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Abstract: Video-based human activity recognition (HAR) means the analysis of motions
and behaviors of human from the low level sensors. Over the last decade, automatic HAR
is an exigent research area and is considered a significant concern in the field of computer
vision and pattern recognition. In this paper, we have presented a robust and an accurate
activity recognition system called WS-HAR that consists of wavelet transform coupled with
stepwise linear discriminant analysis (SWLDA) followed by hidden Markov model (HMM).
Symlet wavelet has been employed in order to extract the features from the activity frames.
The most prominent features were selected by proposing a robust technique called stepwise
linear discriminant analysis (SWLDA) that focuses on selecting the localized features from
the activity frames and discriminating their class based on regression values (i.e., partial
F-test values). Finally, we applied a well-known sequential classifier called hidden Markov
model (HMM) to give the appropriate labels to the activities. In order to validate the
performance of the WS-HAR, we utilized two publicly available standard datasets under
two different experimental settings, n−fold cross validation scheme based on subjects;
and a set of experiments was performed in order to show the effectiveness of each approach.
The weighted average recognition rate for the WS-HAR was 97% across the two different
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datasets that is a significant improvement in classication accuracy compared to the existing
well-known statistical and state-of-the-art methods.

Keywords: activity recognition; wavelet decomposition; stepwise linear discriminant
analysis; hidden markov model

1. Introduction

Video-based human activity recognition (HAR) refers to an algorithm that a computer system
uses to automatically recognize what human activity is being or was performed, given a sequence of
images (video frames). Over the last decade activity recognition has become an important research area
for many applications of computer vision and pattern recognition, security [1], surveillance [2], illegal
car parking [3], and diagnostics of orthopedic patients and analysis of athletes’ performances [4].

There are two types of classification in a typical HAR systems: First one is the frame-based
classification in which only the current frame is utilized with or without a reference image to recognize
the human activities in the incoming videos. The second one is the sequence-based classification in
which the geometrical displacement of the feature points are calculated between the current frame and
the initial frame. The frame-based methods do not have this quality; therefore, the focus of this article is
the sequence-based classification method.

Generally, HAR system consists of three basic modules: preprocessing, feature extraction, and
recognition. For preprocessing module, some well-known methods such as histogram equalization (HE),
median filter, and homomorphic filter have been employed in order to enhance the quality of the video
frames. On the other hand, there lots of works have been done for feature extraction module in the
literature; however, each of them has its own limitations.

Regarding to the feature extraction, some well-known methods such space-time volume (STV)
by [5–8] have been proposed. However, in SVT approaches, a traditional sliding window is used due
to which it requires a large amount of computations for the accurate localization of actions, and also
it has difficulty in recognizing the actions which cannot be spatially segmented [9]. Similarly, local
binary pattern (LBP) method has been exploited by [10,11] for feature extraction. However, LBP are
very sensitive to viewpoint, noise and occlusions [12] that may cause misclassification. LBP uses
3 × 3 operator for pixels comparison; however, the dominant features cannot be extracted by this
small operator. Moreover, LBP does not provide directional information of the frame because it only
captures the relations with its surrounding eight neighbor pixels. In order to solve, the limitations of
LBP, another method was proposed by [13] named local ternary patten (LTP), which is the combination
of the description property of LBP with the appearance invariance and adaptability of patch matching
based methods [13]. However, the major disadvantage of LTP is that it is not invariant under grey-scale
transform of intensity that is based on a fixed predefined threshold value [14].

Regarding to recognition, some well-known classifiers such as artificial neural
networks (ANNs) [15–17], support vector machines (SVMs) [18,19], Gaussian mixture models
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(GMMs) [20,21], and hidden Markov models (HMMs) [22–24] have been utilized for the purpose of
recognition. Among them, HMM is widely used for sequence-based classification [25] in FER systems.
Because HMMs have their own advantage in handling sequential data when frame-level features are
used, while the vector-based classiers such as GMMs, ANNs, and SVMs fail to learn the sequence of
the feature vectors.

The objective of this paper is to propose a new feature extraction technique based on
wavelet transform (especially symlet wavelet). To obtain the feature vectors, symlet wavelet
family was tested for which the image was decomposed up to 4 levels. In order to select
the most prominent features, we also proposed the use of a robust feature selection technique
called Stepwise Linear Discriminant Analysis (SWLDA). SWLDA is easy to explain, has good predictive
ability, and computational wise, it is less expensive than other existing methods [26]. Some limitations
of the existing works, such as illumination change, do not affect the performance of the SWLDA.
SWLDA only chooses a small subset of features from the large set of features by employing forward
and backward regression models. In forward process, the most correlated features are selected based on
partial F-test values from the feature space. While in the backward process, the least significant values
are removed from the regression model i.e., the lower F-test values. In both processes, the F-test values
were calculated on the basis of the defined class labels. The advantage of this method is that it is very
efficient for seeking localized features.

We already discussed some related work about this field. Rest of the paper is organized as: Section 2
provides an overview of our WS-HAR. The experimental setup has been described in Section 3. Section 4
presents the experimental results and discussion of the WS-HAR. Finally, the paper is concluded with
some future directions in Section 5.

2. Materials and Methods

The WS-HAR system consists of the following modules.

2.1. Preprocessing

In most of the activity datasets, the activity frames have various resolutions and backgrounds, and
were taken under varying light conditions; therefore, the preprocessing module is necessary to improve
the quality of the frames. At this stage, the background information, illumination noise, and unnecessary
details are diminished for fast and easy processing. After this module, we can obtain sequences of images
which have normalized intensity, size and shape. So, in the preprocessing module of the WS-HAR
systems, we have employed histogram equalization in order to solve the lighting effects. Moreover, we
have extracted the human bodies by subtracting the empty frames from the activity frames as shown
in Figure 1.
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Figure 1. Example of subtracting background from an activity frame.

2.2. Feature Extraction

Feature extraction is a process that deals with getting the distinguishable features from each human
body shape and quantizing it as a discrete symbol. In WS-HAR, we have proposed a robust feature
extraction technique as described below.

2.2.1. Wavelet Transform

After obtaining a set of body silhouettes segmented from a sequence of images the wavelet transform
is applied for feature extraction. In wavelet transform, we used the decomposition process for which
the video frames were in grey scale. The reason for converting from RGB to gray scale was to improve
the efficiency of the proposed algorithm. The wavelet decomposition could be interpreted as signal
decomposition in a set of independent feature vectors. Each vector consists of sub-vectors like:

V 2D
0 = V 2D−1

0 , V 2D−2
0 , ...., V 2D−n

0 (1)

where V represents the 2D feature vector. If we have 2D activity frame X , and it is decomposed into
orthogonal sub images corresponding to different visualization. The following equation shows one level
of decomposition:

X = A1 +D1 (2)

where X indicates the decomposed image and A1 and D1 show approximation and detailed coefficient
vectors respectively. If the activity frame is decomposed up to multilevel, then, the Equation (2) can then
be written as:

X = Aj + [Dj +Dj−1 +Dj−2 + ....+D2 +D1] (3)

where j represents the level of decomposition. Mostly, the detail coefficients consist of noise; therefore,
only the approximation were utilized for feature extraction. During the decomposition process, each
frame is decomposed up to four levels of decomposition, i.e., j = 4, because by exceeding the value
of j = 4 the image loses lots of information due to which the informative coefficients cannot be
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detected properly and might cause misclassification. The detail coefficients further consist of three
sub-coefficients. So the Equation (3) can be written as:

X = A4 + [D4 +D3 +D2 +D1]

= A4 + [(Dh)4 + (Dv)4 + (Dd)4]

+ [(Dh)3 + (Dv)3 + (Dd)3]

+ [(Dh)2 + (Dv)2 + (Dd)2]

+ [(Dh)1 + (Dv)1 + (Dd)1]

(4)

Or simply, the Equation (4) can be written as:

X = A4 +
1∑

j=4

[
(Dh)j + (Dv)j + (Dd)j

]
(5)

where Dh, Dv, and Dd indicate horizontal, vertical and diagonal coefficients respectively. We can
observe from Equation (4) or Equation (5), that all the coefficients are connected with each other like a
chain, through which we can easily extract the prominent features. These coefficients graphically and
image-wise are represented by Figures 2 and 3 respectively.

Figure 2. All the coefficients are connected with one after another like performing head
to tail rule in vector addition that produces one dimensional matrix, due to which the
coefficients are extracted easily.

In each decomposition step, the approximation and detail coefficient vectors are obtained by passing
the signal through the low-pass and high-pass filters.
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Figure 3. Decomposition of a frame along with its corresponding coefficients after using the
proposed feature extraction algorithm. The blue arc shows the detail coefficients that further
consists of three sub-coefficients horizontal, vertical and diagonal, respectively.

After the decomposition process, the feature vector is created by taking the average of all the
frequencies of the activity frames. In a specified time window the frequency of each activity frame
has been estimated by analyzing the corresponding frame by utilizing the wavelet transform [27]:

C (ai, bj) =
1
√
ai

∞∫
−∞

y (t)ψ∗f.e

(
t− bj
ai

)
dt (6)

where ai is the scale of the wavelet between the lower and upper frequency bounds to get higher decision
for the frequency estimation, bj is the position of the wavelet from the start to end of the time window
with the spacing of signal sampling period, t is the time, ψf.e is the wavelet function used for frequency
estimation, and C (ai, bj) are the wavelet coefficients with the specified scale and position parameters,
which is converted to the mode frequency as:

f1 =
fa (ψf.e)

am (ψf.e) .∆
(7)

where fa (ψf.e) is the average frequency of the wavelet function, and ∆ is the signal sampling period.
So the feature vector is obtained by taking the average of the whole frame frequencies for each activity
that is given as:

fAct =
(f1 + f2 + f3 + ....+ fK)

N
(8)

where fAct indicates the average frequency of each activity which is a feature vector for that activity,
K is the last frame of the current activity, and N represents the whole number of the frames in
each activity.
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2.3. Feature Selection

Feature selection module is used for selecting subset of relevant features, which contain information
to help distinguish one class from the others, from a large number of features extracted from the input
data. Some of the human activities such as running and walking, skipping and jumping have quite similar
feature values in the feature space, which can result in a high misclassification rate. This also result in
high within-class variance and low between-class variance. Therefore, a method is required that not
only provides dimension reduction, but also increases the low between-class variance to increase class
separation before the features are fed to the classifier.

In order to solve this problem, several methods have been discussed in the machine learning literature,
such as kernel discriminant analysis (KDA) [28], generalized discriminant analysis (GDA) [29],
and linear discriminant analysis (LDA) [30]. Among these, LDA has been most widely employed in
HAR systems.

However, LDA has two major limitations. First, it relies on the mixture model containing the correct
number of components. Second, it is a linear technique that is limited in flexibility when applied to more
complex datasets. Moreover, the assumption made by LDA that all classes share the same within-class
covariance matrix is not valid. Additionally, large amounts of data are necessary to generate robust
transforms for LDA, and there may be insufficient data to robustly estimate transforms to separate the
classes. For more details on LDA, please refer to a previous study [31].

In sum, we believe that the use of LDA will not essentially yield an improvement in the performance
of an HAR system. Moreover, LDA cannot provide a better classification rate due to the aforementioned
limitations. Therefore, we propose the use of a robust technique such as SWLDA [26] that does not suffer
from the aforementioned limitations. To the best of our knowledge, it is the first time that SWLDA is
being utilized as a feature selection technique for HAR systems.

2.3.1. Stepwise Linear Discriminant Analysis (SWLDA)

Fishers linear discriminant (FLD) is a well-known linear classification method that has been utilized
in order to find the optimal separation between the two classes [28]. For two classes that have a Gaussian
distribution with an identical covariance, FLD is more robust than other linear classifiers with regard
to optimal separation. FLD and the least-squares regression method are comparable to each other and
project feature masses in binary jobs as follows:

L̂ =
(
M tM

)−1
M tY (9)

where M indicates the pragmatic feature vectors matrix, and Y is the label of the class. FLD has the
capability to provide the best classification solution for linear data; however, FLD does not provide
a better solution when the data is non-linear.

Therefore, we propose the use of a non-linear classification technique such as SWLDA that has been
reported to discriminate P300 Speller responses [26]. In short, SWLDA is an extended version of FLD
that performs two operations in parallel: reducing the feature space by extracting informative features
and removing irrelevant features.
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As mentioned before, SWLDA extracts and selects the best features by utilizing two algorithms,
namely forward and backward algorithms that work in parallel. The most substantial interpreter value is
obtained with a model that has a p-value < 0.2 because there is no initial model at the start. When the
new values are entered by the forward technique, the backward algorithm is used to remove irrelevant
values (i.e., those that have a p-value > 0.25). This entry and removal procedure continues until
the predefined criteria are satisfied and the resultant function is constrained to the extreme number
of 200 features.

In contrast, the regression methods select the best variable, such as X , and then move on to form
more X ′s in meaningful situations. In this method, the new entry and the selection of the best values
are based on F-test values that are used to determine which value should be entered first or second.
Then the two values, namely the partial F-value and the selected value, are compared. This whole
process is done using the forward technique. In the next step, the deletion process is initiated using
a backward regression technique (known as backward deletion) in which the testing values for all
interpreter variables previously present in the backlog are calculated. The testing value with the lowest
value, VL is compared with the pre-selected value, PS . Then

• The calculation of F-test will start again if VL < PS

• Otherwise, accept the regression equation if VL > PS .

For more details on SWLDA, please refer to a previous study [26].

2.4. Recognition

In recognition module, a classifier such as Hidden Markov Model (HMM), or Gaussian Mixture
Model (GMM) or Support Vector Model (SVM) is first trained with training data and then used to
generate the label of human activities contained in the incoming video data.

2.4.1. Hidden Markov Model (HMM)

As described before that HMM is the best candidate for sequential data (video-based activities)
classification, which provides a statistical model λ for a set of observation sequences. These observations
are called frames in HAR domain. Suppose there are sequence of observations of length T that are
denoted by O1, O2, ..., OT and HMM also consists of particular sequences of states S, whose lengths
range from 1 to N (S = S1, S2, ..., SN ), where N is the number of states in the model, and the time t for
each state is denoted Q = q1, q2, ..., qN . The likelihood P (O|λ) can be evaluated by summing over all
possible state sequences:

P (O|λ) =
∑
Q

P (O,Q|λ) (10)

A simple procedure for nding the parameters λ that maximize the above equation for HMMs, introduced
in [32] depends on the forward and backward algorithms αt (j) = P (O1, O2, ..., Ot, qt = j|λ) and
βt (j) = P (O (t+ 1) ....Ot/qt = j, λ) respectively, such that these variables can be initiated inductively
by the following three processes:

α1 (j) = πjbj (Oj) , 1 ≤ j ≤ N (11)
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βT (j) = 1, 1 ≤ j ≤ N (12)

During testing, the appropriate HMMs can then be determined by mean of likelihood estimation for the
sequence of observations O calculated based on the trained λ as:

P (O|λ) =
N∑
i=1

αT (i) (13)

The maximum likelihood for the observations provided by the trained HMMs indicates the recognized
label. For more details on HMM, please refer to [33]. The following formula has been utilized to model
HMM (λ):

λ = (O,Q, π) (14)

where O is the sequence of observations e.g., O1, O2, ..., OT and and each state is denoted by Q such as
Q = q1, q2, ..., qN , whereN is the number of the states in the model, and π is the initial state probabilities.
The parameters that used to model HMM (λ) for all experiments were 44, 4, and 4, respectively.
These values have been selected by performing multiple experiments.

3. Experimental Setup

There are some pose-based action datasets such as Weizmann action dataset [5], and KTH
action dataset [34], and some are spontaneous-based action datasets like RGBD-HuDaAct [35], UCF
Youtube [36], Hollywood2 [37], HMDB51 [38], ASLAN [39], etc. Most of the activity frames in
pose-based datasets have only one subject for performing the activity. While, all the spontaneous-based
action datasets have more than one subject in each activity clip for the corresponding activity. However,
the WS-HAR may not work on spontaneous-based action datasets because of involving more than one
subject in the activity frames, and that is one the limitations of the WS-HAR system. Therefore, the
performance of the WS-HAR has been tested and validated only on pose-based action datasets such as
Weizmann and KTH action datasets. The detailed description on each of these datasets are as follows:

• Weizmann Action Dataset:
In this dataset, there were 9 subjects performed 10 actions such as bending, walking, running,
skipping, jumping forward, place-jumping side-movement, one-hand-waving, and two-hand-waving.
There were 90 video clips in the datasets and the average number of frames in each clip was 15.
The size of each frame 144 × 180.

• KTH Action Dataset:
Additionally, we also employed KTH dataset of activity recognition. In this dataset, there were
25 subjects performed six activities such as walking, jogging, running, boxing, hand-waving,
hand-clapping in four different scenarios. There were total 2391 sequences taken over homogenous
backgrounds with a static camera. The fame size was 160 × 120.

During all the experiments, the size of each input frame was 60 × 60, where the images were first
converted to a zero-mean vector of size 1 × 3600 for feature extraction. For a thorough validation,
four experiments were performed.
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• In the first experiment of the WS-HAR, an n−fold cross-validation scheme based on subjects
was used for each dataset, which means that, out of n subjects, data from a single subject was
taken as the validation data for testing the WS-HAR, whereas the data for the remaining n − 1

subjects were used as the training data. This process was repeated n times, with data from each
subject used exactly once as validation data. The value of n varied according to the dataset used.
The benefit of this rule is that each activity was used for both training and testing.
• While, in the second experiment of WS-HAR, the performance of the sub-components

of WS-HAR, i.e., feature extraction (symlet wavelet transform), and SWLDA were
analyzed separately.
• In the third experiment, the performance of WS-HAR was compared with previous

state-of-the-art methods.
• Finally, in the fourth experiment, the performance of different approaches with different

combination was analyzed using all the three datasets.

4. Results and Discussion

4.1. Experimental Results of WS-HAR Based on Subjects

In this experiment, the WS-HAR (Wavelet transform, Stepwise linear discriminant analysis
(SWLDA)-based Human Activity Recognition) system was separately trained and tested on each dataset.
In this experiment, symlet wavelet transform, SWLDA, and HMM were applied collectively on each
dataset. The overall experimental results of WS-HAR using Weizmann and KTH action datasets are
shown in Tables 1 and 2, respectively.

Table 1. The recognition rate of WS-HAR using Weizmann action dataset. It can be seen
that the WS-HAR showed better classification rate (Unit: %).

Activities Bend Jack Pjump Run Side Skip Walk Wave1 Wave2

Bend 97 1 0 0 1 0 1 0 0
Jack 0 98 0 1 0 1 0 0 0

Pjump 0 0 98 1 0 1 0 0 0
Run 0 2 0 96 0 1 1 0 0
Side 0 1 0 1 97 0 1 0 0
Skip 0 0 2 0 0 98 0 0 0
Walk 1 0 1 0 1 0 97 0 0

Wave1 0 0 0 2 0 2 0 96 0
Wave2 0 1 0 0 2 0 0 0 97

Average 97.11
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Table 2. The recognition rate of WS-HAR using KTH action dataset. It can be seen that the
WS-HAR showed better classification rate (Unit: %).

Activities Walking Jogging Running Boxing Hand-wave Hand-clap

Walking 98 0 2 0 0 0
Jogging 2 96 0 2 0 0
Running 2 0 97 0 0 1
Boxing 0 0 0 99 1 0

Hand-wave 0 1 0 2 97 0
Hand-clap 0 0 0 4 0 96

Average 97.16

It can be seen from Tables 1 and 2 that the WS-HAR consistently achieved a high recognition rate
when applied to these datasets separately: 97.11% for Weizmann action dataset, and 97.16% for KTH
action dataset.

4.2. Experimental Results of WS-HAR under the Absence of Each Module

In this experiment, a set of sub-experiments were performed in order to assess the efficacy of
each module of WS-HAR (feature extraction, and feature selection) separately. This experiment was
repeated two times and the classification rate was analyzed under two different settings: Firstly, the
experiment was repeated by employing the existing feature extraction technique such as ICA instead of
using the proposed feature extraction technique (wavelet transform). While in the second experiment,
a well-known feature selection technique such as PCA was utilized instead of employing the proposed
feature selection method (SWLDA). The results for the two experimental settings are indicated in
Tables 3–6 on Weizmann and KTH action datasets respectively.

Table 3. Confusion matrix for the WS-HAR using Weizmann action dataset, while removing
the proposed feature extraction technique (symlet wavelet transform) (Unit: %).

Activities Bend Jack Pjump Run Side Skip Walk Wave1 Wave2

Bend 92 1 2 0 1 0 1 2 1
Jack 1 90 2 0 3 0 2 0 2

Pjump 1 2 88 3 0 1 2 0 3
Run 0 0 2 95 0 2 0 1 0
Side 0 0 2 1 93 1 0 1 2
Skip 2 0 1 0 2 91 2 2 0
Walk 1 3 2 1 1 2 87 3 0

Wave1 0 0 0 3 0 0 0 97 0
Wave2 0 4 3 0 2 0 1 0 90

Average 91.44
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Table 4. Confusion matrix for the WS-HAR using KTH action dataset, while removing the
proposed feature extraction technique (symlet wavelet transform) (Unit: %).

Activities Walking Jogging Running Boxing Hand-wave Hand-clap

Walking 90 2 4 1 1 2
Jogging 3 89 4 1 2 1
Running 4 2 90 2 0 2
Boxing 0 0 1 94 2 3

Hand-wave 1 3 2 1 93 0
Hand-clap 1 2 0 4 2 91

Average 91.16

It can be seen that in the WS-HAR, the proposed feature extraction method (symlet wavelet transform)
is important as shown in Tables 3 and 4. It is because symlet wavelet can extract the most prominent
information in the form of frequency from activity frames, and also it is a compactly supported wavelet
on frames with the least asymmetry and highest number of vanishing moments for a given support
width. The symlet wavelet has the capability to support the characteristics of orthogonal, biorthogonal,
and reverse biorthogonal of gray scale images, that’s why it provides better classification results.

The frequency-based assumption is supported in our experiments and we measure the statistic
dependency of wavelet coefficients for all activity frames. Joint probability of a frame is computed by
collecting geometrically aligned frames of the activity for each wavelet coefficient. Mutual information
for the wavelet coefficients computed using these distributions is used to estimate the strength of
statistical dependency between the two frames. Moreover, symlet wavelet transform is capable to extract
prominent features from activity frames with the aid of locality in frequency, orientation and in space as
well. Since wavelet is a multi-resolution that helps us to efficiently find the images in coarse-to-find way.

Similarly, it is also to be noted from Tables 5 and 6 that the proposed feature selection method such
SWLDA has also much contribution in the WS-HAR. Without SWLDA, the WS-HAR system was
unable to achieve adequate classification rate. This indicates that SWLDA is a robust feature selection
method that addresses the limitations of previous feature selection techniques, especially PCA and LDA.
The reason behind the better performance of SWLDA is apparent in Tables 5 and 6. Thus SWLDA
not only provides dimension reduction, it also increases the low between-class variance to increase the
class separation before the features are fed to the classifier. The low within class and high between class
variance are achieved because of the forward and backward recognition models in the SWLDA.

4.3. Comparison of the WS-HAR with State-of-the-Art Methods

In this experiments, we compared the performance of WS-HAR with some state-of-the-art
methods on both datasets, i.e., Weizmann and KTH action datasets of activities. Some of these methods
including [40–46]. Some of them recognized the activities by employing frame-based classification
methods while some used sequential-based classification method. All these methods were implemented
by us using the instructions provided in their respective papers. For each dataset, n−fold cross validation
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scheme (based on subjects) was utilized as described in Section 3. The average recognition rate for each
method along with the WS-HAR are shown in Table 7.

Table 5. Confusion matrix for the WS-HAR using Weizmann action dataset, while removing
the proposed feature selection method (SWLDA) (Unit: %).

Activities Bend Jack Pjump Run Side Skip Walk Wave1 Wave2

Bend 92 0 2 0 0 1 0 2 3
Jack 2 86 3 2 0 2 3 0 2

Pjump 0 0 96 2 0 2 0 0 0
Run 0 0 1 95 0 0 4 0 0
Side 0 4 1 1 92 2 0 0 0
Skip 0 2 3 0 0 94 0 1 0
Walk 0 2 0 4 1 2 90 0 1

Wave1 0 0 0 2 0 2 0 96 0
Wave2 0 0 2 0 1 0 2 0 95

Average 92.89

Table 6. Confusion matrix for the WS-HAR using KTH action dataset, while removing the
proposed feature selection method (SWLDA) (Unit: %).

Activities Walking Jogging Running Boxing Hand-wave Hand-clap

Walking 90 2 3 4 0 1
Jogging 2 91 3 3 1 0
Running 4 3 93 0 0 0
Boxing 1 3 2 88 3 3

Hand-wave 1 1 1 3 92 2
Hand-clap 1 1 2 3 3 90

Average 90.67

Table 7. Comparison results of the WS-HAR with some state-of-the-art methods (Unit: %).

Existing Works [40] [41] [42] [43] [44] [45] [46] WS-HAR

Accuracy Rate 86 81 79 89 88 86 70 97

It can be seen from Table 7 that the WS-HAR outperformed the existing state-of-the-art methods.
Thus, the WS-HAR system shows significant potential in its ability to accurately and robustly recognize
the human activities using video data.
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4.4. Experimental Results of Existing Well-Known Statistical Methods

In this experiments, a set of experiments were performed using different combinations of various
previously used feature extraction and classification approaches on the two datasets. The overall results
of these experiments are shown in Tables 8–19.

Table 8. The recognition rate of PCA and hidden Markov model (HMM) using Weizmann
action dataset (Unit: %).

Activities Bend Jack Pjump Run Side Skip Walk Wave1 Wave2

Bend 60 7 5 4 6 4 6 6 2
Jack 6 55 6 4 7 5 8 4 5

Pjump 4 5 53 3 5 7 8 9 6
Run 3 4 3 69 3 5 4 4 5
Side 5 6 7 3 58 4 9 5 3
Skip 3 4 6 2 4 60 6 7 8
Walk 3 5 6 4 4 8 58 3 9

Wave1 3 4 9 8 8 2 5 57 4
Wave2 2 8 6 4 2 4 6 7 61

Average 59.00

Table 9. The recognition rate of PCA and HMM using KTH action dataset (Unit: %).

Activities Walking Jogging Running Boxing Hand-wave Hand-clap

Walking 63 6 7 9 11 4
Jogging 7 55 11 9 7 11
Running 12 10 52 7 9 10
Boxing 6 11 10 50 12 11

Hand-wave 6 5 7 10 62 10
Hand-clap 4 7 6 11 12 60

Average 57.00

Comparing Tables 1 and 2 with the abovementioned tables, one can notice that the performance of
WS-HAR is much better in contrast to the performance of different combinations of the previously
explored methods.

Moreover, in order to show the efficacy of the proposed approaches, we have compared the weighted
recognition rate of the proposed approaches with some recent well-known feature extraction methods
such as motion history image (MHI) [47,48], spatio-temporal interest points [7,49], and dense motion
trajectories [50]. The over all results of along with the proposed approaches are shown in Table 20.
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Table 10. The recognition rate of PCA + LDA and HMM using Weizmann action
dataset (Unit: %).

Activities Bend Jack Pjump Run Side Skip Walk Wave1 Wave2

Bend 60 4 7 6 3 8 3 6 3
Jack 3 62 4 5 2 5 7 5 7

Pjump 5 4 58 8 7 6 3 4 5
Run 2 4 4 67 7 3 4 5 4
Side 4 2 2 5 70 4 2 5 6
Skip 3 6 3 4 7 60 4 6 7
Walk 7 6 4 7 6 4 61 3 2

Wave1 3 4 6 4 4 6 4 65 4
Wave2 4 1 2 2 6 5 4 5 71

Average 63.78

Table 11. The recognition rate of PCA + LDA and HMM using KTH action
dataset (Unit: %).

Activities Walking Jogging Running Boxing Hand-wave Hand-clap

Walking 50 11 12 8 10 9
Jogging 9 60 9 7 8 7
Running 7 9 66 5 6 7
Boxing 9 9 8 57 6 11

Hand-wave 6 4 6 7 69 8
Hand-clap 6 7 4 6 9 68

Average 61.67

Table 12. The recognition rate of ICA and HMM using Weizmann action dataset (Unit: %).

Activities Bend Jack Pjump Run Side Skip Walk Wave1 Wave2

Bend 63 5 5 5 4 6 3 4 5
Jack 3 71 6 4 5 1 3 4 3

Pjump 3 4 69 6 3 2 5 6 2
Run 6 7 4 60 5 5 6 4 3
Side 5 4 5 2 64 6 5 4 5
Skip 7 4 3 6 5 58 6 6 5
Walk 4 2 4 3 5 4 71 3 4

Wave1 5 2 4 2 5 3 4 69 6
Wave2 6 4 2 2 4 3 4 5 70

Average 66.11
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Table 13. The recognition rate of ICA and HMM using KTH action dataset (Unit: %).

Activities Walking Jogging Running Boxing Hand-wave Hand-clap

Walking 72 5 6 5 6 6
Jogging 7 69 8 5 5 6
Running 8 9 62 6 7 8
Boxing 8 8 5 63 9 7

Hand-wave 6 5 6 8 67 8
Hand-clap 6 5 6 8 7 68

Average 66.63

Table 14. The recognition rate of ICA + LDA and HMM using Weizmann action
dataset (Unit: %).

Activities Bend Jack Pjump Run Side Skip Walk Wave1 Wave2

Bend 70 3 4 2 4 5 5 4 3
Jack 4 71 5 4 3 2 4 3 4

Pjump 4 5 68 3 3 4 4 6 3
Run 4 5 6 65 5 4 4 4 3
Side 5 6 3 4 67 5 4 3 3
Skip 4 3 4 1 4 75 4 2 3
Walk 4 5 3 4 3 4 70 4 3

Wave1 5 4 3 5 3 5 4 66 5
Wave2 2 3 5 3 5 3 4 6 69

Average 69.00

Table 15. The recognition rate of ICA + LDA and HMM using KTH action
dataset (Unit: %).

Activities Walking Jogging Running Boxing Hand-wave Hand-clap

Walking 71 8 6 5 4 6
Jogging 9 68 8 4 5 6
Running 7 6 74 4 5 4
Boxing 8 7 5 65 7 8

Hand-wave 2 3 4 6 78 7
Hand-clap 4 5 6 7 7 71

Average 71.17
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Table 16. The recognition rate of PCA + ICA and HMM using Weizmann action
dataset (Unit: %).

Activities Bend Jack Pjump Run Side Skip Walk Wave1 Wave2

Bend 81 3 2 3 2 1 3 4 1
Jack 4 75 3 3 4 2 3 4 2

Pjump 4 5 70 4 5 3 2 3 4
Run 4 5 4 69 4 3 3 2 4
Side 3 4 2 4 74 4 4 3 2
Skip 4 3 4 5 4 72 2 3 3
Walk 3 2 2 4 3 2 77 3 4

Wave1 2 3 4 4 2 4 3 74 4
Wave2 2 3 1 3 2 3 4 3 79

Average 74.56

Table 17. The recognition rate of PCA + ICA and HMM using KTH action dataset (Unit: %).

Activities Walking Jogging Running Boxing Hand-wave Hand-clap

Walking 75 4 6 7 5 4
Jogging 8 70 9 4 5 3
Running 5 5 76 4 5 5
Boxing 4 5 5 73 6 7

Hand-wave 3 2 4 4 81 6
Hand-clap 4 4 3 6 5 78

Average 75.50

Table 18. The recognition rate of PCA + ICA + LDA and HMM using Weizmann action
dataset (Unit: %).

Activities Bend Jack Pjump Run Side Skip Walk Wave1 Wave2

Bend 87 1 3 2 1 0 2 1 3
Jack 2 80 3 3 2 3 3 2 2

Pjump 3 3 83 1 2 1 2 3 2
Run 3 2 2 84 1 1 3 2 2
Side 2 3 2 2 81 2 3 2 3
Skip 4 3 2 3 2 78 3 2 3
Walk 3 2 3 2 4 2 77 3 4

Wave1 2 2 4 2 3 2 2 80 3
Wave2 3 2 2 4 3 2 3 2 79

Average 81.00
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Table 19. The recognition rate of PCA + ICA + LDA and HMM using KTH action
dataset (Unit: %).

Activities Walking Jogging Running Boxing Hand-wave Hand-clap

Walking 84 3 5 4 2 2
Jogging 5 80 7 3 3 2
Running 6 5 77 4 5 3
Boxing 5 6 5 76 4 4

Hand-wave 3 2 3 3 85 4
Hand-clap 4 3 4 4 5 80

Average 80.33

Table 20. Comparison results of the proposed approaches with recent feature extraction
methods (Unit: %).

Existing Feature Extraction Methods [7] [47] [48] [49] [50] Proposed Approaches

Accuracy Rate 89 85 72 92 86 97

It can be seen from Table 20 that the proposed approaches outperformed compared to the recent
existing feature extraction methods. These methods (shown in Table 20) have their own limitations.
For example, the scalability is one of the major limitations of motion history image-based methods
because it analyze the lateral motion of the gesture [51]. Also, it might only recognize actions of angle
of 180 degree [52]. Commonly, good segmented silhouettes are required for spatio-temporal interest
points features and also these methods are very sensitive to viewpoint and occlusion [53]. Although,
spatio-temporal interest points features-based methods are well recognized the activities; however, these
methods the time information is often discarded [54]. Likewise, dense motion trajectories-based methods
typically lost the underlying sequential information provided by the ordering of the words, when the
activities are represented as bags of words [55]. On the hand, the proposed approaches came up with the
limitations of the aforementioned feature extraction techniques and achieved high recognition rate than
the others. The details are described in Section 4.2.

5. Conclusions

The aim of video-based activity recognition systems is to automatically recognize a human activity
using sequence of images (video frames). Over the last decade, HAR systems have received a great deal
of attention from community due to their application in many areas of pattern recognition and computer
vision. However, accurately recognizing the activities is still a major concern for most of them. This
lack of accuracy can be attributed to various causes, such as the failure to extract the prominent features,
and the high similarity among different activities that results due to the presence of low between-class
variance in the feature space.
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Accordingly, the purpose of this study was to propose an accurate and robust HAR system, called
WS-HAR that is capable of exhibiting high recognition rate. The WS-HAR uses symlet wavelet
transform, SWLDA, and HMM as its feature extraction, feature selection, and classification techniques
respectively. Symlet wavelet can extract the most prominent information in the form of frequency from
activity frames, and also it is a compactly supported wavelet on frames with the least asymmetry and
highest number of vanishing moments for a given support width. Similarly, SWLDA helps the system in
selecting the most significant features thereby reducing the high within class variance and increasing the
low between class variance. HMM then uses these features to accurately classify the human activities.
This model is capable of approximating the complex distributions using a mixture of full covariance
Gaussian density functions.

The proposed WS-HAR system has been validated using two publicly available standard
datasets (Weizmann and KTH action datasets). Weizmann action dataset consisted of nine activities,
while KTH action dataset consisted of six activities. Each activity clip was composed of several
sequence of activity frames. All of these experiments were performed in the laboratory using offline
validation. Though the system was very successful in recognizing each of the activities in all of these
experiments with a very high accuracy, its performance in real environment is yet to be investigated. The
system performance could degrade in real-life test, especially when used with various angles, dynamic
background, and clutter (unnecessary objects in a test image). Therefore, further study is needed in order
to solve these issues in real-time environment.

As mentioned before that we have applied the WS-HAR system on two publicly available standard
action datasets that are pose-made datasets. In these datasets, all the activity clips have only one subject
for performing the activity. However, the WS-HAR systems may not work on real time datastes such
as UCF Youtube, Hollywood2, HMDB51, ASLAN etc. Because, most of these datasets have more than
one subject in each activity clip for the corresponding activity. Therefore, further research is needed to
apply the WS-HAR in order to solve this issue in real world datasets.
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25. Ordóñez, F.J.; de Toledo, P.; Sanchis, A. Activity recognition using hybrid generative/discriminative
models on home environments using binary sensors. Sensors 2013, 13, 5460–5477.

26. Krusienski, D.J.; Sellers, E.W.; McFarland, D.J.; Vaughan, T.M.; Wolpaw, J.R. Toward enhanced
P300 speller performance. J. Neurosci. Methods 2008, 167, 15–21.

27. Turunen, J. A Wavelet-Based Method for Estimating Damping in Power Systems. Ph.D. Thesis,
Aalto University School of Electrical Engineering, Espoo, Finland, 25 March 2011.

28. Mika, S.; Ratsch, G.; Weston, J.; Scholkopf, B.; Mullers, K. Fisher discriminant analysis with
kernels. In Proceedings of the 1999 IEEE Signal Processing Society Workshop Neural Networks
for Signal Processing IX, Madison, WI, USA, 23–25 August 1999; pp. 41–48.

29. Baudat, G.; Anouar, F. Generalized discriminant analysis using a kernel approach. Neural Comput.
2000, 12, 2385–2404.



Sensors 2014, 14 6391

30. Mika, S. Kernel Fisher Discriminants. Ph.D. Thesis, Universit ätsbibliothek, Leipzig, Germany,
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