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Abstract: Information technology (IT) is pushing ahead with drastic reforms of modern 

life for improvement of human welfare. Objects constitute ―Information Networks‖ 

through smart, self-regulated information gathering that also recognizes and controls 

current information states in Wireless Sensor Networks (WSNs). Information observed 

from sensor networks in real-time is used to increase quality of life (QoL) in various 

industries and daily life. One of the key challenges of the WSNs is how to achieve lossless 

data transmission. Although nowadays sensor nodes have enhanced capacities, it is hard to 

assure lossless and reliable end-to-end data transmission in WSNs due to the unstable 

wireless links and low hard ware resources to satisfy high quality of service (QoS) 

requirements. We propose a node and path traffic prediction model to predict and minimize 

the congestion. This solution includes prediction of packet generation due to network 

congestion from both periodic and event data generation. Simulation using NS-2 and 

Matlab is used to demonstrate the effectiveness of the proposed solution. 

Keywords: Wireless Sensor Networks (WSNs); congestion prediction; traffic demands 

analysis; traffic modeling 
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1. Introduction 

Modern life has become increasingly convenient with the development and deployment of 

Information technology (IT) in nearly all areas of life. In particular, the Internet of Things (IoT) is a 

way to provide services to users using a convergence of both information produced by humans 

together with that obtained from everyday objects by networking all things and equipment. It is 

expected that this will play a part in a new service ecosystem capable of judging situations independently, 

performing tasks without human intervention, and providing information collected through the interactions 

between many different objects.  

Ubiquitous technology, which has been identified as a key element of the IoT, has developed 

rapidly based on Wireless Sensor Networks (WSNs) [1]. IoT is well known as a new communication 

system for the physical world and Internet connection via WSNs [2]. Accordingly, there is a trend to 

move from individual small WSNs to multiple large-scale networks in which multiple WSNs are 

integrated and share information. The role of WSNs has changed from simple surveillance and 

gathering of information to more critical tasks. As a result, plans for how to process and share large 

amounts of sensor data and maintain quality of service (QoS) guarantees are being developed [3]. 

There are several projects underway in the United States, Europe, Japan, and other locations to realize 

ubiquitous computing based on the IoT, in which all objects are networked and can exchange 

information [4]. In Korea, a wide range of projects and demonstrations have been initiated under the 

leadership of the government.  

There is a lot of research underway to solve a variety of related obstacles to implement the IoT, 

such as methods for autonomic networking configuration among tens of thousands of nodes, what 

fusion method should be used for a large-scale heterogeneous network, what exchange method is most 

efficient for dynamic autonomic data, methods for processing of uncertain data without affecting the 

reliability of network information, and other service-related issues such as software theoretical 

modeling to provide comprehensive intelligence services to users and Service Delivery Schemes [5,6]. 

However, the most important problem being researched is how to effectively implement the IoT by 

inter-networking heterogeneous subnets using different infrastructures while considering the cost and 

quality of service (QoS) of each component and network. 

The three most significant components of the IoT are the Internet, mobile networks, and WSNs [7–9].  

A wide range of commercial services using existing IP-based networks and mobile networks have been 

already offered. There are relatively few issues in configuring the IoT, since each company can offer a 

reasonable quality-adjusted price for basic service while a variety of research projects are ongoing to 

improve product quality [10,11]. On the other hand, current WSN studies are being conducted on a 

variety of devices and applications, and commercialization has begun in sectors such as ubiquitous 

computing for healthcare and smart homes. However, there has been few research reported thus far on 

totally integrated ubiquitous computing models; thus, there is no management plan, which creates a 

difficult situation for quality management and coordination. WSN QoS management and improvement 

are thus urgent problems for IoT configuration [12]. 

WSNs deliver a data-below topology consisting of a tree structure centered on a sink with wireless 

communications to the sink. A large Ubiquitous Sensor Networks (USN), consisting of different types 

of WSNs integrated together, has a polynuclear structure and has a much higher probability of 
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experiencing congestion due to its Multi-Sink, Multi-Event and Mobile Sink characteristics. 

Communications over wireless networks are generally not reliable compared with those over wired 

channels [13]. Due to these characteristics, there is a high probability of congestion in the network 

around the sinks. In addition, effective modeling is required due to the specific characteristics of 

WSNs, such as wireless communication between the sensor nodes and their constraints as small, low-

power devices. Furthermore, common QoS requirements should be improved since WSNs have 

different QoS requirements for each application. Along with common QoS requirements, there is also 

a need for higher network throughput to minimize message delay, a need to improve data transmission 

reliability, and a need for network longevity. In order to satisfy these requirements, congestion and 

unnecessary traffic should be minimized and techniques to improve the reliability of data transmissions 

are required. 

Figure 1 illustrates that most transmission failures caused by congestion during data transmission in 

WSNs occur because of buffer drop and channel loss [14]. From this, it can be seen that network 

throughput decreases in the presence of congestion in the WSN, thus increasing the message delay. 

Therefore, in order to satisfy the common QoS requirements, study of congestion management, 

improvement of transmission reliability, and node energy management are required. 

Figure 1. Wireless Sensor Networks (WSN) Quality-Congestion dramatically degrades 

channel quality [14]. 

 

Previous studies addressing data transfer or QoS guarantees have been divided into several 

categories: (1) techniques to reduce the amount of data generated by the sensor nodes [14,15];  

(2) techniques to detect and control congestion depending on the status of the sensor nodes’ queues [16,17]; 

(3) techniques to detect congestion using packet service times [18]; (4) techniques to adjust the 

throughput at the receiving node by passing the congestion state on to neighboring nodes [19]; and  

(5) techniques using packet priority [20]. These techniques all have the disadvantage of requiring  

an extra transmission to send a congestion signal. In addition, when congestion is detected, the 

throughput is reduced by dropping the packet and adjusting the sampling period of the node at which  

congestion occurred. 
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The purpose of this study is to maximize the utility of the network by predicting the occurrence of 

congestion through WSN modeling. In this paper, in order to detect congestion in sensor networks, 

generated periodic and non-periodic packets are predicted by node depending on the placement of the 

sensor nodes themselves. The prediction reliability can be improved by predicting the transmission 

time based on the network types. 

This study is organized as follows: In Section 2, related techniques are examined. In Section 3, the 

proposed WSN modeling techniques are explained. Section 4 describes an experiment measuring the 

accuracy of the proposed method. Finally, Section 5 presents the conclusions of this research. 

2. Related Works 

2.1. Congestion Control Methods  

When congestion occurs in a sensor network, buffer overflows and packet collisions occur because 

the competition for wireless communications resources can cause dropped packets. Such data losses 

result in duplication due to retransmission, which is energy inefficient. Therefore, congestion detection 

and control techniques matched to the characteristics of sensor networks are required. Various 

congestion control schemes to solve these problems have been studied, and are detailed in Table 1. 

Table 1. Wireless Sensor Network (WSN) congestion control methods. ESRT: Event-to-Sink 

Reliable Transport; CODA: Congestion Detection and Avoidance; ACT: Adaptive 

Compression-based congestion control Technique; CCF: congestion control and fairness; 

SenTCP: A hop-by-hop congestion control protocol for wireless sensor networks;  

PCCP: priority-based congestion control protocol. 

Clear Method 

Data flow control Fusion [14], ESRT [15] 

Congestion detection by using Queue status CODA [16], ACT [17] 

Packet service time CCF [18] 

Congestion information forwarding SenTCP [19] 

Node priority PCCP [20] 

If a certain amount of data is required for a specific area, Event-to-Sink Reliable Transport (ESRT) [15] 

is a technique that can adjust the reliability of a specific event occurring based on that event in the 

entire field. The optimal operating area can be determined by calculating the amount of incoming data 

from the data requirements of the sampling period and sink. However, it is applicable only in terms of 

the reliability of the entire field, and not the reliability of each event; thus, there is a lack of fairness for 

most events. In addition, the sink broadcasts packets for throughput adjustment in order to control the 

congestion, which has the disadvantage of increased energy consumption. 

Congestion Detection and Avoidance (CODA) [16] is a technique to avoid conflicts by sending a 

congestion flag when the queue is beyond the limits of the parent node. CODA can detect and control 

congestion by calculating the channel loading and the arrival time of the packet through node  

buffers, as well as by channel monitoring. When congestion occurs, the throughput can be reduced 
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significantly by use of the Additive Increase/Multiplicative Decrease (AIMD) technique or by packet 

dropping. However, a way is needed to compensate for loss of data due to channel congestion and 

errors due to the Bit Error Rate (BER). However, even though CODA can be controlled, there is no 

technique available for ensuring data reliability or identifying the state of channel loading that causes 

high energy consumption. 

In Adaptive Compression-based congestion control Technique (ACT) [17], congestion is detected 

using queue monitoring with a multi-queue threshold. When congestion occurs, adaptive flow control 

techniques and compression techniques are used to adjust the packet transmission interval. In the flow 

control technique, data loss is prevented and data throughput is adjusted with compression to improve 

fairness as sensor nodes around the sink prevent queue overflow. However, a congestion bit was added 

in the general data packet header to eliminate the need for additional traffic packets for congestion control. 

Congestion status updates are also not possible when there is a general loss of data, and congestion 

notification across the whole network is difficult when configuring a wide range of sensor networks. 

The congestion control and fairness (CCF) [18] technique detects the service time and congestion 

using the packet service information, and adjusts congestion by controlling throughput depending on 

the number of child nodes. If the packet error rate is high or the amount of transfer data per node is 

different, the efficiency can be lowered. 

SenTCP [19] is an open-loop and hop-by-hop congestion control technique for regulating the 

transmission rate of the receiving node by continuously passing congestion status information to 

neighbor nodes in order to allow them to reduce network congestion. SenTCP calculates the 

congestion coefficient according to buffer status information, which is passed to the neighboring 

nodes. The node receiving the congestion information may then transmit to the other node depending 

on the information. Unlike CODA, SenTCP does not include techniques to ensure the reliability of the 

data, and has the disadvantage that the throughput control algorithm determines performance according 

to seven parameters. 

The priority-based congestion control protocol (PCCP) [20] gives priority on a node-by-node basis, 

and in the event of congestion, it transmits packets according to priority. If a packet cannot be sent to 

the parent node because of congestion, it will attempt to find a new parent node through multiple paths. 

2.2. Wireless Sensor Network (WSN) Traffic Modeling Method  

The traffic model in wired and wireless network has been investigated. We can divide the traffic 

prediction model into two categories: traditional network and WSN. Traditional network traffic 

prediction models are Markov model, Poisson model, linear regression model and time series 

forecasting model [21]. Customary, Constant Bit Rate (CBR) traffic model and Markovian model is 

generally used in WSNs without any discussion as to whether this is appropriate of not [22]. Otherwise, 

the traffic model in WSNs has not been investigated much. Table 2 shows the previous traffic-related 

work in WSNs.  

To defend attacks in WSNs, Intrusion Detection [23], Auto-Regressive model (AR) [24],  

Auto-Regressive Moving Average model (ARMA) [25], Swam intelligence Auto Regressive Moving 

Average model (S-ARMA) [21], and Anomaly Detection [26] were proposed. Other WSN traffic 

prediction algorithms include the Poison model [27], Constant Bit Rate (CBR) model [28], and 
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Markov process model [29]. For the traffic analysis and modeling, traffic arrival process, sequence 

relations among general kinds of packets, and data traffic load distribution were has been introduced. 

Besides, Mobility-Aware modeling that captures the statistical patterns of the mobility and spatial 

correlation using mobile agent was presented [22]. 

Table 2. Traffic Analysis and Modeling method. AR: Auto-Regressive model;  

ARMA: Auto-Regressive Moving Average model; S-ARMA: Swam intelligence Auto 

Regressive Moving Average model. 

Types of Network Traffic Prediction Method 

Traditional Markov, Poisson, Linear Regression, Time Series Forecasting 

WSN 

Defend Attack 
Intrusion Detection: [23], AR [24], ARMA [25], S-ARMA [21], 

Anomaly Detection: [26] 

Poison Ma, Y. [27] 

CBR Messier, G.G. [28] 

Markov Shay, L.A. [29] 

Traffic Analysis [26] 

Traffic Arrival Process  

Sequence Relations  

Data Traffic Load Distribution 

Others Mobility-Aware [22] 

WSNs are difficult to predict due to their dynamic nature. Furthermore, traffic dynamics in WSNs 

are application dependent. Therefore, WSN, which is dynamic and event-driven system, specific traffic 

prediction model is the prerequisite for the network management [21] such as network optimization, 

traffic distribution, load balancing, attack detection, etc. 

3. Congestion Prediction Model 

3.1. Preliminaries 

3.1.1. Cobb-Douglas Production 

When evaluating the mutual influence of all variables of economics, relative change (i.e., resilience) 

is typically more useful than absolute value. It has been noted that the value indicating resilience is 

similar to the derivative of a natural logarithm. Therefore, if an expression can be expressed as a 

natural logarithm, then resilience analysis will be convenient. The formula that is most convenient for 

analysis is a linear function of the primary addition, i.e., the equation of the straight line. To satisfy 

both of these requirements, the Cobb-Douglas production function was defined as follows: 

        (1) 

where Q is product, K is capital, and L is labor. A is an arbitrary constant with the value of the amount,  

  and   are constants greater than zero and less than 1, respectively. The Cobb-Douglas production 

function is a production function of linear homogeneity. If each factor increases its ratio at the same 

time, the product also grows at the same rate and attribution principles are established.  
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3.1.2. Transportation Demand Analysis Techniques 

Traffic demand analysis is the process of looking at the relevance between traffic demand and 

socio-economic activities, the analyzing the factors that determine traffic demand and its impact on 

changes in traffic. Traffic demand analysis is distinguished from traffic prediction, which has a 

primary goal of producing traffic forecasts for individual links. Whether the results of traffic demand 

analysis can be used to predict future traffic depends on the ability to understand the impact of factors 

that affect predictive self-traffic and the ability to predict the various explanatory variables used in 

transportation demand models. Transportation demand modeling is important for the forecasting 

process, but there are limits to modeling as a means of prediction. Traffic demand analysis can be used 

as a model for short-term prediction of traffic volume, but the usefulness of transportation demand 

models for traffic prediction becomes increasingly limited as the forecast period lengthens [30]. 

The development of models that can meet the ultimate goal of transportation planning is required. These 

include a direct demand model for inter-city travel demand analysis, four-step transportation demand 

forecasting methods for the target area (which is divided into multiple zones for analysis), and a probability 

choice model to select the best alternative and to maximize the utility among all possible alternatives.  

3.1.3. Bureau of Public Roads (BPR) Function 

Travel time functions are used to solve traffic problems when planning urban transportation or 

calculating increases in traffic over time. Existing research on travel time functions can be divided into 

empirical and theoretical types. The traditional method, used mainly in the 1960s, uses linear 

equations, exponential equations, logarithmic equations, and Bureau of Public Roads (BPR) for 

empirical expressions. Campbell and Wordrop models are used for theoretical expressions. 

The most widely-used BPR expression was proposed by the United States Bureau of Public Roads 

in 1964. It shows changes over the passage of time depending on increases in traffic volume.  

Its performance changes depending on the increase, and it accurately predicts free flow speed and 

capacity [31]. 

Conical functions [32] were proposed in order to overcome problems related to the rapid growth of 

the BPR passage delay functions curve. Other several repair function expression was proposed 

(Soltman, Overgaard, Traffic Research Corporation, Dafermos, Steenbrink, etc.) [33]. 

3.2. Research Objectives and Scope 

WSN congestion is caused by the fact that packets produced at each node must be forwarded to a 

sink [34,35]. In other words, because each node cannot send data directly to the sink, transfers are 

accomplished through multiple nodes by using a variety of routing protocols. Thus, network 

congestion occurs as a result of attempting to meet the demand to move these data.  

Factors that affect data transfer between the nodes in a WSN are as follows: 

 Location of the Source Node 

 Location of the Sink Node 

 Packet type (Text/Image/Sound Data...) 
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 Number of transmission paths 

 Periodic/Event Data incidence 

 Path change in case of the occurrence of Periodic Data/Event Data  

 Sink Node change in case of the occurrence of Periodic Data/Event Data 

 Transfer method (Protocol) 

 Resource of Sensor Node 

The factors that affect data transfer at each node can be represented by a hierarchical system.  

For example, the type of packet is determined initially according to the sensor node, but the 

transmission path between the nodes can be determined when network configuration is finished or it 

can change periodically. In addition, any choice is made based on the cluster unit and district unit, and 

any other choice is made based on each node. Therefore, the decision can be layered into three steps, 

as shown in Figure 2: 

(1) The entire packet flow can be predicted by dividing it into periodical and event packets and by 

using the production function from economics after identifying the factors influencing 

communication between nodes in the WSN. 

(2) Traffic can be estimated by using transportation demand analysis techniques.  

(3) The congestion zone is predicted by estimating congestion costs through the BPR function after 

the optimal parameter values are determined according to the network type.  

Figure 2. Congestion Prediction Methodology. 

 

Transmission entails time and node energy consumption; these are both considered to be costs.  

The throughput that occurs under each different cost is network traffic demand, which is considered to 

be different from network traffic. 

In order to estimate congestion, the number of node-specific packet generations, the average time 

per node transmission, and the network type must be considered. However, it is difficult to capture all 
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packet information, and it is possible to overestimate the probability when using the average 

transmission time of the whole network. In addition, if the network was estimated using the arithmetic 

mean from the average transfer rate without reflecting differences in the type of network, then 

problems may be underestimated when there is a low-speed network near the sink node and a 

relatively high-speed network in the outlying areas. The purpose of this study is to identify the factors 

that determine demand on the WSN network and to predict how these factors impact network traffic. 

3.3. System Model 

The model established in this study is a closed WSN without movement from one sensor network to 

another, and is assumed to be a mono-centric network with one sink. Packet production is predicted by 

including periodic data and event data together. In addition, the amount of data being passed over the 

network can be determined not only by considering end-to-end packet delivery, but also by predicting 

the number of packets by transmission path. It is assumed that the nodes can move within the WSN. 

The network modeling is shown in Figure 3. The form in which congestion occurs is the basic 

concept. Periodic and event data are gathered at the sink because commuting and shopping in the city 

are introduced. The network is divided into N sections in total. The sink is located in the middle of the 

network, and the N sections are located in the outermost zone [36–39]. The communication radii of 

each sensor node are all the same, and each node is responsible for all incoming and outgoing data 

functions. The periodic data and event data are generated in all sections. 

Figure 3. Network Modeling Concept. 

 

3.4. Traffic Prediction 

3.4.1. Packet Generation Prediction by Node 

Production Function 

This paper uses the concept of production economics to calculate packet production. When evaluating 

the mutual influence of all variables, relative change, (i.e., elasticity) is very important. Resilience analysis 

becomes easier when the packet product is expressed as a natural logarithm. The packets produced in the 

network are modeled using the Cobb-Douglas production function, which models the relationships of the 

inputs and outputs of the factors of production [40]. The Cobb-Douglas production function is used in 

economics and is often used as a utility function and is essential to reflect the modeling after analyzing the 
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future effectiveness of the network. If the number of sensing actions and the input power are increased  

h times in the network modeling described in this paper, we can assume that the number of packets is also 

increased h times, which indicates a constant returns to scale character. The node located in the i
th
 area 

produces packet Di by using sensing action Si and Energy Ei. Since the production function was assumed to 

be a Cobb-Douglas production function, Di is as follows in Equation (2): 

           
    (2) 

Since it is a constant returns to scale function, µ +   = 1. A is a constant with the value of the 

amount, and represents the number of sensing nodes. 

Sensing Si is determined by the production cost per packet pi and CPU operations Ui, and energy Ei 

is assumed to be determined by the production cost per packet Pi and power consumption: 

   
   

  
 (3) 

   
   

  
 (4) 

This formula was not used for actual traffic prediction in this paper, but was modeled to identify the 

total production of packets for the total lifetime of the node depending on the node’s lifetime and the 

number of events. There are three node types considered in this study: 100% (node 1), 70% (node 2), 

and 40% (node 3). When energy is 100%, 100 min of sensing coverage is possible, and when it is 

assumed that one node is sensed once per minute, the same number of packet nodes from 1, 2 and 3 

will be produced in 40 min. However, when comparing the total product per node after 100 min,  

node 1 produces 1/1 s × 1,000 s = 1,000 packets, node 2 produces 700, and node 3 produces 400. For 

this type of estimation, network utility analysis may be used for the future by representing the total 

amount of product and by using the Cobb-Douglas production function according to the amount of 

energy and sensing. In addition, the derived total number of packets produced can be compared with 

the traffic prediction of Section 3.4.2. 

Prediction of the Amount of Data by the Types of Data (Event/Periodic) 

Data transmission from the node can be divided into Periodic Data transfers F
w

i−sink and Event Data 

transfers F
v

i−sink. Therefore, the Data node from the total throughput is Fi−sink = F
w

i−sink + F
v

i−sink.  

The following Fi in Equation (5) is the traffic volume in each traffic zone in Figure 3 showing relay 

node throughputs:  

           

         

        

           

       

         

   

   

          

           

       

         

 

     

          

                   

(5) 
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3.4.2. Path Traffic 

During WSN data transfer, the decision-making process for network use is as follows: 

(1) Traffic Generation: prediction of the number of transfers in and out of the network per hour. 

(2) Traffic Distribution: prediction of the number of transfers between the source and destination. 

(3) Data Transmission Protocol: prediction of percentage by each transfer method. 

(4) Routing Protocol: prediction of path-specific transmission count according to transfer method. 

The above four elements could be predicted in sequential order when using Step 4 transportation 

demand analysis techniques. Using this technique, the estimate of the output results becomes the input 

for the estimation of the following steps. These steps are shown in Figure 4. 

Figure 4. 4 Steps of traffic demands analysis. 

 

In this paper, we predict traffic generation and traffic distribution; for the rest of the data 

transmission/routing protocol it was assumed that any step can be used and that network demand was 

predicted in steps 1 and 2. 

Traffic Generation 

Cross-Classification Analysis, also known as Category Analysis, is a way to predict future network 

traffic by analyzing the incidence of average network traffic, the results of which will be different 

depending on various characteristics related to the occurrence of network traffic. The total traffic 

production of some areas in cross-classification analysis are calculated as the sum of the per-node 

traffic generation, and can be expressed as in Equation (6) below: 

           (6)  

 Oi = The total traffic generation of area i 

 Ch = The number of nodes belonging to the category h of the characteristics that are classified 

 Rh = The average traffic generation of nodes belonging to the category h 
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Traffic Distribution 

Network traffic between the C section and other sections is estimated using the gravity model.  

As shown in Figure 5, when comparing the network traffic between zones 1 and 2 with that between 

zones 1 and 4, the network traffic between zones 1 and 2 is greater than expected. This is because, 

although the distance between zone 1 and 2 and that between zone 1 and 4 are the same at 500 m, the 

number of nodes in zone 2 is 20, which is double the 10 nodes of zone 4. In addition, the number of 

nodes located within zone 1 and 2 is the same as that within zones 1 and 3, but the 500 m distance 

between zones 1 and 2 is more than twice as distant than the 200 m between zones 1 and 3, so it can be 

expected that the network traffic from zone 1 to zone 3 is higher than the network traffic from zone 1 

to zone 4. This is due to the impacts of scale and distance, and the gravity model reflects this, which 

allows for traffic prediction. 

Figure 5. Gravity model example. 

 

The basic equation considering scale and distance impacts can be expressed as in Equation (7) below: 

    
    

   
 (7)  

 Ni = Node number in zone i 

 Nj = Node number in zone j 

 dij = The distance between zones i and j  

The basic equation is limited as it is considers the characteristics of a WSN, for which traffic comes into 

the sink from the source. In other words, it places constraints for zone-specific total arrival traffic (Di).  

It must be transformed to satisfy the following constraint: the sum of the traffic (     ) starting from 

all other zones arriving in zone j (sink) should be the same as the total amount of arrival traffic in  

zone j (Dj). This is shown in the following Equation (8): 

    

 

    (8) 

The constraint is expressed in the following Equation (9): 

           
 
   (9) 

 Bj = Adjustment factor of destination zone j. 

Zone 1
20 Nodes

Zone 2
20 Nodes

500m

Zone 3
20 Nodes Zone 4

10 Nodes
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The adjustment factor Bj may have different values for the destination zone in the Equation 9. Using 

Equations (8) and (9), the adjustment factor Bj can be derived as in the following Equation (10). 

Substituting Equation (11) into Equation (10), Equation (11) can be expressed as follows: 

   
   

     
 
  

 
     

      
 
   

 
  

      
 
   

 
 

    
 
   

 (10)  

      

   
 
  

    
 
   

 (11) 

Thus, in order to obtain the traffic volume Tij, the adjustment factor Bj was first obtained by using 

Equation (10) and then, the traffic volume was calculated using Equation (10) or (11). 

3.5. Data Transmission Time 

The time gi taken to pass through zone i can be defined with a BPR function. Since the BPR 

function is easy to manipulate and is not asymptotic to any particular value, it has the advantage that 

the travel cost can be calculated for any traffic volume. In this paper, data modeling may be performed 

by applying the BPR function to the congestion of the network. 

The BPR function developed by the United States Bureau of Public Roads shows how the traversal 

time changes depending on the ratio of traffic volume to the road capacity (Equation (12)):  

          
  

  
   (12)  

 t = transmission time 

 t0 = transmission time for free path 

 Di = traffic generation per area 

 Ci = network capacity (bps) 

  ,   =parameters 

Di is traffic generation per area and Ci is network capacity. Thus, gi means transmission time. 

The BPR function has the advantage of fast-paced calculated results depending on the value of 

parameters   and   as shown in Figure 6. This may cause excessive calculation. So, it is important to 

determine the precise values of parameters   and   for the particular network types. 

Figure 6. Transmission Time Changes by parameter   [40]. 
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3.5.1. Optimal Parameters Estimation: the Interval Reduction Method 

Finding the optimal parameter values minimizes the difference between the estimated traffic from 

the model and the actual network traffic. We simulated several conditions for the WSNs as a training 

set. We consider the training set as a ―miniaturized actual WSNs‖. Nodes deployed random form; other 

conditions are default in NS-2. Conditions are shown in Table 3. 

Table 3. Training set condition. 

Classification Option 

Number of nodes in 1 zone 100, 500, 1,000 

1 Zone extent 10 m2, 100 m2, 500 m2 

Periodic Data(number of times/s) 1/1, 1/5, 1/10, 1/60, 1/300 

Event Data Probability (1 times per 1 min) 20%, 40%, 60%, 80%, 100% 

Number of Sink in 1 zone 1, 5, 10 

Bit Error Rate 20%, 40%, 60%, 80%, 100% 

It can be expressed as a minimization problem as follows: 

          
 

 
       

                    

 

 (13)  

The following Equation (14) can be obtained by substituting the above Equation (13) into the  

BPR Equation:  

          
 

 
         

  
   

  

 
 
 
 
  

 

 

 (14)  

The minimization problem can be solved through various previously-presented optimization 

techniques. In this paper, the interval expected to have an optimal solution is precisely analyzed by 

reduction of the iterative calculation, known as the golden section search. As shown in Figure 7, the 

initial parameter  
0
 was first fixed on the  -axis. The optimal  

0
 value was calculated by a golden 

section search on the  -axis. Then, the optimal  
1
 value was calculated again with  

0
 fixed. If this 

process is repeated several times, the optimal parameter  
*
 and  

*
 can be obtained. The process to 

obtain the overall optimal solution is detailed as follows: 

[Step 1] Initialization: The actual amount of network traffic (   ), initial (      
) setting, n = 0 

[Step 2] By fixing       
 can be calculated by using a golden section search.  

The objective function used here is Equation 14 and    is the predicted network traffic. 

[Step 3] By fixing           can be calculated using a golden section search. 

[Step 4] Convergence Review: if                        
       then stop.  

If not, proceed to [Step 1]. 
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Figure 7. Parameter optimization. 

 

3.5.2. Network Type Classification 

The values of   and   are expected to vary by the network type. Thus, the optimal   and   values 

can be found as in Section 3.5.1 after dividing the networks by speed and number of channels, as 

shown in Table 4. 

Table 4. Optimal α,   in network types. 

Network Speed Number of Channel Optimal α, β 

High 

=1   = 3.931,   = 5.316 

=2   = 1.459,   = 1.943 

≥3   = 3.210,   = 5.936 

Middle 

=1   = 0.152,   = 4.020 

=2   = 0.136,   = 3.984 

≥3   = 0.581,   = 2.450 

Low 
=1   = 1.896,   = 3.894 

=2   = 0.430,   = 3.566 

4. Performance Evaluations and Results Analysis 

4.1. Simulation Environment 

Experiments were conducted by dividing the prediction of network traffic and transmission time 

into four sections: packet products per node, transmission generation by zones, estimation of 

parameters for rush hour prediction, and congestion prediction. 

Instead of building an actual network, the prediction model was tested by implementing a WSN 

using the IEEE 802.15.4 ns-2 package. The distance of one zone is 100 m, the total number of zones is 

11, and the transmission radius of the nodes is set to 20 m. Between 10 and 20 nodes were placed 

randomly. When the node energy is 100%, the basic node energy is assumed to 1 J. It is assumed to be 

possible to operate for 100 min at 100%, and the nodes were randomly divided into three equal energy 

groups: 100%, 70%, and 40%. The node transmission time was set to be once per 10 s, and the event 

occurrence frequency was set to 30%~35%, 10%~15%, and 0% based, on 100 min. Events were 
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randomly distributed with a Poisson model as shown in Figure 8. It was calculated under the same 

conditions for the proposed prediction model. 

Figure 8. Poisson distribution for random event: (a) Event 10%~15%; and (b) Event 30%~35%. 

  

(a) (b) 

4.2. Results and Analysis 

4.2.1. Generated Packet 

The total packet production predicted in Section 3.4 was analyzed. The average number of packets 

produced by each node is shown in Figure 9. We use Constant Bit Rate (CBR) and Variable Bit  

Rate (VBR) to compare types of traffic. The prediction model is considered to be validated since the 

error rate of the total packet simulation product (b) was approximately 5% on average using the total 

number of packets (a) derived from the proposed prediction technique and NS-2. 

Figure 9. Total network traffic comparison—Nodes: (a) Congestion prediction model—total 

network traffic (b) NS-2—total network traffic. 

  

(a) (b) 

The proposed traffic prediction model is compared with the real networks modeled in the ns-2 and 

traffic adaptive routing protocol for mobile sensor networks (H.MSN) [41]. The average number of 

packets produced by each node is shown in Figure 10. The proposed prediction model shows an 

average 3% difference with the real network in CBR simulation, and a 5% difference to that in VBR 
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simulation. The H.MSN model shows an average 8% difference with the real-network in CBR, and a 

12% difference to that in VBR simulation. 

Figure 10. Traffic comparison (a) Traffic comparison in Constant Bit Rate (CBR); and  

(b) Traffic comparison in Variable Bit Rate (VBR). 

  

(a) (b) 

4.2.2. Zone Traffic 

The zone-specific total transmission predicted in Section 3.5 was also tested as shown in Figure 11. 

The total traffic that occurred in a zone over 100 min was represented as a graph of the derivative of 

the average value over 100 experiments. The error rate of the proposed prediction technique and the 

ns-2 model was shown to be approximately 7%.  

Figure 11. Total network traffic—zone. 
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4.2.3. Bureau of Public Roads (BPR) Parameter Estimation 

The results of the error rate for the transfer time prediction are shown in Table 5 by network 

category. The error rate was tested by comparing the network implemented in ns-2 to that of the 

prediction method proposed in this study. The error ratio was about 60% ± 30% (appropriate level), 

which does not represent a significant difference from the actual network implemented in ns-2.  

Table 5. Error rate for transfer time prediction by network category. 

Error (%) 

High Speed Network Medium Speed Network Low Speed Network 

Observed 

value 
Error Rate (%) 

Observed 

value 
Error Rate (%) 

Observed 

value 
Error Rate (%) 

Overestimation 

100+ 18 2.7 64 4.6 109 4.0 

60~100 44 6.5 72 5.2 252 9.2 

30~60 76 11.3 103 7.4 322 11.8 

10~30 115 17.1 279 20.2 320 11.7 

0~10 98 14.5 227 16.4 439 16.0 

Underestimation 

−10 ~ 0 92 13.6 201 14.5 549 20.1 

−30 ~ −10 166 24.6 236 17.1 391 14.3 

−60 ~ −30 55 8.2 117 8.5 158 5.8 

−60 ~ −100 10 1.5 84 6.1 194 7.1 

Total 674 100 1,383 100 2,734 100 

Most of the observational data and the actual data converge in the middle, as shown in Figure 12. 

As can be seen in the figure, it reflects reality well. 

Figure 12. Comparisons between observed transmission times in the ns-2 and  

proposed models (a) comparison of high speed network transmission time observation;  

(b) comparison of medium speed network transmission time observation; and  

(c) comparison of low speed network transmission time observation. 
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Figure 12. Cont. 

 

(b) 

 

(c) 

4.2.4. Data Transmission Time 

Previous Simulation shows the similarity between real environment and prediction model. In this 

simulation, we analyzed transmission time regarding network capacity using prediction model. Total 

transfer time was tested by throughput as compared to network capacity using the BPR function 

presented in Section 3.5 and shown in Figure 13.  - and  - values calculated in Section 3.5.1 were 

used and a test was conducted depending on the network speed and the number of channels. The below 

Figure 13a–c show throughput compared to network capacity when the number of channels is more 

than one, two, and three in high-, medium-, and low-speed networks, respectively. High speed network 

is assumed to 100% speed when middle speed network is assumed to 70% speed and low speed 

network is assumed to 45% speed of high speed network. 
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Figure 13. Congestion and transmission time comparison: (a) High speed network data 

transmission time; (b) Middle speed network data transmission time; and (c) Low speed 

network data transmission time. 

 

(a) 

 

(b) 

 

(c) 
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2 channel network and 1 channel network. In middle speed network, 2 channel network shows average 

7.96% faster transmission time than 1 channel network, 3 channel network shows average 0.25% and 

8.21% faster transmission time than 2 channel network and 1 channel network. 

In the low speed network, 2 channel network shows average 5.58% faster transmission time than  

1 channel network, 3 channel network shows average 2.65% and 8.23% faster transmission time than  

2 channel network and 1 channel network. 

This study shows that the estimated congestion shows a sensitive response to changes. It will 

therefore be able to predict congestion and can be used in the congestion zone in the future. 

5. Conclusions 

This paper presented a method for network modeling, packet production, and traffic prediction. 

There were several limitations to this study: (1) Network congestion costs are considered additional 

costs incurred during congestion according to the transmission time. It should have been estimated 

based on the actual transmission time, but WSN types differ greatly depending on application. Thus, 

the BPR function was used rather than specifying certain conditions; this use can lead to error; (2) The 

optimal value of the BPR function parameters depend on the characteristics of the network and the 

values presented in the national transportation data base, but it is important to find the optimal 

parameters for the network of interest because the overall trend can be changed by new elements;  

(3) The data used in this study were estimated and were not actual data and therefore may be 

inaccurate. These issues could have a significant impact on the estimated congestion prediction. 

However, improving the accuracy of the prediction through optimization with the simulation results of 

an actual network could address those problems. Thus, further improvements of the model should be 

made in future studies, since it predicts a trend rather than their own value. Additional studies will be 

performed on the basis of this study as follows: 

(1) Node utility modeling should be performed and the effectiveness of the entire network should 

be analyzed accordingly.  

(2) Congestion zones should be determined according to the analyzed effectiveness.  

(3) The change in network utility should be analyzed depending on the design of the congestion zone.  

(4) Lastly, changes in the transmission patterns of actual WSN network data should be identified 

and analyzed. 

Many previous studies have focused on methodological aspects, congestion detection, and 

avoidance techniques [42,43]. The congestion pricing zone technique has the advantage of analyzing 

networks quantitatively through mathematical modeling, but it has not been studied extensively.  

In addition, this technique has previously been used in studies focused on short-term impacts such as 

congestion detection rather than congestion prediction. Therefore, various modeling techniques to 

efficiently control network congestion are presented here, but further theoretical research of various 

perspectives is needed. Theoretical studies of these long-term perspectives will determine how they 

can be used effectively in network design and maintenance. 
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