
Fault Free Shortest Path Routing on the de
Bruijn Networks?

Ngoc Chi Nguyen, Nhat Minh Dinh Vo and Sungyoung Lee

Computer Engineering Department, Kyung Hee Univerity
1, Seocheon, Giheung, Yongin, Gyeonggi 449-701 KOREA

{ncngoc, vdmnhat, sylee}@oslab.khu.ac.kr

Abstract. It is shown that the de Bruijn graph (dBG) can be used
as an architecture for interconnection networks and a suitable structure
for parallel computation. Recent works have classified dBG based rout-
ing algorithms into shortest path routing and fault tolerant routing but
investigation into shortest path in failure mode in dBG has been non-
existent. In addition, as the size of the network increase, more faults are
to be expected and therefore shortest path algorithms in fault free mode
may not be suitable routing algorithms for real interconnection networks,
which contain several failures. Furthermore, long fault free path may lead
to high traffic, high delay time and low throughput.In this paper we in-
vestigate routing algorithms in the condition of existing failure, based
on the Bidirectional de Bruijn graph (BdBG). Two Fault Free Shortest
Path (FFSP) routing algorithms are proposed. Then, the performances
of the two algorithms are analyzed in terms of mean path lengths. Our
study shows that the proposed algorithms can be one of the candidates
for routing in real interconnection networks based on dBG.

1 Introduction

For routing in dBG, Z. Liu and T.Y. Sung [1] proposed eight cases shortest paths
in BdBG. Nevertheless, Z. Liu’s algorithms do not support fault tolerance. J.W.
Mao [4] has also proposed the general cases for shortest path in BdBG (case
RLR or LRL). For fault tolerance issue, he provides another node-disjoint path
of length at most k + log2k +4 (in dBG(2,k)) beside shortest path. However, his
algorithm can tolerate only one failure node in binary de Bruijn networks and
it cannot achieve shortest path if there is failure node on the path.

Considering limitations of routing in dBG, we intend to investigate shortest
path routing in the condition of failure existence. Two Fault Free Shortest Path
(FFSP) routing algorithms are proposed. Time complexity of FFSP2 in the
worst case is 0(2

k
2 +1d) in comparison with 0((2d)

k
2 +1) of FFSP1 (in dBG(d,k)

and k=2h). Therefore, FFSP2 is our goal in designing routing algorithm for large
network with high degree.
? This research work has been partially supported by Korea Ministry of Information

and Communications’ ITRC Program joint with Information and Communication
University



The rest of this paper is organized as follows. Background is discussed in sec-
tion 2. In section 3, FFSP routing algorithms are presented. Performance analysis
for FFSP routing algorithms is carried in section 4. Finally, some conclusions
will be given in Section 5.

2 Background

The BdBG graph denoted as BdBG(d,k)[1] has N=dk nodes with diameter k and
degree 2d. If we represent a node by d0d1...dk−2dk−1, where dj ∈ 0, 1, ..., (d− 1),
0≤j≤(k-1), then its neighbor are represented by d1...dk−2dk−1p(L neighbors, by
shifting left or L path) and pd0d1...dk−2(R neighbors, by shifting right or R
path), where p = 0, 1, ..., (d−1). We write if the path P = R1L1R2L2 consists of
an R-path called R1, followed by an L-path called L1, an R-path called R2, an
L-path called L2, and so on, where subscripts are used to distinguish different
sub-paths. Subscripts of these sub-paths can be omitted if no ambiguity will
occur, e.g., P = R1LR2 or P=RL.

The following fig. 1a shows us an example for BdBG(2,4). Fig. 1b shows us
eight cases of shortest path routing on BdBG. The gray areas are the maximum
substring between source (s) and destination (d). The number inside each block
represents the number of bits in the block.

Fig. 1. a)The BdBG(2,4); b)Shortest path types[1].

3 Fault Free Shortest Path Routing Algorithms

By examining this example, finding shortest path between S 1110121100 and
D 0012111001 (dBG(3,10)), we can easily see that methods provided by Liu
and Mao [1][4] cannot provide FFSP. Their methods determine the maximum
matched string, calculate path length corresponding with the matched string and
then shifting are performed to finish routing process. In this case, the matched
string is ”00”, path length is 8 and shortest path is 1110121100 → 1101211001



→ 1012110012 → 0121100121 → 1211001211 → 2110012111 → 1100121110 →
1001211100→ 0012111001 (A). If node 1012110012 is failed, then Liu’s algorithm
is failed in finding shortest path. Mao’s algorithm can only work in binary dBG,
hence it fails in dBG(3,10).

In order to find shortest path in the condition of failure existing, we can-
not base on string matching concept. A shortest path found by string matching
cannot be used if there is a fault in the path (as shown in the previous exam-
ple). Therefore, a new concept of multi level discrete set is proposed (definition
1). By using multi level discrete set, several paths of a specific source destina-
tion pair are provided (redundancy is provided). In the above example, we can
provide 3 shortest paths from S to D. Those are A; 1110121100 → 1111012110
→ 1111101211 → 1111012111 → 1110121110 → 1101211100 → 1012111001 →
0121110011 → 0012111001 (B); and 1110121100 → 2111012110 → 1211101211
→ 0121110121 → 0012111012 → 0001211101 → 0000121110 → 0001211100 →
0012111001 (C). In the case A is a failure path, we can use other 2 FFSP B and
C. For building our algorithms, we assume that there is a separately protocol
which detects failure nodes and then let other nodes know in periodically. Note
that, level is defined simply in terms of distance from the root (level 1).

This section is organized as follows, from definition 1 to FFSP1, we state
some concepts how to provide several shortest paths of a specific source and des-
tination, and how to find FFSP among these shortest paths. Through definition
2 to FFSP2, we state how to improve the performance of our algorithm.

Definition 1: the level mth discrete set (DSm) is a set which contains all
neighbors of each element in discrete set level m-1; in the constraint that there
is no existent element of discrete set level m coincides with another element of
discrete set level qth (q ≤ m) or failure node set.

Lemma 1: DSm is fault free.
Lemma 2: all the neighbors of a node belong to DSm are in DSm−1, DSm

and DSm+1, except failure nodes.
Proof: obviously we see that DS1 and DS2 contain all the neighbors of DS1

except failure nodes; DS1, DS2 and DS3 contain all the neighbors of DS2 except
failure nodes. So Lemma 2 is right at m=1,2. Assuming that lemma 2 is right
until p, now we prove it is right at p+1. Suppose it’s wrong at p+1. That means
there exist a neighbor A of an element B∈DSp+1, and A ∈ DSi, i < p. Because
lemma 2 is right until p, hence all the neighbors of A are in DSi−1, DSi and
DSi+1 except failure nodes. Therefore, there exists an element B’∈DSi−1, DSi

or DSi+1, and B’=B. It contradicts with definition 1. So Lemma 2 is right at
p+1. Following inductive method, lemma 2 is proved.

Lemma 3: there exists no neighbor of any element of DSm, which is a
duplicate of any element of DSh, ∀h≤m-2.

Proof: suppose there is a neighbor A of an element B ∈ DSm duplicates
with an element A’ of DSh (h ≤ m-2). Following Lemma 2, all the neighbors of
A’ are in DSh−1, DSh and DSh+1. Therefore, there must exist a neighbor B’ of
A’ in level h-1 or h or h+1, and B’=B. It contradicts with definition 1.



Corollary 1: for duplicate checking at the next level of DSq, it is not nec-
essary to check with any element of DSm,∀m≤q-2.

By assigning source node S to DS1, then expanding to the higher level, we
have the following theorem.

Theorem 1: in BdBG(d,k), we can always find a FFSP from node S∈DS1

to node Ax ∈DSx(∀x≤k), if it exists.
Proof: we use inductive method to prove this theorem. When x=1, 2, theo-

rem 1 is right. Assuming that theorem 1 is right until m, m ≤ k. Now we prove
it is right until m+1. Suppose that path from S to Am+1 is not the FFSP. Then
we have the following cases,

• There exist Ap∈DSp, Ap = Am+1and p < m+1.It contradicts definition 1.
• There exists a FFSP, S→B1→B2→...→Bk→...→Bz→...→Am+1, and Bk,

Bk+1,..., Bz not belonging to any DSi (∀ i≤m+1). Because Bk−1 ∈DSj (j≤m+1).
Following Lemma 2, all the neighbors of Bk−1 are in DSj−1orDSjorDSj+1, ex-
cept failure nodes. Therefore, Bk must be a failure node.

→Theorem 1 is right at m+1. Theorem 1 is proved.
Corollary 2: path length of a path from S∈DS1 to Ax ∈DSx is x-1.
Fault free shortest path algorithm 1 (FFSP1) is proposed as a result of the-

orem 1 (shown in fig. 2a). It can always find FFSP in all cases (fault free mode,
arbitrary failure mode) if the network still remain connected.

Proof of FFSP1: suppose path s→...→aip→bjk→...→d is not FFSP, and
then we have the following cases,

• There exist a FFSP s→...→ai′p′→bj′k′→...→d (i’≤i, j’≤j). It contradicts
with the above assumption that aip and bjk are the first neighbors between
discrete sets A and B.

• There exist a FFSP s→...→ai′p′→c1→...→cm→bj′k′→...→d (i′ < i, j′ < j),
and c1, c2, ..., cm do not belong to any discrete set Ap or Bq (p≤i, q≤j). Due to
ai′p′ ∈Ai′ and following lemma 2, all the neighbors of ai′p′ are in Ai′−1, Ai′ and
Ai′+1 except failure nodes. Therefore c1 must be a failure node.

Example 1: we want to find a FFSP from source 10000 to destination 01021,
failure node 00102 (dBG(3,5)).

Applying FFSP1, we have, A1 = (10000) B1 = (01021) A2 = (00000, 00001,
00002, 01000, 11000, 21000) B2 = (10210, 10211, 10212, 00102, 10102, 20102).

However, 00102 is a failure node. So B2=(10210, 10211, 10212, 10102, 20102).
A3 = (20000, 00010, 00011, 00012, 00020, 00021, 00022, 10001, 10002, 00100,

10100, 20100, 01100, 11100, 21100, 02100, 12100, 22100)
Then we find that 02100 and 10210 in A3 and B2 are the first neighbors.

FFSP is found by tracking back from 02100 to 10000 and 10210 to 01021. We
have FFSP 10000 → 21000 → 02100 → 10210 → 01021. In this example, FFSP1
can provide 2 shortest paths (in the case of no failure node) 10000 → 21000 →
02100 → 10210 → 01021 and 10000 → 00001 → 00010 → 00102 → 01021. We
pick up one FFSP 10000→21000→02100→10210→01021 (node 00102 is fail).

Furthermore, we shall see that other elements like 00000, 00002, 01000, 11000
in A2 are useless in constructing a FFSP. So, eliminating these elements can
reduce the size of A3 (reduce the cost at extending to next level) and improve



the performance of our algorithm. It shows the motivation of FFSP2. Before
investigating FFSP2, we give some definition and theorem.

Definition 2: a dominant element is an element which makes a shorter path
from source to a specific destination, if the path goes through it.

Example 2: from the above example 1 we have 2 shortest paths (in the case
00102 is not a failure node) 10000 → 21000 → 02100 → 10210 → 01021 and
10000 → 00001 → 00010 → 00102 → 01021. Thus 00001 and 21000 are dominant
elements of A2, because they make shorter path than others of A2.

Fig. 2. a)Fault Free Shortest Path Algorithm 1 (FFSP1); b)Fault Free Shortest Path
Algorithm 2 (FFSP2).

Therefore, by eliminating some non-dominant elements in a level, we can
reduce the size of each level in FFSP1 and hence, improve the performance of
FFSP1. A question raised here is how we can determine some dominant elements
in a DSk and how many dominant elements, in a level, are enough to find FFSP.
The following theorem 2 is for determining dominant elements and corollary 3
answer the question, how many dominant elements are enough.

Theorem 2: If there are some elements different in 1 bit address at leftmost
or rightmost, the dominant element among them is an element which has shorter



path length toward destination for cases RL2, R (shown in fig. 1b) for leftmost
bit difference and LR2, L for rightmost bit difference.

Proof: as showing in fig. 1b, there are eight cases for shortest path. Only
four cases RL2, R, LR2 and L make different paths when sources are different
in leftmost bit or rightmost bit.

Example 3: following example 1, we check the dominant characteristic of
three nodes A 01000, B 11000 and C 21000 (in A2) to destination D 01021.
Three nodes A, B and C are leftmost bit difference. So, type RL2, R are applied.

• Apply type R: the maximum match string between A 01000 and D 01021
is 0, between B 11000 and D 01021 is 1, and between C 21000 and D 01021 is
2 → min path length is 3, in case of node C.

• Apply type RL2: the maximum match string [5] between A 01000 and D
01021 is 1 (path length: 6), between B 11000 and D 01021 is 1 (path length: 7),
and between C 21000 and D 01021 is 2 (same as case R) → min is 3, node C.

Therefore, minimum path length is 3 and dominant element is C.

Corollary 3: when we apply theorem 2 to determine dominant elements, the
maximum elements of DSm+1 are 2p(p is the total elements of DSm).

Proof: the maximum elements of DSm+1 by definition 1 are 2pd (dBG(d,k)).
We see that in 2pd there are 2p series of d elements which are different in 1 bit at
leftmost or rightmost. By applying theorem 2 to DSm+1, we obtain 1 dominant
element in d elements differed in 1 bit at leftmost or rightmost.

Fault Free Shortest Path Algorithm 2 (FFSP2) is proposed in fig. 2b.

The condition in line 5 and line 8 (fig. 2a, 2b) let us know whether there exists
a neighbor of array A and B of discrete set, ∀aip ∈A[i],∀bjk ∈B[j] . The SPD(M)
function, line 14 fig. 2b, finds the next level of DS M (DS N) and eliminates
non-dominant elements in N followed theorem 2. Expand(M) function, line 14
fig. 2a, finds the next level of DS M. Pathlength type p function, line 19,23 fig.
2b, checks path length followed type p of each element in T toward destination.
Eliminate function, line 20, 24, eliminates element in T, which has longer path
length than the other. The duplicate check(N) function, line 17 fig. 2a and line
27 fig. 2b, check if there is a duplicate of any element in N with other higher level
DS of N. For duplication checking, we use the result from corollary 1. Then, we
get FFSP by going back from aip to s and bjk to d.

Example 4: we try to find FFSP as in example 1. By applying FFSP2, we
have, A1 = (10000) B1 = (01021) A2 = (00001, 21000) B2 = (10210, 00102).
However, 00102 is a failure node. So B2 becomes (10210).

A3 = (00010, 10000, 10001, 02100). However, node 10000 coincides with
10000 of A1. So A3 becomes (00010, 10001, 02100). Then we find that 02100 and
10210 in A3 and B2 are the first neighbors. FFSP is found by tracking back from
02100 to 10000 and 10210 to 01021. We have FFSP 10000 → 21000 → 02100 →
10210 → 01021.



4 Performance analysis for FFSP1 and FFSP2

Mean path length is the significant to analyze and compare our algorithm to
others. Z. Feng and Yang [2] have calculated it based on the original formula,
Mean path length = Totalinternaltraffic

Totalexternaltraffic for their routing performance. We can
use the above equation to get the mean path length in the case of failure. We
assume that failure is random, and our network is uniform. That means the
probability to get failure is equal at every node in the network.

Table 1 shows the results in the simulation of mean path length using six
algorithms, SCP[3], RFR, NSC, PMC[2], FFSP1 and FFSP2. Our two algorithms
show to be outstanding in comparison with the four algorithms. They always
achieve shorter mean path length than the other algorithms.

Table 1. Mean path length of FFSP1, FFSP2 in comparison with others.

This section is completed with study in time complexity of our algorithms.
As A. Sengupta [9] has shown that dBG(d,k) has connectivity of d-1. Hence, our
time complexity study is based on assumption that the number of failures is at
most d-1 and our study is focused on large network with high degree (d>>1).
Therefore, diameter of our network in this case is k. We have the following cases,

• For FFSP1, the second level DS lies in the complexity class 0(2d) , the
third level DS lies in the complexity class 0(2d(2d-1))≈ 0(4d2), the fourth lies in
0(2d(2d−1)2) ≈ 0(8d3), etc... Hence, time complexity of FFSP1 lies in the com-
plexity class 0((2d)n), the value of n equals to the maximum level DS provided by
FFSP1. In the worst case, time complexity of FFSP1 lies in 0((2d)

k
2 +1) (k=2h),



or 0((2d)
k+1
2 ) (k=2h+1), k is maximum path length from source to destination

(the diameter).
• The computation time of FFSP2 can be divided into 2 parts. One is per-

forming computation on expanding to next level, checking for duplicate and
neighboring checking between DS A[m] and B[q]. This part is like FFSP1, the
difference is that each DS here grows following a geometric progression with
common quotient 2 and initial term 1 (as shown in corollary 3). The other part
is performing computation on finding dominant elements. Hence, the second
level DS lies in the complexity class 0(2+2d)≈0(2d), the third level DS lies in
the complexity class 0(4+4d)≈0(4d), the fourth lies in 0(8+8d)≈0(8d), etc...
Hence time complexity of FFSP2 lies in the complexity class 0(2nd), the value
of n equals to the maximum level DS provided by FFSP2. FFSP2 would cost us
0(2

k
2 +1d) (k=2h), or 0(2

k+1
2 ) (k=2h+1) time in the worst cases, k is maximum

path length from source to destination (the diameter).

5 Conclusion

We have proposed new concepts, and routing algorithms in dBG(d,k). Our rout-
ing algorithms can provide shortest path in the case of failure existence. Our
simulation result shows that FFSP2 is an appropriate candidate for the real net-
works with high degree and large number of nodes, while FFSP1 is a good choice
for high fault tolerant network with low degree and small/medium number of
nodes. Therefore, the algorithms can be considered feasible for routing in real
interconnection networks.

References

1. Zhen Liu, Ting-Yi Sung, ”Routing and Transmitting Problem in de Bruijn Net-
works” IEEE Trans. on Comp., Vol. 45, Issue 9, Sept. 1996, pp 1056 - 1062.

2. O.W.W. Yang, Z. Feng, ”DBG MANs and their routing performance”, Comm.,
IEEE Proc., Vol. 147, Issue 1, Feb. 2000 pp 32 - 40.

3. A.H. Esfahanian and S.L. Hakimi, ”Fault-tolerant routing in de Bruijn communica-
tion networks”, IEEE Trans. Comp. C-34 (1985), 777.788.

4. Jyh-Wen Mao and Chang-Biau Yang, ”Shortest path routing and fault tolerant
routing on de Bruijn networks”, Networks, Vol. 35, Issue 3, Pages 207-215 2000.

5. Alfred V. Aho, Margaret J. Corasick, ”Efficient String Matching: An Aid to Bibli-
ographic Search”, Comm. of the ACM, Vol. 18 Issue 6, June 1975.


