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SUMMARY
We present an algorithm for offsetting the workspace obstacles of a circular robot. Our method has
two major steps: It finds the raw offset curve for both lines and circular arcs, and then removes
the global invalid loops to find the final offset. To generate the raw offset curve and remove
global invalid loops, O(n) and O((n + k) log m) computational times are needed respectively,
where n is the number of vertices in the original polygon, k is the number of self-intersections
and m is the number of segments in the raw offset curve, where m ≤ n. Any local invalid
loops are removed before generating the raw offset curve by invoking a pair-wise intersection
detection test (PIDT). In the PIDT, two intersecting entities are checked immediately after they
are computed, and if the test is positive, portions of the intersecting segments are removed. Our
method works for conventional polygons as well as the polygons that contain circular arcs. Our
algorithm is simple and very fast, as each sub-process of the algorithm can be completed in
linear time except the last one, which is nearly linear. Therefore, the overall complexity of the
algorithm is nearly linear. By applying our simple and efficient approach, offsetting obstacles of
any shape make it possible to construct a configuration space that ensures optimized motion planning.

KEYWORDS: Mobile robot; Obstacle; Polygon offsetting; Motion planning; Configuration space;
Global invalid loop.

1. Introduction
Offsetting creates a new object similar to a given object, but at a specific distance, which is called
the offset distance. Polygon offsetting is classified into two approaches: inner and outer offsetting.
Although both of the approaches share common properties, they also have some differences. For
example, the offset direction becomes opposite from one offset to another. This study is concerned
with offsetting a polygon to facilitate efficient motion planning of a circular robot with radius d

(which will work as an offset distance) in a workspace with obstacles of any shape. To plan a motion,
the robot must compute the outer offsets of the workspace obstacles. In this paper, our theory and
implementations deal with the case of outer offsetting in particular, which is a similar operation to
the Minkowski sum.

In R2, the construction of the Minkowski sum of a polygon with a disc is called polygon offsetting.
Given two sets, P and Q, their Minkowski sum is the set of points {p + q |p ∈ P, q ∈ Q}.
The Minkowski sum is a widely used technique in computer-aided design and manufacturing
(CAD/CAM), pocket machining, robot motion planning, and related research areas.
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2 Offsetting obstacles of any shape for robot motion planning

Fig. 1. (Colour online) Polygon offsetting in robot motion planning: (a) Workspace of a circular robot with
polygonal obstacles and (b) configuration space of the robot after offsetting the workspace obstacles. A circular
robot in the workspace is represented by a point in the configuration space. A sample path is also shown from
the start to the goal position.

According to Wein et al.1, a robot path has to be short, clear and smooth. A path should be the
shortest possible convenient route; the distance of any point on the path to the closest obstacle should
not be lower than some predefined value, and the path should not contain any sharp turns. Offsetting
polygonal obstacles is a method of constructing the representation of a robot and obstacles in the
configuration space to find the optimum path. Figure 1 illustrates the workspace and configuration
space of a translating circular robot.

1.1. Related works: polygon offsetting
Research regarding the offsetting of a two-dimensional (2D) point-sequence curve (PS-curve) is
classified into four categories2: pair-wise, level set, Voronoi diagram and bisector-based technique.
Among these, the pair-wise offsetting technique has received more attention than the others. In this
method, only the offset of the two end points of a segment is computed along their normal direction
according to the offset distance and, finally, any invalid loops are removed. Choi and Park3 proposed
a pair-wise offset algorithm for a polygon with no islands, and introduced a pair-wise interference-
detection (PWID) test to remove any local invalid loops. During the PWID test, their method compares
each pair of elementary offset segments for interference.

Wein4 presented a variant of the Minkowski sum with a disc to compute the exact and approximate
offsets of polygons. This method decomposes the non-convex polygon into sub-polygons with only
convex vertices, and finds the union of all of the sub-offsets. The decomposition technique offsets
the intermediate edges twice, even though they do not take part in the final offset as they are not
contour edges. Also, computing the union is a computationally expensive task. Another variant of
the Minkowski sum of two polygons is proposed by Guibas and Seidel5 to compute the convolution
of two bodies. The controlled linear perturbation (CLP) approach is presented in ref. [6], and it
is demonstrated on the Minkowski sums of polyhedra. Assigning inconsistent truth values to the
predicates can cause errors with this method.

To generate the initial offset curve, a bisector method is introduced by Wong and Wong7 that
can automatically bridge the islands with the main profile. A segment of two adjacent intersecting
bisectors is removed to handle local invalid loops. It takes O(n2) time to compute distance between
two PS-curves, where n is the total number of curves. After that, Kim8 and Kim et al.9 used the
bisector method to calculate the raw offset curve. They used the direction every time to report global
invalid loops.

Our algorithm is a hybrid of the pair-wise and bisection methods. We find the offset points of a
line segment along its normal direction to the offset distance d and then, to remove the local invalid
loops, apply local geometry to check whether two adjacent segments intersect, as the bisector method
does for two adjacent bisectors. If they do, portions of these two intersecting segments are removed.
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The Voronoi diagram implementation of polygon offsetting is another popular approach. Bo10

introduced a recursive method to compute a trimmed offset of a polygon by constructing a topological
structure of all of Voronoi edges. Held11 presented an O(n log n) algorithm to generate the Voronoi
diagram of curvilinear polygons and then find the offset from the Voronoi diagram in O(n) time,
where n is the number of boundaries of the polygon. A circular arc extension to Held11 is performed
based on a randomized incremental insertion.12 The Voronoi diagrams of the points, line segments
and circular arcs in 2D Euclidean space are computed in O(n log n) times.

McMains et al.13 presented an algorithm to build thin-walled parts in a fused deposition modeling
machine. Chen and Mcmains14 applied winding numbers to offset polygons. Their approach calculates
the offset of multiple, non-overlapping polygons with islands and takes O((n + k) log n) time and
O(n + k) space, where n is the number of vertices in the input polygon and k is the number of
self-intersections in the raw offset curve. Blomgren15 first introduced the offsetting of a non-uniform
rational B-spline (NURBS) curve by offsetting the control polygon and generating a new curve that
had the same weights and knot vector as the base curve. Klass16 approximates cubic splines at every
segment separately by computing the inner control points based on the curvatures.

1.2. Related works: robot motion planning
Robot motion planning has been studied extensively in robotics literature for many years. There is
a rich set of motion planning algorithms: grid-based search, cell decomposition, Minkowski sum,
potential field method, sampling-based and some others. These algorithms deal with two approaches:
sensor-based and model-based17 techniques. The first generates information through the sensors in
real time, and the second one generates a mathematical model of the environment. Among the variety
of motion planning algorithms, in this paper, we will focus on finding a mathematical model of the
robot environment that is very close to the method that employs the Minkowski sum.

A methodology for robot path planning among polygonal obstacles in a dynamic environment
using mathematical modeling was introduced in refs. [17] and [18]. These offsets contradict the
smooth path properties of an optimized path in the workspace as described in Wein et al.,1 and cause
the robot to execute many sharp turns in obstacle corners. However, these methods cannot handle a
polygon that consists of both lines and arcs.

An approach to the coverage path planning problem, called Boustrophedon Cellular Decomposition
(BCD), was proposed by Choset.19 In this method, obstacles are considered to be polygons, and the
accessible area of the robot is decomposed into non-overlapping cells so that the union of all of the
cells forms the whole accessible area. Another approach to the online complete coverage problem
was proposed in ref. [20]. Schwartz and Sharir21 were the first to apply an exact cell decomposition
technique to solve the motion planning problem by using their famous piano mover’s problem. A
trapezoidal map of the free space with polygonal obstacles and path planning from the road map were
presented by Berg et al.22

Two common approaches are used for the environments in which the future locations of moving
agents are known: adding a time dimension to the configuration space, or separating the spatial and
temporal planning problems.23 When the future locations are unknown, the planning problem is
solved locally24 or in conjunction with a global planner that guides the robot toward a goal.16, 25

For robot motion planning in the Euclidean space, different algorithms are proposed based on
computing the Minkowski sum and the representation of the configuration space obstacles. The
motion of a polygonal robot in an environment with polygonal obstacles is planned successfully
by Kedem and Sharir.27 By obtaining a set of deterministic samples, Varadhan et al.28 presented
an algorithm to find complete path for a translating polyhedral robot in 3D space. It constructs a
roadmap of the free space without finding the explicit representation of the workspace. A technique
of modeling a polygonal obstacle to plan the paths for three circular robots is presented in ref. [29].

1.3. Motivation and contributions
Most offsetting methods concentrate only on convex polygons. They divide non-convex polygons
into convex sub-polygons, and offset them separately. Computing the Minkowski sum of two convex
polytopes can have O(n2) time complexity,5 where n is the number of features of the polytopes.
The Minkowski sum of two non-convex polyhedra costs even more, and can have a combinatorial
complexity as high as O(n6). Moreover, calculating the union of pair-wise Minkowski sums of
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sub-polygons is a computationally expensive task. If a non-convex polygon is divided into m sub-
polygons, their union can have O(m3) time complexity.28 If a polygon consists of a lot of non-convex
vertices, the value of m becomes higher along with, and so is the computational complexity.

In this paper, we present a new algorithm that ensures the efficient offsetting of arbitrarily shaped
objects in approximately linear time. Our algorithm handles non-convex objects very efficiently and
thus a big performance improvement is achieved in this case. Along with recovering the drawbacks
mentioned above, we use simple geometry to remove local invalid loops and our method can also
handle objects that contain circular arcs. Thus, our algorithm can be used to offset any type of shapes.

1.4. Organization
The remainder of the paper is organized in the following manner. In Section 2, we describe some
preliminary definitions and assumptions necessary for the main algorithm. Section 3 describes our
method in two subsections for offsetting lines and arcs. The technique to handle global invalid loops
is presented in Section 4. In Section 5, we present the experimental results and the performance
analysis of our algorithm, and finally we conclude in Section 6.

2. Preliminary Definitions

2.1. Workspace and configuration space
In robot motion planning, the robot environment is classified into sensor-based and model-based
systems.17 Sensor-based systems generate information through sensors, and model-based systems
use mathematical modeling of the environment through mathematical entities, such as polygons. Our
algorithm is intended for the model-based systems that do not require any coloring methods of image
processing, rather the accessible region Cfree and the inaccessible region Cobs are determined from the
concept of configuration space (Fig. 1(b)) as follows:

Let the robot be represented as a point (x, y) ∈ R2 in the continuous Cartesian plane, and the
configuration q be defined as q = [x, y, θ]T , where (x, y) is the coordinate position of the robot’s
center in the Cartesian plane, and θ is its heading angle. When the robot moves on a workspace
W ∈ R2, not all regions of W are accessible to it. A configuration q of robot A is said to be valid if
robot region A(q) is in W as

C = {∀q |A(q) ⊂ W}. (1)

The set of all valid configurations of robot A is defined as its free space. Configuration q in W
that robot A cannot access is called invalid, or it corresponds to obstacles. Let Oi be an obstacle in
W , and the union of all Oi becomes the obstacle region in W . The configuration space obstacles or
inaccessible region Cobs is found by offsetting the workspace obstacles based on the robot radius. It is
a set of all configurations of robot A at which the robot region A(q) is in contact, or is overlapping,
with an obstacle region Oi as

Cobs = {∀q, i |A(q) ∩ Oi �= ∅}. (2)

Since the obstacle region prohibits certain configurations of the robot, the free space Cfree or accessible
region of the robot is defined as

Cfree = { q ∈ C|A(q) ∩ (∪
i
Oi) = ∅}. (3)

To plan a motion for the robot, a connectivity roadmap of Cfree can be constructed by computing
deterministic samples in Cfree.

2.2. Offsetting shapes
Offsetting a polygon is the process of computing the set of points that are at a constant distance
d along the normal vector of polygon edges. If the curve C(t) with parameter t is expressed as
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Fig. 2. (a) Convex and non-convex vertices. Conventional methods decompose the polygon along the dotted
line and (b) local and global invalid loops (shown in dark).

C(t) = (Cx(t), Cy(t)), its offsetting curve Cd (t) with a constant distance d is defined as

Cd (t) = C(t) + d N(t), (4)

where N(t) is the unit normal vector at t , and the constant distance d is called the offset distance. By
applying local geometry, this paper deals with the offsetting task for a circular robot with radius d.

Definition 1 (Vertex type). A point (or a vertex) pi is convex if the angle formed by pi inside
the polygon holds the condition ∠(pi−1, pi, pi+1) < π , or a left turn is made at this vertex while
marching along the contour, as in Fig. 2(a). Vertex pi is non-convex if ∠(pi−1, pi, pi+1) > π , or a
right turn is made at this vertex while marching along the contour.

Definition 2 (Curve type). A PS-curve consists of lines and circular arcs. The curve types for each
segment are defined as line and arc. The segments are treated differently based on their curve types.

Definition 3 (Invalid loop). A loop is caused by self-intersections and must be removed in order to
find a valid offset curve. As shown in Fig. 2(b), a loop that is bounded by a single self-intersection
point is called a local invalid loop, while a global invalid loop is bounded by multiple self-intersection
points.

The intersection of two offset segments causes invalid loops. The pair-wise intersection detection
test (PIDT) is a process to check whether two consecutive offset segments intersect. Two adjacent
offset lines of a convex vertex do not intersect, but the adjacent offset lines of a non-convex vertex do.
Two offset lines of the form a1x + b1y = c1 and a2x + b2y = c2, where ai, bi and ci are real constants
and both ai and bi are not simultaneously zero, are checked for their determinant a1b2 − a2b1. If
(a1b2 − a2b1) �= 0 then the lines intersect at a point and cause a local invalid loop. To determine the
intersection between a circular arc and a line segment, we compute the minimum Euclidean distance
from the line to the circle center. If the minimum Euclidean distance from the line to the circle center
is less than the radius, then the line and arc segment intersect.

3. Computing Offsets
The input to our algorithm is a PS-curve with rational coordinates oriented counterclockwise, a curve
type for each segment and the robot radius d. The curve type is used to track the segments, whether
these are lines or arcs. The robot radius d works as an offset distance and we treat polygon vertices
differently depending on whether a vertex is convex or non-convex.

A polygon consists of line and arc segments. For lines, the inputs are the endpoints and the curve
type. For arcs, the arc start point, endpoint and its center are given, along with the curve type. If
the curve type is a line, offset the line along its normal direction by the offset distance d. In this
step, a vertex is checked to determine whether it is convex or non-convex. If the vertex is convex,
the endpoints of the nearest offset segments are connected by a CCW-oriented arc centered on this
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Fig. 3. Possible scenarios for offsetting polygon lines: (a) Acute angle, (b) obtuse angle and (c) reflex angle.

vertex; and if the vertex is non-convex, the endpoints of the nearest offset edges are connected and the
intersection of the two offset lines is computed by invoking the PIDT to remove local invalid loops. If
the curve type is an arc, the computation of the arc radius is straightforward. The start and end points
are computed based on the offset distance and the arc radius. The PIDT is invoked to check whether
this newly computed inflated arc creates any local invalid loops. If there is a positive result of PIDT,
the intersection points must be found and a portion must be removed in order to avoid local invalid
loops. In this way, the raw offset curve is generated, and then a check is done for any global invalid
loops.

Any geometric shape can be represented with line and arc segments. Our method can be used to
compute efficient offsets for both lines and arcs, so we can construct offsets for any obstacle shapes.
We describe our algorithm in separate sections for offsetting lines and circular arcs.

Throughout this paper, we indicate the points (or vertices) of the given polygon as pi and the
offset points as p′

j , where i, j ε N. Since, in most of the cases, the vertex of the original polygon is
associated with two points of the offset polygon, i and j are not necessarily equal.

3.1. Offset lines
A polygon can have convex as well as non-convex vertices. Figure 3 demonstrates the possible
offsetting cases for both convex and non-convex vertices. Let a polygon P in the Cartesian plane have
n points p0(x0, y0), p1(x1, y1), p2(x2, y2) through pn−1(xn−1, yn−1). Point pi(xi, yi) is directed to
pi+1(xi+1, yi+1). To offset the lines of polygon P , we shift each line segment by the offset distance
d along its normal direction or to the right side of the edge. As a result, we obtain n disconnected
offset edges with 2n new points p′

j (x ′
j , y ′

j ) parallel to the original lines. For example, if we offset
line p1p2, we find the offset line p′

1p
′
2, for line p2p3 we find the offset line p′

3p
′
4, and so for line

pn−1p0 we end up with the offset line p′
2n−2p

′
2n−1. Now we need to check whether a vertex is convex

or non-convex according to Algorithm 1.
Algorithm 1 tests the convexity of vertex pi by computing the angle pθ = ∠(pi−1, pi, pi+1) at

that vertex. A vertex is considered differently if it is the start or end of a polygon arc. In Algorithm 1,
n is the number of vertices and β is the intermediate angle without considering the polygon direction.
The input vector components of point pi are (Ax, Ay, Az) and (Bx, By, Bz), where (Ax, Ay, Az) is
associated with vector −−−→

pi−1pi, and (Bx, By, Bz) is associated with vector −−−→
pipi+1.

Algorithm 1 applies the theory of vector cross-product to vectors −−−→
pi−1pi and −−−→

pipi+1 to find angle
pθ based on the direction of the polygon (usually CCW). The output of this algorithm is the convexity
of vertex pi along with its angle pθ formed by the adjacent two lines. Every vertex has a z-component
associated with it, which indicates the turning direction of the polygon at this vertex. Initially, the
z-values of any vertex are zero, and computing the cross-product (pi − pi−1) × (pi+1 − pi) provides
a non-zero value along the z-direction. The direction of the vector cross-product is perpendicular to
both the vectors being multiplied and the vectors normal to the plane containing them. If the z-value
is positive, then pθ < π and we are turning left. If it is negative, then pθ > π and we are turning right.
Therefore, convex and non-convex vertices produce positive and negative z-values respectively. For
example, let the coordinates of the polygon in Fig. 2(a) be p1 = (−2, −1), p2 = (2, −1), p3 = (2, 3),
p4 = (0, 1) and p5 = (−2, 2.5). Vertex p2 is convex because angle ∠(p1, p2, p3) at p2 is π

2 and

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 14 Apr 2014 IP address: 163.180.116.233

Offsetting obstacles of any shape for robot motion planning 7

Algorithm 1: Convexity test.
input : (Ax, Ay, Az) and (Bx, By, Bz); the vector components of two lines associated with pi

output: convexity of vertices and angle produced by them, pθ = ∠(pi−1, pi, pi+1)

begin
zComponent ← 0
for i = 1 to n do

zComponent ← AxBy − AyBx

β ← arcsin( |(pi−pi−1)×(pi+1−pi )|
|pi−pi−1| |pi+1−pi | )

if (zComponent > 0) then
pθ ← β

return convex
end
else

pθ ← (2π − β)
return non-convex

end
end

end

z2 = 16. For vertex p4, the polygon angle ∠(p3, p4, p5) at p4 is 17π
11 and z4 = −7, so p4 is non-

convex.
If the vertex is convex as in Figs. 3(a) and (b), where the outside lines are always the offset lines,

then the two new adjacent points of the offset edges will be connected by a circular arc centered
in the corresponding vertex with radius d, which is robot’s radius. For a vertex pi , we draw an arc
centered at pi between the points p′

2i−2 and p′
2i−1, which are the endpoints of the adjacent offset

edges, induced by pi−1pi and pipi+1 respectively. The angle that defines such a circular arc is
π − ∠(pi−1, pi, pi+1).

Consider that the line supporting p1p2 is ax + by + c = 0, where a, b, c ∈ R. The representation
of the offset edge that is based on the locus of all points lying at the offset distance d from the line
ax + by + c = 0 is given by

d = |ax + by + c|√
(a2 + b2)

. (5)

Algorithm 2 describes the process of finding two points that lie parallel to a given line segment
at distance d. The line segments pi(xi, yi) p′

j (x ′
j , y ′

j ) and pi+1(xi+1, yi+1) p′
j+1(x ′

j+1, y ′
j+1) are

perpendicular to the given line segment pi(xi, yi) pi+1(xi+1, yi+1). dx and dy are the vector
components of −−−→

pipi+1, and its perpendicular vector components are xperp and yperp. The normalized
vector components x ′

perp and y ′
perp are calculated by applying the vector magnitude ilen of the vector−−−→

pipi+1. The offset coordinates x ′
j and y ′

j are found from the corresponding point (xi, yi) of the
original polygon according to

x ′
j = xi + x ′

perp,

y ′
j = yi + y ′

perp.
(6)

For n lines of a polygon, we find n disconnected offset segments with 2n end points, as one point
in the original polygon corresponds to the endpoints of two offset lines. The starting point of a given
line segment pi(xi, yi) results in p′

j (x ′
j , y ′

j ) at distance d along its normal direction, and the endpoint
pi+1(xi+1, yi+1) results in p′

j+1(x ′
j+1, y ′

j+1) at the same distance d.
The computation of the offset segment of a given line is shown in Fig. 4(a). Let the given line

be p1p2, and we want to compute the corresponding offset line p′
1p

′
2. The slope m1 = y2−y1

x2−x1
of line

p1p2 is equal to the slope of line p′
1p

′
2 because the offset line is parallel to the given line. If two lines

are cut by a transversal so that the corresponding angles are congruent, then the lines are parallel.
We find two points p′

1 and p′
2 such that p′

j (x ′
j , y ′

j ) lies on the perpendicular line segments of p1p2

http://journals.cambridge.org
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Algorithm 2: Offset lines.
input : pi(xi, yi), pi+1(xi+1, yi+1) and offset distance d, which is the robot radius
output: p′

j (x ′
j , y

′
j ) and p′

j+1(x ′
j+1, y

′
j+1) such that p′

jp
′
j+1 is parallel to pipi+1 with given

distance d

begin
k ← 1
for i = 0 to (n − 1) do

dx ← xi+1 − xi

dy ← yi+1 − yi

xperp ← dy

yperp ← − dx

ilen ← √
xperp

2 + yperp
2

x ′
perp ← (xperp ∗ d) / ilen

y ′
perp ← (yperp ∗ d) / ilen

for j = k to k + 1 do
x ′

j ← xi + x ′
perp

y ′
j ← yi + y ′

perp

x ′
j+1 ← xi+1 + x ′

perp

y ′
j+1 ← yi+1 + y ′

perp

end
k ← j + 1

end
end

Fig. 4. (a) Computing offset edge based on the polygon line segment and (b) local invalid loop for non-convex
vertex.

with slope mi = − x2−x1
y2−y1

. The vector −−→
p2p1 is regarded as dx = x2 − x1 and dy = y2 − y1. A vector

perpendicular to −−→
p2p1 has the parameters xperp = dy and yperp = −dx . The vector magnitude ilen is

calculated from
√

xperp
2 + yperp

2.
If the vertex is not convex, as in Fig. 3(c), the PIDT results are positive, as the offset lines of the

two adjacent lines of the non-convex vertex intersect each other. Since we are dealing with the outer
offsetting only, it is most likely that only non-convex vertices will cause two consecutive offset lines
to intersect. For a non-convex vertex pi , we find an intersection of two offset lines p′

2i−2p
′
2i−1 and

p′
2ip

′
2i+1 that causes a local invalid loop as shown in Fig. 4(b). We need to compute this intersection

point to remove the local invalid loop caused by offset lines. If the intersection point is ps , from ps to
p′

2i−1 and from p′
2i to ps will be removed respectively for the offset lines p′

2i−2p
′
2i−1 and p′

2ip
′
2i+1.

Consider that two offset lines p′
2i−2p

′
2i−1 and p′

2ip
′
2i+1 are of the form a1x + b1y = c1 and

a2x + b2y = c2 respectively, where ai, bi and ci are constants and ai, bi �= 0. Then the determinant
� will be a1b2 − a2b1. If the intersection point is ps(xs, ys), we find xs = (b2c1 − b1c2)/� and
ys = (a1c2 − a2c1)/�.

The number of offset segments is usually less than the number of total input segments. The
following explains why the number of valid segments m in a raw offset curve is less than the total
segments n in the input polygon.

http://journals.cambridge.org
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Fig. 5. Coincident offset segments, lw < 2d .

Fig. 6. Offsetting circular arcs: (a) CCW arc, θ2 > θ1, (b) CW arc, θ2 < θ1 and (c) draw the arc for offsets.

Coincident offset segment: If the length of a line segment lw, as shown in Fig. 5, is less than twice
the length of the offset distance d, then that line segment will not be considered for offsetting. In
Fig. 5(a), the length of the line segment lw = 30 mm and the offset distance d = 15.5 mm, so the
coincident offset segment for the line is not shown. The PIDT finds the intersections and can avoid
coincident offset segments all the time. Figure 5(b) is a complex scenario with a coincident offset
segment in which the offsetting of the circular arc is displayed, even though the coincident segment
is avoided before that. This indicates the fact that a coincident offset segment does not influence the
segment next to it.

3.2. Offset circular arcs
Arcs are handled quite differently from lines. The input PS-curve has arc endpoints, center and the
direction of the circle along with the curve type. Start angle θ1, end angle θ2 and arc radius r are
calculated from the given inputs. Local invalid loops are removed by invoking the PIDT and then
finding the intersections of offset arc segment with its neighboring offset segments.

According to Figs. 6(a) and (b), a circular arc can be clockwise (CW) or counterclockwise (CCW).
Points A(x1, y1), C(x2, y2) and O(cx, cy) are the start, end and center points, respectively, of the arcs
A, B, C. Points A′(x ′

1, y
′
1) and C ′(x ′

2, y
′
2) are the corresponding offset points for A and C respectively.

The start angle θ1 is calculated from OA as θ1 = tan−1( y1 − cy

x1 − cx
), and the end angle θ2 is calculated

from OC based on θ2 = tan−1( y2 − cy

x2 − cx
). The arc angle θa = θ2 − θ1. For a CCW arc, θ2 > θ1, and

for a CW arc, θ2 < θ1. If θ1 and θ2 become negative, then θ1 = θ1 + 2π and θ2 = θ2 + 2π .
Finding the arc radius r is straightforward from the arc center (cx, cy) and the start (or end) point

of the arc as r = √
(cx − x1)2 + (cy − y1)2. If we consider the circle equation as

x2 + y2 + 2gx + 2fy + c = 0, (7)
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Fig. 7. Selecting the offset distance for CW and CCW arcs: (a) In CCW arc, center lies inside the polygon area
and offset radius is longer (r + d). (b) In CW arc, center lies outside the polygon area and offset radius is shorter
(r − d).

where g, f and c are constants, (−g, −f ) is the circle center and we can find the arc radius OA = r

from
√

g2 + f 2 − c. However, the radius of the offset arc OA′ depends on the arc direction.
Although the curve direction is always counterclockwise, the direction of an arc can be clockwise or
counterclockwise in that curve. This is because an arc center can even lie outside the polygon region.
A CCW arc has its center inside the polygon region and the radius is (r + d), where d is the offset
distance, as shown in Fig. 7(a), while a CW arc center resides outside the polygon area and the radius
is (r − d) as shown in Fig. 7(b). The following derivation is performed considering the arc direction
toward CCW, so OA′ = (r + d) and a similar derivation can be done for a CW arc considering
OA′ = (r − d).

The start and end points of the offset arc are calculated according to θ1, θ2 and r . The start point
A′(x ′

1, y
′
1) of the offset arc A′B ′C ′ is calculated as

x ′
1 = cx + (r + d) cos θ1,

y ′
1 = cy + (r + d) sin θ1.

(8)

To find the next point to (x ′
1, y

′
1), we apply the theory of circular motion in physics. Figure 6(c)

shows the algorithm to efficiently draw a circular arc. We compute the magnitude and direction of
the tangential and radial motions.

−→
AD is the perpendicular vector of

−→
AO and is tangent to the circle.

The length AD is easily found by multiplying with tan θ . Adding this tangential vector to
−→
AO gives

DO. To get BO, DO is multiplied with cos θ . Starting from A, we have found a new point B. A
similar computation is done for BE to find the next point C. Both tangential and radial factors are
constant and can be pre-calculated, so there is no need to compute them in every iteration.

Let θ be the angular length of a segment ahead of the previous point and xt be the tangent of θ . If
Ns is the number of segments (500 in our case) in the arc between the start angle and the end angle,
θ = θa / Ns . We can easily turn vector

−→
OA by π

2 radians in the CW direction that becomes tangent

to the circle. The components of vector
−−→
OD are calculated as

x ′
new = x ′

1 + xt tan θ,

y ′
new = y ′

1 + yt tan θ,
(9)

where (x ′
new, y ′

new) is point D, θ is the angular length of a small segment of the arc, and xt and yt are

the tangent vector components of the radial vector (x1, y1). Vector
−→
OB is calculated as

xnew = x ′
new cos θ,

ynew = y ′
new cos θ,

(10)

where (xnew, ynew) is point B. At this point we are back to where we started and repeating this process
will fill in the entire angular length θa . Algorithm 3 describes the process of offsetting the circular
arc.

Now the PIDT will determine whether this offset arc intersects its neighboring offset segments.
According to Fig. 8, one of three scenarios can happen: (i) both the offset segments attached to the
offset arc come from a single line as in Fig. 8(a), (ii) the offset arc intersects two different lines in its
two sides as in Fig. 8(b) and (iii) an offset arc is a neighbor of another arc as in Fig. 8(c).
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Algorithm 3: Offset circular arcs.
input : arcDirection, (x1, y1), (x2, y2) and (cx, cy); arc direction, start point, end point and

center of the arc respectively.
output: An inflated arc between start and end point.

begin

r ←
√

(cx − x1)2 + (cy − y1)2

if (arcDirection == CW ) then
r ← r − d

end
else

r ← r + d

end
θ1 ← tan−1( y1 − cy

x1 − cx
)

if (θ1 < 0) then
θ1 ← θ1 + 2π

end
θ2 ← tan−1( y2 − cy

x2 − cx
)

if (θ2 < 0) then
θ2 ← θ2 + 2π

end
θa ← θ2 − θ1

θ ← θa

Ns

for i = 1 to Ns do
x ′

1 ← cx + r cos θ1

y ′
1 ← cy + r sin θ1

xt ← −y ′
1

yt ← x ′
1

x ′
new ← xstart + xt tan θ

y ′
new ← ystart + yt tan θ

xnew ← x ′
new cos θ

ynew ← y ′
new cos θ

end
end

Fig. 8. Removing local invalid loops for arc offsets: (a) Arc within a same line, (b) arc with different lines at its
two ends and (c) two consecutive arcs in the main polygon.

To find the intersection point for cases (i) and (ii) above, consider Figs. 8(a) and (b), where the
starting point ps (and ending point pe) of the offset arc pspe intersects the offset line p′

1p
′
2 before

(and p′
3p

′
4 after) the arc itself. As a result psp

′
2p2p

′
3 and pep

′
4p3p

′
5 form invalid loops, which

we call local invalid loops. For the final offsetting, the line segments psp
′
2 and p′

3pe will have to be
removed. To do this, finding the points ps and pe is important. To calculate point ps , we solve the
circle equation containing arc pspe and line p′

1p
′
2, and to find pe, we solve the same circle equation
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Fig. 9. Computing the intersection of two arcs.

with line p′
3p

′
4. If lines p1p2 and p3p4 of the main polygon are the segments from the same straight

line as in Fig. 8(a), it is sufficient to solve the circle equation with any of the p′
1p

′
2 and p′

3p
′
4 offset

lines, as the intersection of a line and a circle gives us both intersecting points. In this case we can
save some computations to calculate ps and pe.

We now explain how to compute the intersection points ps(xs, ys) and pe(xe, ye) of an offset line
segment p′

1p
′
2 with its neighboring offset arc as shown in Figs. 8(a) and (b). The Euclidean distance

lp′
1p

′
2

from p′
1 to p′

2 is lp′
1p

′
2
= √

(x ′
1 − x ′

2)2 + (y ′
1 − y ′

2)2, and the direction vectors
−→
D = −−→

p′
1p

′
2 from p′

1 to
p′

2 are Dx = (x ′
2 − x ′

1)/lp′
1p

′
2

and Dy = (y ′
2 − y ′

1)/lp′
1p

′
2
. Now, for the parameter t ∈ [0, 1], the line

equation of p′
1p

′
2 will be x = t Dx + x ′

1 and y = t Dy + y ′
1. The parameter value of t for the closest

point to the circle (that contains the arc) center (cx, cy) will be t = Dx(cx − x ′
1) + Dy(cy − y ′

1), which
is the projection of the circle center on the line from p′

1 to p′
2. Consider the point p′

i(p
′
ix, p′

iy) on p′
1p

′
2

which is closest to the circle center. The coordinates will be p′
ix = tDx + x ′

1 and p′
iy = tDy + y ′

1.
The Euclidean distance from p′

i to the circle center is l′pi = √
(p′

ix − cx )2 + (p′
iy − cy )2, so the intersection

coordinates of ps are xs = (t − dt) Dx + x ′
1 and ys = (t − dt) Dy + y ′

1, where dt is the Euclidean
distance from parameter t to the offset circle intersecting points ps or pe, and the second intersection
point pe will be xe = (t + dt) Dx + x ′

1 and ye = (t + dt) Dy + y ′
1.

For the case in which two consecutive arcs arrive in the given polygon (Fig. 8(c)), two circle
equations are solved to find the self-intersecting points as shown in Fig. 9. Let the centers of the
first and second circles be O1(x1, y1) and O2(x2, y2) respectively. The radii of the circles are r1 and
r2 respectively. We are going to find the intersection point P (x, y). From Fig. 9, we also see that
h = PL, a = O1L and b = O2L. Applying the theory of ref. [30], the intersection point P (x, y) of
the two circles is

x = xl − h(y2 − y1)

a + b
,

y = yl + h(x2 − x1)

a + b
,

(11)

where (xl, yl) is the coordinate of point L.
The following explains why the number of valid segments m is less than the total number of

segments n in a raw offset curve in the case of arc offsetting.
Arc Radius and offset distance of a CW arc: If an arc is centered outside the polygon area and

the offset distance is equal to or more than the arc radius (d ≥ r), then this arc is not considered
for offsetting. As shown in Fig. 10(b), the arc from the original polygon will not be considered for
offsetting if the length of the offset distance exceeds the length of the arc radius. Figure 10(a) shows
that an arc in the original polygon centered outside the polygon area will be considered for offsetting
only if the offset radius is more than the offset distance.
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Fig. 10. (a) Offset distance is less than the arc radius (d < r) and (b) offset distance is larger than the arc radius
(d ≥ r).

Fig. 11. Global invalid loops (gray) and the final offset after removing them.

4. Handling Global Invalid Loops
Usually, invalid loops occur at the self-intersection points of raw offset curves. Finding the
intersections between two offset lines or between an offset line and an offset arc can prevent
local invalid loops before generating the raw offset curve, but global invalid loops may still exist.
Figure 11 is a part of a pocket profile that shows the demonstration of two global invalid loops and
the final offsetting after removing them. The radius of loop one is 80.04 mm, and the radius of the
invalid loop two is 65.004 mm, while the offset distance d is 65 mm.

In a raw offset curve, it is always necessary to find the self-intersecting points to remove global
invalid loops. Instead of using the brute-force algorithm of O(m2), where m is the total number of
segments in the raw offset curve, we use the well-known “Bentley-Ottmann Algorithm”31 to find
the global self-intersecting points, which requires O((n + k) log m) time complexity, where n is the
total number of vertices in the original polygon, k is the number of self-intersections and m is the
number of valid segments in the raw offset curve, where m ≤ n. We need to check only for the global
self-intersection points instead of checking for all local and global self-intersection points because
the local self-intersection points have already been removed before the raw offset curve is generated
by PIDT.

5. Experimental Results and Analysis

5.1. Experimental results
We implemented our algorithm in GLUT for Win32 version 3.7.6 on a personal computer with a
3.00-GHz Pentium(R) D CPU and 2.00-GB RAM. We have tested our algorithm for various types
of polygons, and it can successfully handle any shape of geometric object. In the literature section,
we have mentioned for several times that most of the algorithms cannot handle non-convex shapes
and circular arcs. However, our method deals with such problems very efficiently with minimum
computational cost, as we have seen so far.

Figure 12 demonstrates the whole process of our proposed method. The input polygon has total
11 vertices (n = 11). Among them, six are convex, three are non-convex and the remaining two are
the start and end points of the only arc. Figure 12(a) shows the original polygon. Figure 12(b) shows
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Fig. 12. Output of a polygon consists of convex vertex, non-convex vertex and arc: (a) Input polygon (gray),
(b) disconnected offset segments for each lines and arcs, (c) for convex vertex, adjacent two offset points are
connected by circular arcs of radius d . Self-intersection points caused by non-convex vertices and circular arc
are indicated by black circles, (d) raw offset curve with local invalid loops (dark gray), (e) final output.

Fig. 13. Polygon consists of convex and non-convex vertices: (a) comb output, using offset distance, d = 50,
(b) comb output, using bigger offset distance, d = 100, and (c) pillar.

Fig. 14. (a) Shape of a duck, created with line and arc segments and (b) a pocket profile consists of arbitrary
line and arc segments.

the disconnected offset segments for the lines and arcs based on the offset distance d = 50. Based
on the type of the PS-curve, the angle between two neighboring segments is checked. For a convex
vertex, the two new adjacent points of the offset edges are connected by a circular arc centered in the
corresponding vertex, pi, as shown in Fig. 12(c). The pair-wise self-intersections are also shown for
non-convex vertices and circular arcs. A circular arc causes self-intersections with its two adjacent
offset segments at its both ends. Figure 12(d) is the raw offset curve for the original polygon with local
invalid loops. Usually we remove local invalid loops before generating raw offset curves so that in
the raw offset curve only global invalid loops remain. However, in Fig. 12(d), the local invalid loops
are kept for a better understanding of the whole process of getting the final output. After removing
the local invalid loops, 12(e) shows the final output.

Figure 13 shows the output of a comb for different d values and the case of a pillar. Figure 14(a)
is the shape of a duck with 19 lines and 66 arc segments, and Fig 14(b) is a pocket profile with nine

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 14 Apr 2014 IP address: 163.180.116.233

Offsetting obstacles of any shape for robot motion planning 15

Table I. Running time (measured in milliseconds) for various types of input polygons.

Input polygon Size (n) Non-convex vertex (nnc) Arc segment Offset distance (d) Running time (ms)

Output 1 11 3 1 75 2.2065
Comb 53 24 0 100 7.1836
Pillar 32 0 13 65 4.5705
Duck 85 5 14 50 23.7883
Pocket 66 9 25 50 21.2514

Number of points
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n
n

in
g

 t
im

e

Fig. 15. (Colour online) Running times for the outputs.

non-convex vertices and 29 arc segments. The polygon statistics and algorithm execution times are
shown in Table I. Since the number of non-convex vertices and arc segments present in the polygon
greatly influences the computation time, we mentioned them in Table I. Data representing the time
taken to construct the offset are listed as the average of the maximum time taken by a single input
from multiple executions. Figure 15 is the graph drawn for the running time in terms of the size of the
shapes. The output shapes listed in Table I show that the running time is approximately linear relative
to the input size n. One may observe from the graph that the running time of the pocket profile is
comparatively higher than other inputs. This is because of the large number of arc segments present
in the pocket profile.

The relationship between the algorithm running time and the value of the offset distance is a
performance issue for the polygon offsetting task. It is expected that the running time should not
increase drastically for a bigger d value. We experimented with our algorithm for different d values
for all the shapes shown in this section, and we found that our algorithm achieves this criterion. Figs.
13(a) and (b) show the comb output found using the offset distance of 50 mm and 100 mm respectively.
Table II shows the running time based on different offset distances for the comb output. Figure 16
shows the plotted result of Table II. Offset distance d has impact on offset shapes. Offset shapes look
similar to the original object for smaller d values. For increased d values, offset shapes can even be
quite different than the original object. Larger d values cause increased number of intersections in
the offset segments. For complex shapes, it imposes more coincident offset segments as in Fig. 5. It
leads to extra computation, hence the running time increases.

The last example shown in Fig. 17 is part of a complex geometric shape in an industrial PCB
design process. The shape has 527 points, 105 lines and 124 arc segments. For each line and arc
segment, raw-offset curve is generated. The offset distance is 40 mm. Local invalid loops are removed
immediately after generating the raw-offset curve by invoking PIDT. Global invalid loops are then
detected and removed to find the final offsetting. It takes total 87.1472 ms to compute the offset.

With the same experiment settings, Table III shows the computation time comparison of
our algorithm with that of Wein.4 Figure 18 is the plotted result of Table III that shows the
superiority of our method over the approximate offset construction methods. The method described in
ref. [4] constructs the exact and approximate offset polygons by using the conic and circle/segment
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Table II. Running time for comb output based on different d values.

Offset distance (d) Running time (ms)

10 0.0154
25 3.0128
40 4.7452
50 5.5406
65 5.8863
80 6.2571
90 6.9486
100 7.1829

Offset distance, d

Offset distance vs. running times
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Fig. 16. (Colour online) Plotted result of Table II. Effect of offset distance on the comb output.
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Fig. 17. (Colour online) A schematic of a real PCB design with its offset output.

traits-classes respectively. Computing and manipulating the intersection points of two arcs in
the circle/segment traits-class is more efficient than in the conic-traits class, so the approximate
construction is considerably faster than the exact construction of the offsets. We compare our method
with the approximate construction of offset polygons, and our method shows superior performance.
To the best of our knowledge, so far, our method constructs offset polygons in minimal computation
time.

5.2. Complexity analysis
The input of the algorithm is a polygon as a PS-curve, and the output is an offset polygon. The whole
process is performed in three steps: (1) raw offset curve generation, (2) checking for local invalid
loops by invoking the PIDT and (3) removal of global invalid loops.
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Table III. Running time comparison with other methods.

Running time (ms)
Non-convex

Input polygon Size (n) vertex (nnc) Offset distance (d) Approximate offset construction Our method
Comb 53 24 25 45 3.1026
Wheel 40 14 50 35 2.5547
Spiked 64 40 50 60 4.2691

Fig. 18. Running time comparison with approximate offset construction method.

To generate the raw offset curve, each vertex is inserted only once. The time complexity to construct
the raw offset curve is O(n), where n is the number of vertices in the input PS-curve. This step also
takes O(n) space.

For the second part, two adjacent offset segments are continuously checked for intersections if
they come from non-convex vertices. Since we are dealing with outer offsetting, three situations will
create local invalid loops: (i) a non-convex vertex (Fig. 4(b)), (ii) type variations of two adjacent
offset curves, for example, if a line is adjacent to an arc or vice versa (Figs. 8(a) and (b)), and (iii) two
adjacent offset arcs (Fig. 8(c)). A polygon has n total vertices, and among them nnc are non-convex
and na vertices contain arcs, so checking for local invalid loops with the PIDT will cost O(nnc + na)
time, where (nnc + na) < n.

In the third step, most of the time is spent reporting the self-intersections. The time complexity
to remove the global invalid loops is O((n + k) log m) and uses O(n + k) space, where n is the total
number of vertices in the original polygon, k is the number of self-intersections, and m is the number
of segments in the raw offset curve, where m ≤ n. In practice, the number of global invalid loops is
very small and makes the complexity O(n log m). Moreover, the PS-curves contain a large number
of interfering segments and the value of m becomes much smaller than n, so the time for this step
becomes nearly linear.

Above all, overall time complexity of the algorithm with its all three steps can be completed in
O(n log m) time, in which n is the total number of points in the input PS-curves and m is the total
number of segments in the raw-offset curves, where m ≤ n.

6. Conclusions and the Future Works
A new algorithm to offset arbitrary shapes for the efficient motion planning of a circular robot is
presented in this paper. The algorithm is able to deal with convex and non-convex shapes as well as
arcs in an object. Line and arc segments are treated differently, and local invalid loops are removed
before generating the raw offset curve. Our method is simple, mathematically well defined and
produces consistent results. It handles the non-convex shapes very efficiently where prior methods
impose redundant computations. The overall time complexity of the algorithm is approximately
linear.

From geometric point of view, any object shape can be constructed from basic geometric primitives.
Line and arc segments can be used to represent any kind of shapes. This paper considers the arcs to
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be circular. In the future, other types of arcs, such as elliptical, parabolic and hyperbolic arcs, can be
integrated with this method.
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