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Abstract: Over the last decade, human facial expressions recognition (FER) has emerged 

as an important research area. Several factors make FER a challenging research problem. 

These include varying light conditions in training and test images; need for automatic and 

accurate face detection before feature extraction; and high similarity among different 

expressions that makes it difficult to distinguish these expressions with a high accuracy. 

This work implements a hierarchical linear discriminant analysis-based facial expressions 

recognition (HL-FER) system to tackle these problems. Unlike the previous systems, the 

HL-FER uses a pre-processing step to eliminate light effects, incorporates a new automatic 

face detection scheme, employs methods to extract both global and local features, and 

utilizes a HL-FER to overcome the problem of high similarity among different expressions. 

Unlike most of the previous works that were evaluated using a single dataset, the 

performance of the HL-FER is assessed using three publicly available datasets under three 

different experimental settings: n-fold cross validation based on subjects for each dataset 

separately; n-fold cross validation rule based on datasets; and, finally, a last set of 

experiments to assess the effectiveness of each module of the HL-FER separately. 

Weighted average recognition accuracy of 98.7% across three different datasets, using 

three classifiers, indicates the success of employing the HL-FER for human FER. 
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1. Introduction 

Over the last decade automatic FER has become an important research area for many applications, 

such as more engaging human–computer interfaces; image retrieval; human emotion analysis [1]; 

neuroscience, psychology, and cognitive sciences [2]; access control and surveillance [3]; and 

communication, personality, and child development [4]. 

Human FER systems can be classified into two categories; pose-based expression recognition 

systems [5–7] and spontaneous expression recognition systems [8–10]. Pose-based expressions are the 

artificial expressions produced by people when they are asked to do so [2]. Similarly, spontaneous 

expressions are those that people give out spontaneously, and they can be observed on a day-to-day 

basis, such as during conservations or while watching movies [2]. The focus of this article is pose-based 

FER systems. 

As shown in Figure 1, a typical FER system consists of three basic modules: pre-processing, feature 

extraction, and recognition. The pre-processing module performs two tasks. Firstly, it diminishes 

illumination and other light effects to increase the recognition accuracy, using techniques like 

morphological filters, homomorphic filters, or median filters. Most previously FER systems [11–15] 

have exhibited low accuracy due to the lack of this filtering element in their architecture. One of the 

most well-known methods that have been utilized to diminish such illumination effects is histogram 

equalization (HE). However, in a gray level image HE assigns the highest gray level value to each 

pixel [16], as a result the resulting image produced by HE contains gaps i.e., “empty-bins” between 

very full histogram bins [17]. Due to this limitation, HE causes unwanted artifacts and a washed-out 

look, so it is not recommended [18,19].  

Figure 1. Typical architecture of general facial expression recognition systems. 

 

Therefore, two improved versions of HE were proposed in order to solve the limitations of HE. The first 

technique is Local Histogram Equalization (LHE) that uses a sliding window technique in order to compute 
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the local histogram for each pixel and the gray level for center pixel is changed accordingly [17]. LHE, 

though better than HE, causes over-enhancement, and sometimes it produces checkerboards of the 

enhanced image [20] and it requires more time than other methods [21]. The second technique is 

Global Histogram Equalization (GHE), which uses the histogram information of the whole image; 

therefore, we employed GHE instead of using HE and LHE in preprocessing module. To the best of 

our knowledge, it is the first time that GHE is being used for facial expression recognition.  

Naturally, before recognizing facial expressions a face is must be located in the image/video frame. 

Therefore, the second task of the preprocessing module is to detect faces in a given image, as it is the 

face that contains most of the expression-related information. For this, many well-known methods, 

including the appearance-based methods [22,23], have been proposed. The appearance-based methods 

have shown excellent performance in a static environment; however, their performance degrades  

when used in dynamic situations [24]. Other commonly used face detection methods include neural 

network-based face detection [25], and digital curves-based face detection [26]. These methods utilize 

eye window (eye regions) in order to locate a face. However, eyes regions are highly sensitive to the 

hairstyle of the person, which may cause misclassification [27]. Moreover, in their methods, it is very 

hard to know the orientation of the detected face [27]. Many existing works, such as [28–30], have 

performed facial expression recognition without face detection, making these systems heuristic in 

nature. To solve this problem, some face detection and extraction techniques were proposed [31–33]. 

In [31], the authors detected the human face using the position of the eyes and then cropped the faces 

accordingly. However, this method failed to detect the face structure in very sensitive environmental 

conditions. In contrast, in [33] features for face detection were selected manually. 

PCA has been exploited by [34,35] to extract the features from eyes and the lips, which were then 

employed by a framework of radial basis function network (RBFN) to classify the expressions based 

on the extracted features. PCA extracts only the global features; therefore, another well-known higher 

statistical order technique named ICA has also been widely employed in FER systems to extract the 

local features. The authors of [36] employed supervised ICA for feature extraction in their FER system 

and showed improved recognition accuracies. As ICA is an unsupervised technique; therefore, in their 

work, they modified the classical ICA and made it a supervised ICA (sICA) by including a prior 

knowledge that was reassembled from the training data using a Maximum Posteriori (MAP) scheme. 

Other important feature extraction technique used for the sake of FER in the past include: non-negative 

matrix factorization (NMF) and Local Non-negative Matrix Factorization (LNNF) [37], Higher order 

Local Auto-Correlation (HLAC) [38], Local Binary Pattern (LBP) [13], Gabor wavelet [39], and 

BoostedICA [40].  

Regarding the feature extraction module, several methods have been explored. Some of the most 

well-known features used for FER include texture-based features [41], geometry-based features [42], 

holistic features such as nearest features using line-based subspace analysis [43], Eigenfaces and 

Eigenvector [44–46], Fisherfaces [47], global features [48], and appearance based features [49,50]. In 

this article, we utilized the holistic feature extraction methods, i.e., Principal Component Analysis 

(PCA) and Independent Component Analysis (ICA) in order to extract the prominent features from the 

expression frames. 

As for the recognition module, several classifiers have been investigated. The authors of [51] 

employed artificial neural networks (ANNs) to recognize different types of facial expressions and 
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achieved an accuracy of 70%. However, an ANN is a black box and has incomplete capability to 

explicitly categorize possible fundamental relationships [52]. Moreover, the FER systems proposed  

in [8,53–57] used support vector machines (SVMs). However, in SVMs, the probability is calculated 

using indirect techniques; in other words, there is no direct estimation of the probability, these are 

calculated by employing five-fold cross validation due to which SVM suffers from the lack of 

classification [58]. Furthermore, SVMs simply disregard the temporal addictions among video frames, 

thus each frame is expected to be statistically independent from the rest. Similarly, in [49,59,60], 

Gaussian mixture models (GMMs) were employed to recognize different types of facial expressions. 

As stated earlier, the features could be very sensitive to noise; therefore, fast variations in the facial 

frames cannot be modeled by GMMs and produces problems for sensitive detection [61]. Hidden 

Markov Models (HMMs) are mostly used to handle sequential data when frame-level features are 

used. In such cases, other vector-based classifiers like GMMs, ANNs, and SVMs, have difficulty in 

learning the dependencies in a given sequence of frames. Due to this capability, some well-known FER 

systems, including [62–64], utilized HMM as a classifier. In conclusion, a large number of feature 

extraction techniques and classifiers have been employed for video-based FER systems. Among them, 

PCA and ICA have been the most widely used feature extraction techniques, and HMMs have been the 

most commonly used classifier.  

A recent work by Zia et al. [64] proposed a complete approach for FER systems that provided high 

classification accuracy for the Cohn-Kanade database of facial expressions. In their work, they 

employed PCA and ICA for feature extraction. Once extracted, features were subject to Linear 

Discriminant Analysis (LDA) to find the most relevant features. The result after applying LDA was fed 

to an HMM. The recognition rate of their technique was 93.23% when tested on Cohn-Kanade dataset. 

However, their technique failed in exhibiting the same accuracy when tested by us on other datasets, 

such as Japanese Female Facial Expression (JAFFE) database (83%), and AT&T database (72%) of 

facial expressions. Low accuracy in these new experiments could be attributed to the following two 

reasons. Firstly, in their work, they did not use a pre-processing step to diminish the lighting and 

illumination effects. Furthermore, in some of the databases such as the AT&T database of facial 

expressions, the subjects have worn glasses that make it difficult to extract useful features from some 

parts of the face, such as the eyes.  

Secondly, most of the expressions share high similarity, and thus their features overlap significantly 

in the feature space, as shown in Figure 2. Zia et al. [64] applied LDA to the extracted feature space to 

improve the class separation among different classes with the assumption that the variance is 

distributed uniformly among all the classes. However, this is not the case. For example, expressions 

like happiness and sadness are very similar to each other but can easily be distinguished from anger 

and fear (another pair with high similarity). Accordingly, this work implements a HL-FER that is 

capable of performing accurate facial expression recognition across multiple datasets. Previously, such 

model has been used in [65] that was dual-layer SVM ensemble classification. The motivation behind 

their study was to determine how the contraction of muscles changes the appearance of the face by 

extracting the local features from the three parts of the face such as mouth, nose, and eyes. However, 

the performance of the dual-layer SVM classification cannot match that of binary classification as 

SVMs use approximation algorithms in order to decrease the computation complexity but these have 

the effect of degrading classification performance [66]. 
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Figure 2. 3D-feature plot of Cohn-Kanade dataset for six different types of facial 

expressions, where each expression has twelve expression frames. It can be seen that the 

features are highly merged, due to the presence of similarity between the expressions, 

which could later results in a high misclassification rate. 

 

In our HL-FER, firstly, images were passed through a pre-processing module to diminish the 

illumination effects, and to extract the human face automatically. Secondly, PCA and ICA were used 

for feature extraction. Finally, a hierarchical classifier was used, where the expression category was 

recognized at the first level, followed by the actual expression recognition at the second level. The  

HL-FER has been validated using three different experiments. The results of these experiments show 

that the two-level recognition scheme, along with the proposed pre-processing module for noise 

reduction and accurate face detection, solved the aforementioned problems of the existing FER 

systems; and therefore, succeeded in providing high recognition accuracy across multiple datasets.  

Above, we discussed some related work in this field. The rest of the paper is organized as follows. 

Section 2 provides an overview of our HL-FER. Section 3 discusses the experimental setup along with 

the experimental results with some discussion on the results and talks about the factors that could 

degrade systems performance if tested in real-life scenarios. Section 4 provides the analysis and 

comparison of the recognition accuracy of this work with those of the some of the existing FER 

systems. Finally, the paper is concluded with some future directions in Section 5. 

2. Materials and Methods 

The architecture of our HL-FER is shown in Figure 3. 
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Figure 3. Architectural diagram for the HL-FER. 
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2.1. Pre-Processing 

As mentioned earlier, in most of the datasets, the face images have various resolution and 

backgrounds, and were taken under varying light conditions; therefore, pre-processing module is 

necessary to improve the quality of images. At this stage, background information, illumination noise, 

and unnecessary details are removed to enable fast and easy processing. After employing this stage, we 

can obtain sequences of images which have normalized intensity, size and shape. Several techniques 

exist in literature to diminish such illumination effects, such methods are local histogram equalization 

(LHE) and global histogram equalization (GHE). However, LHE causes over-enhancement, and 

sometimes it produces checkerboards of the enhanced image [38]. Therefore, we employed a GHE for 

diminishing illumination effects. To the best of our knowledge, this is the first time GHE has been 

exploited for facial expression recognition. For more detail on GHE, please refer to [39]. 

In the proposed face detection algorithm, two improved key face detection methods were used 

simultaneously: gray-level and skin-tone-based. To attain the best performance, the similarity angle 

measurement (SAM) method was used. SAM utilizes two energy functions, F(C) and B(C), to 

minimize the dissimilarities within the face and maximize the distance between the face and the 

background, respectively. The overall energy function can be defined as: 

       1E C F C B C   
 (1) 

where  0 1   , and 

 
2 2

( ) ( )

in out

inside C outside C

F C I c dx I c dx      
(2) 

where cin and cout are the average intensities inside and outside the variable boundary C, and I is the 

facial image. Furthermore:  

     1 2

z

B C f x f x dx 
 

(3) 

where: 
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where f1(x) and f2(x) are the local fitting functions, which depend on the facial geometry function ( )x , 

and need to be updated in each iteration, x is the corresponding region, and H(•) and Kσ(•) as the 

Heaviside and Dirac functions, respectively.  

In summary, the intuition behind the proposed energy functional for SAM is that we seek for a 

boundary which partitions the facial image into regions such that the differences within each region are 

minimized (i.e., the F(C) term) and the distance between the two regions (face and background) is 

maximized (i.e., the B(C) term). The facial geometry function ( )x  implementation for the energy 

functional in Equations (4) and (5) is carried out in order to define the boundary between the two 

regions (face and background) and can be derived as: 
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(6) 

where   is the gradient for the facial geometry function ( )x , and Ain and Aout are respectively the 

areas inside and outside of the boundary C, γ, β and η are the three parameters, such that γ helps to 

detect objects of various sizes, including small points caused by noise; β weights the constraints of 

within-face homogeneity and between-face dissimilarity for which the value of β should be small; η 

speeds up the function evolution but may make it to pass through weak edges. Therefore, we used  

η = 0 in all experiments for fair comparison. Once the boundary between face and background is 

found, then in the next step, the skin-tone and gray-level methods are collectively applied in order to 

accurately detect and extract the face from the facial frame. For further details on gray-level and  

skin-tone methods please refer to [27,67], respectively.  

In summary, the proposed face detection system is based on multiple features from a face 

image/frame. When a rough face image is presented to the system, an improved gray-level and  

skin-tone model is adopted to locate the face region. Very often, hair is included in the detected head 

contour. The second step is to find the precise face geometry using a facial geometry operation. To 

locate the exact face region, three features were used: the face intensity (because the intensity of the 

eye region is relatively low [27]); the direction of the line connecting the center of the eyes, which is 

determined on the face edge image; and the response of convolving the proposed facial geometry 

variance filter with the face image. We have developed a facial geometry filter for extracting potential 

face windows, based on similarity measurements of facial geometry signatures. This process generates 

a list of possible face signatures, since each face feature has unique identification, or signatures. These 

signatures can be compared with face signatures that are stored in the database to determine positive 
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matches. The stored face signatures were in true (original) form and were not distorted. However, in 

some cases, the detected face boundary usually might consist of hair [68]. Hairstyles are different from 

person to person [69]. Therefore, in the next step another technique, i.e., face skin region has been 

employed in order to locate the skin region from the detected face region and to get rid of the problem 

of different hairstyles.  

Figure 4. The control flow diagram for the proposed face detection system. 

START

Set L:= No. of Frames, J=1

i<=L?

FGS[i]:=Facial Geometry of Skin tone for  i-th frame

FGG[i]:=Facial Geometry of Gray level for i-th frame

FG[i]:=Facial Geometry for i-th frame

SM FGS[i]:= Similarity Measures between FGS & FG

SM FGS[i]:= Similarity Measures between FGG & FG

SM FGS[i]>

SM FGG[i]?

SSM[i]:=SM FGS[i]

i++

SSM[i]:=SM FGG[i]

END

T F

F

T

 

The facial features such as nose, mouth, and eyes possess relatively lower gray levels under normal 

illumination [27]. We can always plot the intensity histogram of the face image, because skin color has 

a relatively high gray intensity, while other facial components have relatively low intensities, and by 

this way, it is easy to find a threshold value for face detection under normal illumination. This 

threshold value, which is obtained by the intensity histogram, is used as the criterion for successful 

face detection. In most images, the number of possible cases for the second iteration of the loop (see 

Figure 4) was less than two. For each possible case, the signature similarity measurement (SSM) 

function was adopted for face detection, tracking, and verification. If the face was detected in the face 

frame, the detection process completed; if not, next possible case was tested. Details of each block are 

presented in Figure 4. 
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2.2. Feature Extraction 

As described earlier, numerous techniques have been developed and validated for the purpose of 

feature extraction for FER systems. Among these, PCA and ICA are the mostly commonly used 

methods, and their performance has already been validated in [64]. Therefore, we decided to use PCA 

and ICA for feature extraction to extract both the global and local features respectively.  

2.3. Recognizing the Expression Category 

This work is based on the theory that different expressions can be grouped into three categories 

based on the parts of the face that contribute most toward the expression [70–72]. This classification is 

shown Table 1.  

Table 1. The classified categories and facial expressions recognized in this study. 

Category Facial Expressions 

Lips-Based 
Happiness 

Sadness 

Lips-Eyes-Based 
Surprise 

Disgust 

Lips-Eyes-Forehead-Based 
Anger 

Fear 

Figure 5. 3D feature plots of the HL-FER after applying LDA at the first level for the three 

expression-categories such as lips-based, lips-eyes-based, or lips-eyes-forehead-based 

expressions (on Cohn-Kanade dataset). It can be seen that at the first level, the HL-FER 

achieved 100% classification rate in expressions categories classification. 
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Lips-based expressions are those in which the lips make up the majority of the expression. In  

lips-eyes-based expressions, both lips and eyes contribute in the expression. In lips-eyes-forehead 

expressions, lips, eyes, and eyebrows or forehead have equal roles. In the HL-FER, an expression is 

classified into one of these three categories at the first level. At the second level, classifier (trained for 

the recognized category) is employed to give a label to this expression within this category. 

At the first level, LDA was firstly applied to the extracted features from all the classes and an  

HMM was trained to recognize the three expression categories: lips-based, lips-eyes-based, or  

lips-eyes-forehead-based expressions. The LDA-features for these three categories are shown in  

Figure 5. A clear separation could be seen among the categories, and this is why the HL-FER achieved 

100% recognition accuracy at the first level. 

2.4. Recognizing the Expressions 

As mentioned earlier, once the category of the given expression has been determined, the label for 

the expression within the recognized category is recognized at the second level. For this purpose, LDA 

was applied separately to the feature space of each category and the result was used to train three 

HMMs, one HMM per category. Collectively, the overall results for all the expression classes are 

shown in Figure 6.  

Figure 6. 3D feature plots of the HL-FER after applying LDA at the second level for 

recognizing the expressions in each category (on Cohn-Kanade dataset). It can be seen that 

at the second level, the HL-FER achieved much higher recognition rate as compared to a 

single-LDA via single-HMM shown in Figure 7. 

 

These feature plots indicate that applying LDA to the features of three categories separately provided a 

much better separation as compared to single-LDA via single-HMM approach (see Figure 7). The  

single-LDA via single-HMM approach means that instead of applying LDA separately to each expression 

category and using separate HMMs for these categories, LDA is applied only once, to the features of all the 
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classes, and only one HMM is used for classification. For Figures 5–7, we used Cohn-Kanade dataset, for 

Figures 8–10, we employed JAFFE dataset, and for Figures 11–13, we used AT&T dataset. Each dataset 

consisted of six basic universal facial expressions and each expression has twelve facial expression frames. 

Figure 7. 3D-feature plot of single-LDA via single-HMM (on Cohn-Kanade dataset). It 

can be seen that using a single-LDA via single-HMM approach did not yield as good a 

separation among different classes as was achieved by the HL-FER (See Figure 6). 

 

Figure 8. 3D feature plots of the HL-FER after applying LDA at the first level for the three 

expression-categories such as lips-based, lips-eyes-based, or lips-eyes-forehead-based 

expressions (on JAFFE dataset). It can be seen that at the first level, the HL-FER achieved 

100% classification rate in expressions categories classification. 
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Figure 9. 3D feature plots of the HL-FER after applying LDA at the second level for 

recognizing the expressions in each category (on JAFFE dataset). It can be seen that at the 

second level, the HL-FER achieved much higher recognition rate as compared to a  

single-LDA via single-HMM shown in Figure 10. 

 

Figure 10. 3D-feature plot of single-LDA via single-HMM (on JAFFE dataset). It can be 

seen that using a single-LDA via single-HMM approach did not yield as good a separation 

among different classes as was achieved by the HL-FER (See Figure 9). 
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Figure 11. 3D feature plots of the HL-FER after applying LDA at the first level for the 

three expression-categories such as lips-based, lips-eyes-based, or lips-eyes-forehead-based 

expressions (on AT&T dataset). It can be seen that at the first level, the HL-FER achieved 

100% classification rate in expressions categories classification. 

 

Figure 12. 3D feature plots of the HL-FER after applying LDA at the second level for 

recognizing the expressions in each category (on AT&T dataset). It can be seen that at  

the second level, the HL-FER achieved much higher recognition rate as compared to a 

single-LDA via single-HMM shown in Figure 13. 
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Figure 13. 3D-feature plot of single-LDA via single-HMM (on AT&T dataset). It can be 

seen that using a single-LDA via single-HMM approach did not yield as good a separation 

among different classes as was achieved by the HL-FER (See Figure 12). 

 

We have sequential data at both levels; therefore at both levels HHMs have been employed, because 

HMMs have their own advantage of handling sequential data when frame-level features are used. In 

such cases, other vector-based classifiers like GMMs, ANNs, and SVMs, have difficulty in learning the 

dependencies in a given sequence of frames. The following formula that has been utilized in order to 

model HMM (λ): 

 , ,O Q 
 

(7) 

where O is the sequence of observations e.g., O1, O2,…, OT and each state is denoted by Q such as  

Q = q1, q2,…, qN, where N is the number of the states in the model, and π is the initial state probabilities. 

The parameters that used to model HMM for all experiments were 44, 4, and 4 respectively.  
 

3. Experimental Results 

3.1. Setup 

In order to assess the HL-FER, six universal expressions like: happiness, sadness, surprise, disgust, 

anger, and fear were used from three publicly available standard datasets, namely the Cohn-Kanade [73], 

JAFFE [74] and AT&T [75] datasets. These datasets display the frontal view of the face, and each 

expression is composed of several sequences of expression frames. During each experiment, we 

reduced the size of each input image (expression frame) to 60 × 60, where the images were fi wh 

converted to a zero-mean vector of size 1 × 3,600 for feature extraction. All the experiments were 

performed in Matlab using a dual-core Pentium processor (2.5 GHz) with a RAM capacity of 3 GB. 

Some information on the three datasets is as follows: 
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3.1.1. Cohn-Kanade Dataset  

In this facial expressions dataset, there were 100 subjects (university students) performed basic six 

expressions. The age range of the subjects were from 18 to 30 years and most of them were female. 

We employed those expression for which the camera was fixed in front of the subjects. By the given 

instructions, the subjects performed a series of 23 facial displays. Six expressions were based on 

descriptions of prototypic emotions such as happy, anger, sad, surprise, disgust, and fear. In order to 

utilize these six expressions from this dataset, we employed total 450 image sequences from 100 

subjects, and each of them was considered as one of the six basic universal expressions. The size of 

each facial frame was 640 × 480 or 640 × 490 pixel with 8-bit precision for grayscale values. For 

recognition purpose, twelve expression frames were taken from each expression sequence, which 

resulted in a total of 5,400 expression images. 

3.1.2. JAFFE Dataset  

We also employed Japanese Female Facial Expressions (JAFFE) dataset in order to assess the 

performance of the HL-FER. The expressions in the dataset were posed by 10 different (Japanese 

female) subjects. Each image has been rated on six expression adjectives by 60 Japanese subjects. 

Most of the expression frames were taken from the frontal view of the camera with tied hair in order to 

expose all the sensitive regions of the face. In the whole dataset, there were total 213 facial frames, 

which consists of seven expressions including neutral. Therefore, we selected 205 expression frames 

for six facial expressions performed by ten different Japanese female as subjects. The size of each 

facial frame was 256 × 256 pixels.  

3.1.3. AT&T Dataset 

Additionally, we also employed AT&T dataset of facial expressions to evaluate the performance of 

the HL-FER. There are 10 facial frames in each expression performed by 40 distinct subjects. The 

frames were taken at different illuminations of light against a dark homogenous background with the 

subjects, and were in grey scale having size of 92 × 112 pixels. This dataset consists of open/close 

eyes, smiling and not smiling expressions. Among these expressions, few expressions that showed the 

basic six expressions; therefore, we have manually chosen those suitable facial frames for our 

experiments. The total numbers of selected facial frames were 240. 

Moreover, in order to show the efficacy of the HL-FER, we performed some more experiments on 

Yale database of facial expressions [76]. The results are shown in the Appendix in Figures A1, A2, A3, 

and A4 and in Table A5 respectively.  

3.2. Results and Discussion 

3.2.1. Experimental Face Detection Method Results  

Some samples results for the proposed preprocessing method (GHE) along with the proposed face 

detection are shown in Figure 14. Figure 14b indicates the success of the proposed GHE in diminishing 

the lighting effects from both a bright and dark image (shown in Figure 14a) in order to enhance the 
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facial features. After this, in the next step, the proposed face detection method found the facial faces in 

the frames (shown in Figure 14c) and cropped it accordingly, as shown in Figure 14d.  

Figure 14. Sample results for the proposed GHE along with the face detection method. 

 

The detection rates of the proposed face detection algorithm for the three datasets are summarized 

in Table 2. It can be seen from Table 2 that the proposed face detection algorithm achieved high 

recognition rate on the three different standard datasets of facial expressions. 

Table 2. Average accuracy rates of the proposed face detection algorithm on three 

publically available datasets (Unit: %). 

Datasets Detection Rate 

Cohn-Kanade 99 

JAFFE 99 

AT&T 98 

Average 98.7 

3.2.2. Experimental Results of HL-FER Based on Subjects 

The experiments for the HL-FER were performed in this order. In the fin t experiment, the HL-FER 

was validated on three different datasets. Each dataset possessed different facial features, such as  

some of the subjects have worn glasses in AT&T dataset while the subjects of the Cohn-Kanade  

and JAFFE datasets are free of glasses. The remaining facial features of AT&T and  

Cohn-Kanade datasets are quite similar with each other. On the other hand, the facial features, such as 

the eyes of the subjects in the JAFFE dataset are totally different from the eyes of the subjects of 

AT&T and Cohn-Kanade datasets [77,78].The HL-FER was evaluated for each dataset separately that 

means for each dataset, n-fold cross-validation rule (based on subjects) was applied. It means  

that out of n subjects, data from a single subject was retained as the validation data for testing the  

HL-FER, whereas the data for the remaining n − 1 subjects were used as the training data. This process 

was repeated n times, with data from each subject used exactly once as the validation data. The value 

of n varied according to the dataset used. The detailed results of this experiment for the three datasets 

are shown in Tables 3–5, respectively. 
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Table 3. Confusion matrix for the HL-FER using the Cohn-Kanade database of facial 

expressions (Unit: %). 

 Happiness Sadness Anger Disgust Surprise Fear 

Happiness 98 2 0 0 0 0 

Sadness 2 98 0 0 0 0 

Anger 0 0 99 0 0 1 

Disgust 0 0 0 99 1 0 

Surprise 0 0 0 0 100 0 

Fear 0 0 2 0 0 98 

Average 98.87 

Table 4. Confusion matrix for the HL-FER using the JAFFE database of facial expressions 

(Unit: %). 

 Happiness Sadness Anger Disgust Surprise Fear 

Happiness 99 1 0 0 0 0 

Sadness 2 98 0 0 0 0 

Anger 0 0 100 0 0 0 

Disgust 0 0 0 99 1 0 

Surprise 0 0 0 3 97 0 

Fear 0 0 0 0 0 100 

Average 98.80 

Table 5. Confusion matrix for the HL-FER using the AT&T database of facial expressions 

(Unit: %). 

 Happiness Sadness Anger Disgust Surprise Fear 

Happiness 98 2 0 0 0 0 

Sadness 1 99 0 0 0 0 

Anger 0 0 99 0 0 1 

Disgust 0 0 0 98 2 0 

Surprise 0 0 0 2 98 0 

Fear 0 0 1 0 0 99 

Average 98.50 

Figure 15. Sample reference images for three datasets: from left to right: Cohn-Kanade 

dataset, AT&T dataset, and JAFFE dataset, respectively. 
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Despite of all these differences, the HL-FER consistently achieved a high recognition rate when 

applied on these datasets separately, i.e., 98.87% on Cohn-Kanade, 98.80% on JAFFE, and 98.50% on 

the AT&T dataset. This means that, unlike Zia et al. [64], the HL-FER is robust i.e., the system not 

only achieves high recognition rate on one dataset but shows the same performance on other datasets 

as well. The reference images of the three datasets are shown in Figure 15. 

3.2.3. Experimental Results of HL-FER Based on Datasets 

In the second experiment the HL-FER cross-dataset validation was performed. This means that 

from the three datasets, data from the two datasets were retained as the validation data for testing the 

system, and the data from the remaining dataset was used as the training data. This process was 

repeated three times, with data from each dataset used exactly once as the training data.  

Table 6. The recognition rate of the HL-FER at the first level for recognizing the 

expressions category such as Lips-Based, Lips-Eyes-Based, and Lips-Eyes-Forehead-Based 

on Cohn-Kanade dataset (Unit: %). 

Expressions Category Recognition Rate 

Lips-Based 86 

Lips-Eyes-Based 83 

Lips-Eyes-Forehead-Based 87 

Average 85.3 

Table 7. The recognition rate of the HL-FER at the first level for recognizing the 

expressions category such as Lips-Based, Lips-Eyes-Based, and Lips-Eyes-Forehead-Based 

on the JAFFE dataset (Unit: %). 

Expressions Category Recognition Rate 

Lips-Based 80 

Lips-Eyes-Based 79 

Lips-Eyes-Forehead-Based 82 

Average 80.3 

Table 8. The recognition rate of the HL-FER at the first level for recognizing the 

expressions category such as Lips-Based, Lips-Eyes-Based, and Lips-Eyes-Forehead-Based 

on the AT&T dataset (Unit: %). 

Expressions Category Recognition Rate 

Lips-Based 87 

Lips-Eyes-Based 84 

Lips-Eyes-Forehead-Based 82 

Average 84.3 

The experimental results of the HL-FER at the first level classification for the category recognition 

on Cohn-Kanade dataset is shown in Table 6, while on the JAFFE dataset, the results are indicated in  

Table 7, and for the AT&T dataset, the results are represented in Table 8. Similarly, the experimental 

results of the HL-FER at the second level are summarized in Tables 9, 10, and 11 respectively. 
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Table 9. Confusion matrix for the HL-FER, showing the weighted average recognition 

accuracy for six expressions. Training on Cohn-Kanade dataset and testing on the JAFFE 

and AT&T datasets (Unit: %). 

 Happiness Sadness Anger Disgust Surprise Fear 

Happiness 81 4 3 4 2 6 

Sadness 5 85 2 3 1 4 

Anger 2 3 82 5 3 5 

Disgust 5 4 3 75 7 6 

Surprise 2 3 4 6 80 5 

Fear 2 4 3 1 5 85 

Average 81.30 

Table 10. Confusion matrix for the HL-FER, showing the weighted average recognition 

accuracy for six expressions. Training on the JAFFE dataset and testing on the  

Cohn-Kanade and AT&T datasets (Unit: %). 

 Happiness Sadness Anger Disgust Surprise Fear 

Happiness 71 4 7 6 5 7 

Sadness 8 74 6 5 3 4 

Anger 4 6 79 5 3 3 

Disgust 3 2 4 81 7 3 

Surprise 5 5 4 2 80 4 

Fear 3 5 8 2 6 76 

Average 76.80 

Table 11. Confusion matrix for the HL-FER, showing the weighted average recognition 

accuracy for six expressions. Training on the AT&T dataset and testing on the Cohn-

Kanade and JAFFE datasets (Unit: %). 

 Happiness Sadness Anger Disgust Surprise Fear 

Happiness 80 6 4 2 3 5 

Sadness 7 79 5 4 1 4 

Anger 4 6 77 5 3 5 

Disgust 5 5 8 72 4 6 

Surprise 2 3 5 4 83 3 

Fear 2 5 6 0 3 84 

Average 79.20 

3.2.4. Experimental Results of HL-FER under the Absence of Each Module 

Thirdly, a set of experiments was performed to assess the effectiveness of each module of the  

HL-FER (pre-processing, face detection and hierarchical recognition) separately. This experiment was 

repeated three times and the recognition performance was analyzed under three different settings: 

Firstly, the experiment was repeated without the pre-processing step. Secondly, the experiment was 

performed without including the face detection module. In this case the accuracy for the HL-FER is 
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same as indicated in Tables 3–5, i.e., when the proposed face detection method fails to detect the face 

in the facial frame, then there is no effect on the accuracy of the HL-FER, but the HL-FER processes 

the whole frame instead processing the region of interest (face); however, it will take a bit more time to 

recognize the expression by considering the whole frame. And, lastly, a single LDA and HMM were 

used to recognize all the expressions instead of using the HL-FER. The results for the three settings on 

the Cohn-Kanade dataset are shown in Tables 12, 3 and 13, on the JAFFE dataset are presented in 

Tables 14, 4, and 15, and on the AT&T dataset are displayed in Tables 16, 5, and 17, respectively. 

Table 12. Confusion matrix for the HL-FER (on the Cohn-Kanade dataset), while 

removing the preprocessing step (Unit: %). 

 Happiness Sadness Anger Disgust Surprise Fear 

Happiness 92 8 0 0 0 0 

Sadness 6 94 0 0 0 0 

Anger 0 0 95 0 0 5 

Disgust 0 0 0 93 7 0 

Surprise 0 0 0 10 90 0 

Fear 0 0 6 0 0 94 

Average 93.00 

Table 13. Confusion matrix for the HL-FER (on the Cohn-Kanade dataset), while 

removing the hierarchical recognition step (Unit: %). 

 Happiness Sadness Anger Disgust Surprise Fear 

Happiness 89 2 0 0 4 5 

Sadness 0 92 4 4 0 0 

Anger 0 5 90 5 0 0 

Disgust 0 0 11 89 0 0 

Surprise 4 0 0 6 90 0 

Fear 0 2 9 0 0 89 

Average 89.80 

Table 14. Confusion matrix for the HL-FER (on the JAFFE dataset), while removing the 

preprocessing step (Unit: %). 

 Happiness Sadness Anger Disgust Surprise Fear 

Happiness 91 9 0 0 0 0 

Sadness 7 93 0 0 0 0 

Anger 0 0 96 0 0 4 

Disgust 0 0 0 90 10 0 

Surprise 0 0 0 8 92 0 

Fear 0 0 8 0 0 92 

Average 92.33 
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Table 15. Confusion matrix for the HL-FER (on the JAFFE dataset), while removing the 

hierarchical recognition step (Unit: %). 

 Happiness Sadness Anger Disgust Surprise Fear 

Happiness 82 5 3 2 5 3 

Sadness 0 90 3 2 3 2 

Anger 1 3 93 2 0 1 

Disgust 4 0 6 87 0 3 

Surprise 2 4 0 0 88 6 

Fear 2 0 6 7 0 85 

Average 87.50 

Table 16. Confusion matrix for the HL-FER (on the AT&T dataset), while removing the 

preprocessing step (Unit: %). 

 Happiness Sadness Anger Disgust Surprise Fear 

Happiness 89 11 0 0 0 0 

Sadness 9 91 0 0 0 0 

Anger 0 0 96 0 0 4 

Disgust 0 0 0 90 10 0 

Surprise 0 0 0 12 88 0 

Fear 0 0 10 0 0 90 

Average 90.66 

Table 17. Confusion matrix for the HL-FER (on the AT&T dataset), while removing the 

hierarchical recognition step (Unit: %). 

 Happiness Sadness Anger Disgust Surprise Fear 

Happiness 92 0 3 2 0 3 

Sadness 3 89 0 2 3 3 

Anger 2 4 88 0 2 4 

Disgust 5 2 4 85 2 2 

Surprise 2 3 0 4 91 0 

Fear 1 4 0 8 3 84 

Average 88.16 

It can be seen from Tables 12–17 that both the preprocessing and hierarchical recognition modules 

of the HL-FER are important. As indicated in Tables 13, 15, and 17, the hierarchical recognition is 

mainly responsible for the high recognition accuracy of the HL-FER. When we removed the 

hierarchical recognition module, the recognition rate decreased significantly. These results support the 

theory that the problem of high similarity among the features of different expressions is a local 

problem. In other words, the features exist in the form of groups in the overall feature space. The 

expressions within one group are very similar, whereas they are easily distinguishable from those in 

the other groups; therefore, to overcome this problem in an effective manner, these groups (or 

expression categories) should be separated first and then techniques like LDA should be applied to 

each category separately. 
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In the next experiment, the accuracy of the HL-FER when tested across different datasets decreased 

significantly. We believe that this decrease in accuracy is due to training the HL-FER using the  

JAFFE dataset and then testing the HL-FER on the AT&T or Cohn-Kanade datasets, and vice versa. 

As explained earlier, the facial structures, especially eyes, of the subjects in the Japanese dataset are 

very different than those of the AT&T and Cohn-Kanade datasets [79], which acts as noise and thus 

degrades the HL-FER performance. To test this theory, another experiment was performed where the 

HL-FER was first trained using the Cohn-Kanade and then tested on the AT&T dataset, and then the 

same experiment was repeated while switching the datasets. The results of these experiments are 

shown in Tables 18 and 19.  

Table 18. Confusion matrix of the HL-FER trained on the Cohn-Kanade dataset and tested 

on the AT&T dataset (Unit: %). 

 Happiness Sadness Anger Disgust Surprise Fear 

Happiness 91 4 2 2 1 0 

Sadness 4 90 3 0 0 3 

Anger 1 2 92 0 0 5 

Disgust 3 1 3 89 4 0 

Surprise 0 2 3 3 90 2 

Fear 0 2 3 1 2 92 

Average 90.70 

Table 19. Confusion matrix of the HL-FER trained on the AT&T dataset and tested on  

the Cohn-Kanade dataset (Unit: %). 

 Happiness Sadness Anger Disgust Surprise Fear 

Happiness 89 4 2 2 1 2 

Sadness 2 92 0 2 4 0 

Anger 0 3 88 4 2 3 

Disgust 0 2 4 90 2 2 

Surprise 5 1 2 3 87 2 

Fear 1 3 1 2 3 90 

Average 89.30 

It can be seen from the Tables 18 and 19 that the HL-FER achieved good results and proved the 

early stated theory of lower recognition accuracy due to the difference in the facial features of the 

subjects in the JAFFE dataset and the other two datasets. 

4. Comparison and Analysis of HL-FER 

The performance of the HL-FER was compared against nine conventional methods [34–40,64,79], 

for all the three datasets, i.e., the Cohn-Kanade, JAFFE, and AT&T datasets of facial expressions. All 

of these methods were implemented by us using the instructions provided in their respective papers. 

For each dataset, n-fold cross-validation rule (based on subjects) was applied. In other words, out of  

n subjects, data from a single subject was retained as the validation data for testing the HL-FER, 

whereas the data for the remaining n − 1 subjects were used as the training data. This process was 
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repeated n times, where the value of n varied according to the dataset used. The average recognition 

results (for the three datasets) for each of these conventional methods are listed in Table 20. It can be 

seen that the HL-FER outperformed the existing facial expression systems.  

Table 20. Comparison results of the HL-FER with some of the existing works for the three 

standard Cohn-Kanade, JAFFE, and AT&T datasets for six basic facial expression under 

the same settings as described in Section 3.1 (Unit: %).  

Existing Work [64] [34] [35] [36] [37] [38] [39] [40] [79] HL-FER 

Average Accuracy Rate 91 86 87 85 81 69 82 86 87 98 

Lastly, to analyze the computational cost of the HL-FER, its average recognition time for the three 

datasets was compared to that of [64], as [64] achieved the highest recognition accuracy in the above 

experiment among the nine conventional methods. The average computational time taken by [64] for 

the Cohn-Kanade, JAFFE, and AT&T datasets was 662, 375, and 590 ms, respectively. The datasets 

had 5,400, 205, and 240 images, respectively. On the other hand, the HL-FER took 1,655 ms for the 

Cohn-Kanade dataset, 639 ms for the JAFFE dataset, and 1,180 ms for the AT&T dataset. These 

results show that though the HL-FER showed significant improvement over conventional methods in 

terms of recognition accuracy, it achieved that at the expense of a higher computational cost. In the 

HL-FER, we used two level classifications and in each level, we utilized HMM for classification; 

therefore, the HL-FER took a bit more time than of the existing method [64]. 

All these experiments were performed in the laboratory (offline validation) using three standard 

datasets. Though the system performed accurately and robustly in all the experiments, the effects on 

system performance once implemented in real time are yet to be investigated. There exist several 

elements that could degrade the systems performance, such as the clutter and varying face angles. 

Clutter means that there could be some unnecessary objects in the images along with the test subject. 

Solving such problems would require a real-time robust segmentation technique. Moreover, the images 

used in this work were taken only from the frontal view; however, in real life the angles of the camera 

might vary i.e., side views can also happen. Therefore, further study is needed to tackle these issues 

and maintain the same high recognition rate in real-life environment.  

Eventually, we envision that the HL-FER will be employed in smartphones. Even though our 

system showed high accuracy, it employs two-level-recognition with HMMs used at each level. This 

might become a complexity issue, especially when used in smartphones. One solution could be to use a 

lightweight classifier such as k-nearest neighbor (k-NN) at the first level; however k-NN has its own 

limitations such as it is very sensitive to the presence of inappropriate parameters and sensitive to noise 

as well. Therefore, it can have poor performance in a real-time environment if the training set is large. 

Therefore, further study is needed to find ways to maintain the high accuracy of the HL-FER while 

improving its efficiency at the same time to be used in smartphones.  

5. Conclusions 

Over the last decade, automatic human FER has become an important research area for many 

applications. Several factors make FER a challenging research problem, such as varying light 

conditions in training and test images, the need for automatic and accurate detection of faces before 
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feature extraction, and the high similarity among different expressions resulting in overlaps among 

feature values of different classes in the feature space. That is why, though several FER systems have 

been proposed that showed promising results for a certain dataset, their performance was significantly 

reduced when tested with different datasets. In this paper, we proposed and validated the accuracy of a 

HL-FER. Unlike the previous systems, the HL-FER involved a pre-processing step based on global 

histogram equalization (GHE), which helped in provide high accuracy by eliminating the light effects. 

We also proposed a face detection technique that utilizes both gray levels and skin-tones to 

automatically detect faces with high accuracy. Further, we employed both PCA and ICA to extract 

both the global and the local features. Finally, we used a HL-FER to overcome the problem of high 

similarity among different expressions. Expressions were divided into three categories based on 

different parts of the face. At the first level, LDA was used with an HMM to recognize the expression 

category. At the second level, the label for an expression within the recognized category is recognized 

using a separate set of LDA and HMM, trained just for that category. In order to evaluate the 

performance of the HL-FER detailed experiments were conducted on three publicly available datasets 

in three different experimental settings. The HL-FER achieved a weighted average recognition 

accuracy of 98.7% using three HMMs, one for per category expression across three different datasets 

(the Cohn-Kanade dataset has 5,400 images, the JAFFE dataset has 205 images, and the AT&T dataset 

has 240 images), illustrating the successful use of the HL-FER for automatic FER. 
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Appendix 

This sections provides an overview of the results of different other experiments performed during 

the course of the development of this work. 

Table A1. Confusion matrix of PCA and HMM using Cohn-Kanade (CK), JAFFE (JA), 

and AT&T (AT) databases of facial expressions (Unit: %). 

 
Happiness Sadness Anger Disgust Surprise Fear 

CK JA AT CK JA AT CK JA AT CK JA AT CK JA AT CK JA AT 

Happiness 63.5 55 50.5 5.5 9.9 15.5 6.5 7.3 6.3 5.3 8.5 9.1 9.2 11 9.7 10 8.3 8.9 

Sadness 6.3 13 21 55.2 50.3 45 10.5 6.9 8.3 9.4 12 9.9 5.9 8.9 7.7 12.7 8.9 8.1 

Anger 4.5 6.7 8.9 12.5 9.8 10.9 53.9 48 51.8 11.9 10.7 9.5 6.3 9.8 8.9 10.9 15 10 

Disgust 4.5 6.8 9.4 8.3 7.8 10.8 9.5 8.9 12 65.8 55.8 40 7.7 14 21 4.2 6.7 6.8 

Surprise 8.9 8.5 8 6.9 5.6 7.9 8.6 8.7 8.9 9.8 10 11.6 60.1 60 55.9 5.7 7.2 7.7 

Fear 9.6 6.7 7.8 11.8 10.7 9.1 10.5 13 15 9.7 8.4 8.4 8.5 8.2 12 49.9 53 47.7 

Average 56.33 50.16 51.23 53.85 58.66 50.2 
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Table A2. Confusion matrix of PCA + LDA and HMM using Cohn-Kanade (CK), JAFFE 

(JA), and AT&T (AT) databases of facial expressions (Unit: %). 

 
Happiness Sadness Anger Disgust Surprise Fear 

CK JA AT CK JA AT CK JA AT CK JA AT CK JA AT CK JA AT 

Happiness 68.1 70.9 69.1 7.9 8 9.1 5.6 5.4 6.2 7.9 5.9 5.5 4.7 3.6 5.8 5.8 6.2 4.3 

Sadness 6.8 8.8 10 72.3 69.5 65.5 7.2 6 4.8 5.8 4.8 7.9 4 5 5.8 3.9 5.9 6 

Anger 4.9 3.2 3.3 7.9 4.8 5.1 70.9 74.9 75 5.8 5.5 3.4 5.6 4.6 5.2 4.9 7 8 

Disgust 3.9 6.7 4.3 8.5 7.9 7.5 7.8 7.8 6.5 68.5 61 66.7 5.6 10 8.9 5.7 6.6 6.1 

Surprise 6.1 3.3 5.7 4.3 4.2 3.2 5.2 3.4 6.8 6.1 8.1 9 73.6 78.9 71 4.7 2.1 4.3 

Fear 5.8 3.9 3.6 6.6 5.7 6.1 6.9 7.9 8.1 5.8 5.7 4.4 5.9 5.8 4.8 69 71 73 

Average 69.36 69.10 74.24 65.40 74.50 71.00 

Table A3. Confusion matrix of ICA and HMM using Cohn-Kanade (CK), JAFFE (JA), 

and AT&T (AT) databases of facial expressions (Unit: %). 

 
Happiness Sadness Anger Disgust Surprise Fear 

CK JA AT CK JA AT CK JA AT CK JA AT CK JA AT CK JA AT 

Happiness 69.2 65.7 63 6.2 9.5 10 5.4 4.6 6.8 5.1 6.9 7.9 6.0 5.7 5.9 8.1 7.6 6.4 

Sadness 2.8 9.6 9 71.3 69 71.7 8.6 3.7 5.1 5.8 4.8 3.8 7.7 6.9 6.1 3.8 6 4.3 

Anger 4.7 3.6 4.3 8.7 4.9 5.6 73.9 77.4 73.9 5.9 3.8 4.6 0 4.3 3.7 6.8 6 7.9 

Disgust 4.9 4 3.7 8.7 6 4.9 7.9 6.2 5.5 65.8 71.5 69.4 6.8 7.7 9.9 5.9 4.6 6.6 

Surprise 3.2 5 3.6 4.7 5.9 3.4 5.3 6.4 6.1 3.9 8.9 9 77.1 69 75 5.8 4.8 2.9 

Fear 5.8 2.6 4 8.7 3.8 4.1 7.9 8 7.6 6.5 4.5 5.3 6.7 5.3 6.2 64.4 75.8 72.8 

Average 65.96 70.66 75.06 68.90 73.70 71.00 

Table A4. Confusion matrix of ICA + LDA and HMM using Cohn-Kanade (CK), JAFFE 

(JA), and AT&T (AT) databases of facial expressions (Unit: %). 

 
Happiness Sadness Anger Disgust Surprise Fear 

CK JA AT CK JA AT CK JA AT CK JA AT CK JA AT CK JA AT 

Happiness 73.0 75.7 70.8 5.8 7.2 11 5.8 4.7 0 6.9 0 6.2 0 5.2 7.2 8.5 7.2 4.8 

Sadness 4.2 6.9 7.1 75.1 73 75 6.7 5.2 4.2 6.2 5.9 6 2.5 4.3 5 5.3 4.7 2.7 

Anger 3 4.6 5.2 8.9 5.2 3.3 69.9 71.2 76 6.7 4.8 4.8 6.7 8 5.4 4.8 6.2 5.3 

Disgust 0 6.7 5.5 6.6 0 6.4 9.2 8.4 7.2 75.8 69.9 72.8 8.4 9 8.1 0 6 0 

Surprise 6.5 3 3.2 4.8 3.2 2.6 3.5 3.8 3.1 0 6 7.3 79.3 80 81.4 5.9 4 2.4 

Fear 4.5 0 0 7.8 0 3 5.6 8.9 10 4.9 6.6 7 0 7.8 3 77.2 76.7 77 

Average 73.16 74.36 72.36 72.83 84.4 76.96 
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Figure A1. 3D feature plots of the HL-FER after applying LDA at the first level for the 

three expression-categories such as lips-based, lips-eyes-based, or lips-eyes-forehead-based 

expressions on Yale B dataset for six different types of facial expressions. It can be seen 

that at the first level, the HL-FER achieved 100% classification rate in expressions 

categories classification.  

 

Figure A2. 3D feature plots of the HL-FER after applying LDA at the second level for 

recognizing the expressions in each category on Yale B dataset for six different types of 

facial expressions. It can be seen that at the second level, the HL-FER achieved much 

higher recognition rate as compared to a single-LDA via single-HMM shown in Figure 7. 

 
  

-0.03

-0.02

-0.01

0

0.01

0.02

-0.03

-0.02

-0.01

0

0.01

0.02

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

 

LDA-IC-1
LDA-IC-2

 

L
D

A
-I

C
-3

Lips-Based

Lips-Eyes-Based

Lips-Eyes-Forehead-Based

-0.06
-0.05

-0.04
-0.03

-0.02

-0.01
0

0.01
0.02

-0.08

-0.06

-0.04

-0.02

0

0.02

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

 

LDA-IC-1
LDA-IC-2

 

L
D

A
-I

C
-3

Happy

Anger

Sad

Disgust

Surprise

Fear



Sensors 2013, 13 16713 

 

 

Figure A3. 3D-feature plot of single-LDA via single-HMM on Yale B dataset for six 

different types of facial expressions. It can be seen that using a single-LDA via  

single-HMM approach did not yield as good a separation among different classes as was 

achieved by the HL-FER (See Figure 6). 

 

Table A5. Confusion matrix for the HL-FER using Yale B dataset of facial expressions 

(Unit: %). 

 Happiness Sadness Anger Disgust Surprise Fear 

Happiness 99 1 0 0 0 0 

Sadness 3 97 0 0 0 0 

Anger 0 0 98 0 0 2 

Disgust 0 0 0 99 1 0 

Surprise 0 0 0 3 97 0 

Fear 0 0 2 0 0 98 

Average 98.00 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/).  

-0.05

-0.04

-0.03
-0.02

-0.01
0

0.01
0.02

-0.03

-0.02

-0.01

0

0.01

0.02

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

 

LDA-IC-1
LDA-IC-2

 

L
D

A
-I

C
-3

Happy

Anger

Sad

Disgust

Surprise

Fear


