

We need to address two parameters to use SC as mentioned
in Sect. 2. The first parameter is k, the number of classes,
which is required for all algorithms including PIC, DPIC,
SC, SCIRAM, and K-means. We manually set this parame-
ter to the true number of classes for each dataset.

The second parameter is t , the number of neighbors for
each data point. If t is too small, the connectivity inside each
cluster may be lost. Otherwise, if t is too large, separate clus-
ters may be merged. Therefore, we describe how to choose
t as follows. For each dataset, we perform a pre-experiment
by running SC with t selected from {5, 15, 25, 35, 45, 55,
65, 75}. Then, we select the value of t which maximizes the
purity result of SC. Finally, with selected t , we report the
computational time, purity, NMI, and RI for remaining al-
gorithms. The details of the experiments when t is varied for
SC are shown in Fig. 3. The performances of all algorithms
with the optimal t are reported in Tables 2, 3, 4, and 5.

In all the experiments, we use the cosine measure that
calculates the similarity between two data points xi and xj

as follows:

s(xi ,xj ) = xT
i .xj

‖xi‖‖xj‖ . (24)
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Table 2 Computational time
(in milliseconds) results for PIC,
the proposed DPIC, SCIRAM,
and SC

Dataset PIC DPIC SCIRAM SC

USPS0127 36 227 1,558 278,810

USPS3568 16 121 859 85,845

USPS49 15 39 222 15,922

Newsa 36 242 5,532 161,133

Newsb 39 246 3,166 168,413

Newsc 40 259 4,052 161,539

Newsd 27 261 2,341 97,768

MNIST0127 24 163 861 203,674

MNIST3568 26 187 2,315 170,492

MNIST49 10 30 368 25,672

Reuters 39 383 3,063 100,101

TDT2 71 543 2,497 299,839

Yeast 3 30 205 590

UMist 3 237 184 942

Table 3 Clustering purity
results for PIC, the proposed
DPIC, SCIRAM, SC, and
K-means

Dataset PIC DPIC SCIRAM SC K-means

USPS0127 0.9725 0.9802 0.9797 0.9795 0.8831

USPS3568 0.8968 0.9429 0.7407 0.7744 0.7744

USPS49 0.8739 0.8601 0.5642 0.8523 0.6891

Newsa 0.2570 0.4939 0.3236 0.4775 0.2585

Newsb 0.5959 0.6886 0.4579 0.6790 0.2588

Newsc 0.5768 0.6941 0.4626 0.6675 0.2555

Newsd 0.4986 0.6148 0.5192 0.5799 0.3021

MNIST0127 0.7085 0.9754 0.8221 0.9709 0.9006

MNIST3568 0.5738 0.8152 0.7809 0.8084 0.6096

MNIST49 0.7706 0.5592 0.5306 0.5306 0.5074

Reuters 0.7909 0.8539 0.8422 0.8453 0.6906

TDT2 0.9217 0.9851 0.9825 0.9830 0.5725

Yeast 0.8560 0.9066 0.9105 0.9105 0.8618

UMist 0.3861 0.6643 0.6017 0.5687 0.5234

For a fair comparison between these algorithms, each algo-
rithm is performed 100 times on each dataset. Afterward,
we take the best performance. In each run, after finding the
pseudo-eigenvectors, K-means is performed 100 times to
avoid the local optimal solution of random initialization.

5.4 Computational time result

Table 2 presents the computational time results for PIC,
DPIC, SCIRAM, and SC. PIC is the fastest among these
algorithms. Its average computational time is lower than
that of SC, especially in a large dataset with a size of al-
most 4,000 data points such as USPS0127, Newsa, Newsb,
Newsc, MNIST0127, and TDT2.

DPIC is almost k times slower than PIC, where k is the
number of classes. Nevertheless, DPIC is still faster than

SCIRAM and SC because k is small (less than 10) and PIC
is over 50 times faster than SCIRAM in most datasets. Our
computational time is a combination of two factors. The first
factor is for finding k pseudo-eigenvectors, and the second
one is for finding some intermediate vectors p and q, as in
Sect. 4.3.1 (which can be less than or similar to the first
factor in most cases). In particular datasets (e.g., USPS49,
MNIST49, Reuters, and TDT2), our algorithm is almost k

times slower than PIC. The experiment proves that the time
to compute for every pseudo-eigenvector is almost equal to
the time to compute for the PIC’ pseudo-eigenvector. This
result also means that the time to compute intermediate vec-
tors p and q is negligible with respect to the time to compute
for each pseudo-eigenvector. In 13 out of 14 datasets, our
algorithm is faster than SCIRAM. Especially in the Newsa
dataset, DPIC is 20 times faster than SCIRAM. However,
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Table 4 NMI results for PIC,
the proposed DPIC, SCIRAM,
SC, and K-means

Dataset PIC DPIC SCIRAM SC K-means

USPS0127 0.9037 0.9264 0.9249 0.9244 0.7784

USPS3568 0.7536 0.8207 0.6794 0.6781 0.5188

USPS49 0.4533 0.4176 0.0121 0.4028 0.1118

Newsa 0.0205 0.2667 0.0270 0.2725 0.0324

Newsb 0.4315 0.5567 0.3103 0.5563 0.0336

Newsc 0.3872 0.5818 0.2192 0.5554 0.0312

Newsd 0.2876 0.4284 0.3035 0.4248 0.0503

MNIST0127 0.6420 0.9060 0.7466 0.8988 0.7386

MNIST3568 0.4710 0.6667 0.6002 0.6600 0.3866

MNIST49 0.2793 0.0101 0.0027 0.0027 0.0018

Reuters 0.4931 0.6704 0.6051 0.6134 0.2497

TDT2 0.8460 0.9415 0.9348 0.9368 0.3602

Yeast 0.2434 0.3752 0.3917 0.3917 0.1839

UMist 0.4760 0.7436 0.7248 0.6865 0.6554

Table 5 RI results for PIC, the
proposed DPIC, SCIRAM, SC,
and K-means

Dataset PIC DPIC SCIRAM SC K-means

USPS0127 0.9738 0.9803 0.9798 0.9796 0.8978

USPS3568 0.9114 0.9457 0.8110 0.8108 0.8206

USPS49 0.7795 0.7594 0.5082 0.7491 0.5716

Newsa 0.2589 0.6473 0.5702 0.6321 0.2594

Newsb 0.7409 0.8004 0.7045 0.7918 0.2606

Newsc 0.6827 0.7760 0.6620 0.7408 0.2558

Newsd 0.6264 0.7085 0.6220 0.5825 0.2781

MNIST0127 0.8160 0.9759 0.8709 0.9720 0.9073

MNIST3568 0.6433 0.8481 0.8171 0.8431 0.7114

MNIST49 0.6465 0.5070 0.5018 0.5018 0.5005

Reuters 0.7254 0.9077 0.8505 0.8508 0.6129

TDT2 0.9446 0.9863 0.9840 0.9844 0.5105

Yeast 0.5931 0.6920 0.6973 0.6973 0.4731

UMist 0.9150 0.9425 0.9312 0.9262 0.9322

in the UMist dataset, our computational time is longer than
that of SCIRAM because the cost of computing intermediate
vectors is high.

SCIRAM is faster than SC in all experiments; these al-
gorithms are in the third and fourth places, respectively. The
speed of SC depends on the number of data points, as it com-
putes all eigenvectors. However, because SCIRAM quickly
approximates k eigenvectors using some characters of the
dataset, its speed also depends on the dataset structure. For
example, even though the MNIST0127 dataset is larger than
the MNIST3568 dataset, the computational time of SCI-
RAM on MNIST0127 is lower.

5.5 Accuracy result

The accuracy of PIC is the worst among these algorithms,
except K-means, in 9 out of 12 multi-class datasets (es-
pecially in UMist, Reuters, MNIST0127, and Newsa) be-
cause of the inter-class collision problems. The results are
shown in Tables 3, 4, and 5. However, without the problem,
PIC achieves better accuracy than do other algorithms in
two-class datasets (i.e., USPS49 and MNIST49). The bet-
ter accuracy of PIC compared to SC is explained in [16].
SC selects the k largest eigenvectors in which there may be
a “bad” eigenvector. PIC computes the pseudo-eigenvector
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Fig. 3 Clustering purity results
for PIC, DPIC, SC, and
K-means on realistic datasets
with different values of t
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Fig. 3 (Continued)

which is a linear combination of the k largest eigenvectors.
However, in the linear combination, an eigenvector corre-
sponding to a small eigenvalue has a small weight. Luxburg
[18] shows that good eigenvectors often have high eigen-
values. In consequence, even though PIC is an approximate
algorithm, its pseudo-eigenvector is sometimes more useful
than SC’ eigenvectors.

DPIC achieves the best accuracy in 11 out of 14 datasets,
especially in UMist, Reuters, MNIST3568, and USPS3568.
We adopt the better accuracy of PIC compared to SC be-
cause our algorithm also computes pseudo-eigenvectors. In
particular, the accuracy of DPIC in the USPS3568 dataset is
95 %, whereas the accuracy of SC is only 73 %. In the UMist

dataset, the accuracy of DPIC is 66 %, whereas the accuracy
of SC is only 57 %. Our algorithm has a significant improve-
ment compared with PIC in the multi-class datasets (i.e.,
Newsa, Newsb, Newsc, Newsd, MNIST0127, MNIST3568,
Reuters, and UMist), especially in UMist in which our ac-
curacy is 66 % whereas that of PIC is only 39 %. The result
proves that our pseudo-eigenvectors are useful for clustering
and do not contain redundant information about each other.
However, in USPS49 and MNIST49, the accuracy of DPIC
is lower than that of PIC because one pseudo-eigenvector is
enough for these two-class datasets. As DPIC computes two
pseudo-eigenvectors, with the second one containing noises,
its accuracy is low.
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Fig. 4 Clustering purity results
with feature selection for PIC,
DPIC, SC, and K-means. Note
that in the TDT2 documents
dataset, we do not report the low
result of PIC (86 %) and
K-means (63 %) in order to see
the evolution in accuracy of SC
and DPIC

We also report the purity results of these algorithms on
Yeast, a dataset with rare classes. Generally, a rare class is a
minor but compact class [10]. Our focus is to identify minor
classes, but better accuracy may come from classifying two
major classes. Therefore, we only input one major class of
Yeast. The purity result of PIC is low at 85.6 % because
of three minor classes. Conversely, SC and DPIC achieve
a better solution at 90.66 % by computing multiple vectors
to solve the inter-class collision problem between the three
minor classes.

Although SCIRAM is not the best algorithm in terms of
accuracy, it is a good approximation of SC because it is
faster while maintaining the same clustering quality. How-
ever, running SCIRAM on some datasets, such as Newsa,
Newsb, Newsc, and MNIST0127, is unsafe because the ac-
curacy is significantly reduced.

Lastly, we report the performance of every algorithm un-
der different numbers of neighbors t for each data point in
Fig. 3. The accuracy of our proposed DPIC is better than that
of PIC and almost similar to that of SC in almost all datasets.
The accuracy of SCIRAM is the same as or lower than that
of SC in most datasets for every t so it is not reported here.
Each dataset has an optimal value of t with which SC, DPIC,
and PIC work best. For example, in Newsa, Newsb, and

Newsc, these algorithms achieve good results when t is 15,
which is not too small or too large.

5.6 DPIC with feature selection

This section conducts experiments to determine whether the
accuracy of DPIC can be improved when incorporating fea-
ture selection as a pre-processing step. Our algorithm is an
unsupervised method that departs from an affinity matrix
with the similarity between data points and their local near-
est neighbors. Therefore, we use the Laplacian score method
[9] for the feature selection step because of its unsupervised
manner and local neighborhood preserving advantage. We
perform experiments on three datasets USPS0127, TDT2,
and especially UMist because of its huge number of features
(10,304) and low number of data points (575).

In the experiments, we use a value of t with which SC
works best without the feature selection for each dataset. At
the beginning, we use the Laplacian score to rank all features
and then select some top-ranked features. Finally, we report
the clustering accuracy by varying the number of selected
top-ranked features from 20 % to 100 % of the number of
all features in the dataset, as shown in Fig. 4.

Figure 4 shows that the accuracies of SC and DPIC with
the Laplacian feature selection can be at least equal to those
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Table 6 Computational time (in milliseconds), maximum purity (MaxPurity), and average purity (AvgPurity) for the proposed DPIC and SCIRAM
on synthetic graphs

Number
of nodes

SCIRAM DPIC

Time MaxPurity AvgPurity Time MaxPurity AvgPurity

10,000 Out of memory 0.000 0.000 747 1.000 1.000

9,000 Out of memory 0.000 0.000 624 1.000 1.000

8,000 Out of memory 0.000 0.000 475 1.000 1.000

7,000 Out of memory 0.000 0.000 368 1.000 1.000

6,000 Out of memory 0.000 0.000 254 1.000 1.000

5,000 17,721 0.9936 0.7700 170 1.000 1.000

4,000 9,433 0.9978 0.8608 104 1.000 1.000

3,000 5,188 1.000 0.9721 79 1.000 1.000

2,000 1,645 0.9975 0.7569 40 1.000 1.000

1,000 1,131 0.8980 0.6580 18 1.000 1.000

without feature selection. Feature selection shows its essen-
tial role particularly in the UMist dataset because, if we use
just enough features (40 % to 60 %), we will achieve bet-
ter accuracy than using a full set of features. Although we
cannot obtain good results for the USPS0127 and TDT2
datasets compared with the UMist dataset, at least we can
compress the number of features to low levels (40 % and
0.8 %, respectively) while retaining equivalent accuracy.

5.7 Experiments on synthetic datasets

First, this section describes the experiments performed on
synthetic graphs to show the memory usage advantage of
our algorithm over SCIRAM. Second, we show that DPIC
can achieve better accuracy than a straightforward algorithm
using k random initializations of PIC. To generate a large,
sparse, and multi-class graph, we use a modified version
of Erdős, Rényi [7] random network model. The model is
widely applied to generate a synthetic network [6, 16].

5.7.1 Comparison of memory usage between DPIC and
SCIRAM

We create 10 synthetic graphs, each having four clusters,
with the number of nodes n ranging from 1,000 to 10,000 to
compare the memory usage of our algorithm and that of SCI-
RAM. In each synthetic graph, every node connects with t

neighbor nodes when t is 2 % of n. Each cluster is a strongly
connected cluster, as 80 % of the edges connect two nodes
in the same cluster, and only 20 % of the edges connect two
nodes from different clusters. In each graph, we run each
algorithm 10 times and take the highest purity score and
the average purity score. The performances of SCIRAM and
DPIC on these synthetic graphs are shown in Table 6.

SCIRAM consumes a huge amount of memory. When
the number of nodes is greater than 6,000, it cannot pro-
duce the clustering result because of the out of memory

problem. By contrast, DPIC can perform well in all syn-
thetic graphs because it stores only one sparse matrix and
(2k + 1) intermediate vectors. Therefore, DPIC is linear in
space, O(n(t + 2k + 1)), where t is smaller than 200 and k

is equal to four in all graphs. Although a strong connectiv-
ity exists inside every cluster, SCIRAM cannot achieve the
highest purity score. Conversely, DPIC can achieve 100 %
purity in all synthetic graphs.

5.7.2 Comparison of accuracy between DPIC and k

random PIC

A straightforward solution to overcome the inter-class col-
lision problem is to run PIC k times, with each time having
different initialization vector v0. We call this solution the
k-random PIC. The limitation of this solution is that it com-
putes redundant pseudo-eigenvectors that are not mutually
orthogonal. We create 10 synthetic graphs, with the num-
ber of nodes n ranging from 1,000 to 10,000, to show that
our algorithm, which produces multiple orthogonal pseudo-
eigenvectors, is more accurate than this straightforward so-
lution.

We generate two groups of synthetic graphs. In the first
group, we set t , the number of neighbors for each node, to
0.01n for all graphs. In the second group, we flexibly set t to
be equal to 0.01n for graphs having less than 3,000 nodes,
0.005n for graphs having 4,000 to 6,000 nodes, and 0.002n

for graphs having more than 7,000 nodes.
The purity results of DPIC and k-random PIC in the first

group are shown in Fig. 5. As we set t to be directly propor-
tional to n, the number of edges increases quadratically with
the number of nodes. In consequence, the gap between the
number of edges connecting two nodes in the same cluster
and the number of edges connecting two nodes from dif-
ferent clusters also increases quadratically with the number
of nodes. Therefore, finding the clustering solution for large
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Fig. 5 Clustering purity results for DPIC and k random initializations
PIC (k-random PIC) on the first group

Fig. 6 Clustering purity results for DPIC and k random initializations
PIC (k-random PIC) on the second group

graphs that have more than 4,000 nodes seems easy. In these
graphs, both DPIC and k-random PIC achieve best results.

The purity results of DPIC and k-random PIC in the sec-
ond group are shown in Fig. 6. As we slightly decrease t

for large graphs, the number of edges does not increase too
fast with respect to the number of nodes. Indeed, k-random
PIC achieves lower purity than DPIC in these cases. The re-
sults experimentally show that, in difficult situations, DPIC
produces a better solution than k-random PIC.

6 Conclusion

In this paper, we propose a solution to overcome the
inter-class collision problem in PIC. Our method uses

the deflation technique to find more pseudo-eigenvectors.
Therefore, our DPIC algorithm has better accuracy than
PIC and smaller complexity than the state-of-the-art SCI-
RAM. Our method only finds mutually orthogonal pseudo-
eigenvectors; therefore, the method avoids finding redun-
dant pseudo-eigenvectors. Our experiments on classical
and realistic document, human face, and handwritten digit
datasets justify our idea in theory. DPIC is suitable for
large, sparse, and multi-class datasets. However, the pseudo-
eigenvectors still contain noise along with the classifica-
tion information because of the method used to compute
pseudo-eigenvectors. After using deflation on these pseudo-
eigenvectors, the inner structure of the dataset can be de-
graded. In the future, we will examine how to reduce this
noise so that the deflation has a stronger effect on PIC.
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32. Taşdemir K (2012) Vector quantization based approximate spec-
tral clustering of large datasets. Pattern Recognit 45(8):3034–
3044

33. Tung F, Wong A, Clausi DA (2010) Enabling scalable spectral
clustering for image segmentation. Pattern Recognit 43(12):4069–
4076

34. Wu S, Chow TWS (2004) Clustering of the self-organizing map
using a clustering validity index based on inter-cluster and intra-
cluster density. Pattern Recognit 37(2):175–188

35. Wu M, Schölkopf B (2006) A local learning approach for cluster-
ing. Adv Neural Inf Process Syst 19:1529–1536

36. Yan D, Huang L, Jordan MI (2009) Fast approximate spectral
clustering. In: Proceedings of the 15th ACM SIGKDD interna-
tional conference on knowledge discovery and data mining, Paris,
France, pp 907–916

37. Zelnik-Manor L, Perona P (2004) Self-tuning spectral clustering.
Adv Neural Inf Process Syst 17:1601–1608

38. Zhang K, Kwok JT (2009) Density-weighted Nyström method for
computing large kernel eigensystems. Neural Comput 21(1):121–
146

39. Zhang K, Tsang IW, Kwok JT (2008) Improved Nyström low-rank
approximation and error analysis. In: Proceedings of the 25th in-
ternational conference on machine learning, Helsinki, Finland, pp
1232–1239

Anh Pham The received his B.S. in
Computer Science from Hanoi Uni-
versity of Technology, Vietnam, in
2010. He got his M.S. in Computer
Engineering from Kyung Hee Uni-
versity, Korea, in 2012. His research
interests include data mining, pat-
tern recognition, and machine learn-
ing.

Nguyen Duc Thang received his
B.E. degree in Computer Engineer-
ing from Posts and Telecommunica-
tions Institute of Technology, Viet-
nam. He got his M.S. and Ph.D. de-
grees in the Department of Com-
puter Engineering at Kyung Hee
University, South Korea. His re-
search interests include artificial in-
telligence, computer vision, and ma-
chine learning.

La The Vinh received his B.S. and
M.S. from Hanoi University of Sci-
ence and Technology, Vietnam, in
2004 and 2007, respectively. He has
completed his Ph.D. degree at the
Department of Computer Engineer-
ing at Kyung Hee University, Ko-
rea, 2012. Currently, he is working
as a lecturer at the School of Infor-
mation and Communication Tech-
nology, Hanoi University of Science
and Technology. His research inter-
ests include digital signal process-
ing, pattern recognition and artifi-
cial intelligence.

Young-Koo Lee got his B.S., M.S.
and Ph.D. in Computer Science
from Korea advanced Institute of
Science and Technology, Korea.
He is a professor in the Depart-
ment of Computer Engineering at
Kyung Hee University, Korea. His
research interests include ubiqui-
tous data management, data mining,
and databases. He is a member of
the IEEE, the IEEE Computer Soci-
ety, and the ACM.

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://www.sheffield.ac.uk/eee/research/iel/research/face
http://www.sheffield.ac.uk/eee/research/iel/research/face
http://www.kernel-machines.org/data/


Deflation-based power iteration clustering 385

Sungyoung Lee received his B.S.
from Korea University, Seoul, Ko-
rea. He got his M.S. and Ph.D. de-
grees in Computer Science from
Illinois Institute of Technology (IIT),
Chicago, Illinois, USA in 1987
and 1991 respectively. He has been
a professor in the Department of
Computer Engineering, Kyung Hee
University, Korea since 1993. He
is a founding director of the Ubiq-
uitous Computing Laboratory, and
has been affiliated with a director of
Neo Medical ubiquitous-Life Care
Information Technology Research

Center, Kyung Hee University since 2006. He is a member of ACM
and IEEE.


	Deflation-based power iteration clustering
	Abstract
	Introduction
	Related works
	Sampling-based SC
	Nyström-based SC
	Power iteration-based SC
	Dominant set clustering

	Background
	Spectral clustering
	Power iteration clustering

	The proposed deflation-based power iteration clustering algorithm
	Deflation technique
	Deflation-based PIC
	Computational time for each DPIC' pseudo-eigenvector
	Computational time for each step of power iteration for each DPIC' pseudo-eigenvector
	Number of iterations for computing each DPIC' pseudo-eigenvector

	Time and space complexity of DPIC

	Experiments
	Datasets
	Evaluation measure
	Clustering purity
	Normalized mutual information
	Rand index

	Parameter setting and experiment process
	Computational time result
	Accuracy result
	DPIC with feature selection
	Experiments on synthetic datasets
	Comparison of memory usage between DPIC and SCIRAM
	Comparison of accuracy between DPIC and k random PIC


	Conclusion
	Acknowledgements
	References


