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Abstract In this paper, we present a novel approach
to recover a 3D human pose in real-time from a single

depth image using Principal Direction Analysis (PDA).

The human body parts are first recognized from a depth

human body silhouette via the trained Random Forests

(RFs). On each recognized body part which is presented
as a set of points in 3D, PDA is applied to estimate its

principal direction. Finally, a 3D human pose gets re-

covered by mapping the principal directional vector to

each body part of a 3D human body model. In our ex-
periments, we have performed both quantitative and

qualitative evaluations of the proposed 3D human pose

recovering methodology. Our evaluation results show
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that the proposed approach performs reliably on a se-
quence of unconstrained poses and achieves an average

reconstruction error of 7.07 degree in four key joint an-

gles. In addition, our methodology runs at a speed of 20

FPS on a standard PC showing that our system could

be suitable for real-time applications. Our 3D pose re-
covery methodology should be applicable to many areas

such as human computer interactions and human activ-

ity recognition.

Keywords 3D human pose recovery · Depth image ·

Body part recognition · Principal direction analysis

1 Introduction

Recovering 3D human body poses from a sequence of

images in real-time is a challenging problem in com-

puter vision. Many potential applications of this method-

ology in daily life include entertainment game, surveil-
lance, sport science, health care technology, human com-

puter interactions, motion tracking, and human activity

recognition [13]. In the conventional systems, human

body poses are reconstructed by solving inverse kine-
matics using the motion information of optical markers

attached to the human body parts and tracked by mul-

tiple cameras. These marker-based systems are capa-

ble of recovering accurate human body poses, but they

are not suitable for real-life applications due to the sen-
sor attachment, multiple camera installation, expensive

equipment, and complicated setups [15]. In contrast to

the marker-based approaches, some recent studies have

focused on markerless-based methods which could be
utilized in daily applications. Typically, this markerless

system is based on a single RGB image or multi-view

RGB images [6,16,17].
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Recently, with an introduction of depth imaging de-

vices, 3D human pose recovery from a single depth im-

age without optical markers and multi-view RGB im-

ages has become an active research topic in computer

vision. Some studies have exploited novel approaches
in human pose estimation methodologies based on the

depth information [6]. In [18,19], depth data was used

to build a graph-based representation of an human body

silhouette and from which the geodesic distance map
of the body parts was computed to find the primary

landmarks such as the head, hands, and feet. Fitting

a skeleton body model to the landmarks recovered hu-

man pose in 3D. In [4], using the information of pri-

mary landmarks as the features of each pose, the best
matching pose was found from the set of poses coded

in the hierarchy tree structure. In [14,8,9], depth data

was presented as 3D surface meshes and then a set of

geodesic feature points such as head, hands, and feet
was found for tracking human pose. These approaches

are generally based on the alternative representation of

the depth human body silhouette and the detection of

the body parts.

Another approach in 3D body pose recovery uti-
lizes a learning methodology by which each body part

gets recognized. From the information of the recognized

body parts, its corresponding 3D pose gets reconstruc-

tion. In [23], the authors developed a new algorithm

based on expectation maximization (EM) with two-
step iterations: namely, body part labeling (E-step) and

model fitting (M-step). The depth silhouette and the

estimated 3D human body model of this method were

represented by a cloud of points in 3D and a set of el-
lipsoids, respectively. Each 3D point of the cloud was

assigned and then fitted to one corresponding ellipsoid.

This process was iterated by minimizing the discrep-

ancies between the model and depth silhouette. How-

ever, the speed of the algorithm was slow to be realized
in real-time due to high computational cost for label-

ing. In [20], a new approach was developed to human

pose recognition in parts from a single depth image.

The human body part recognition of the depth image
was inferred as a per-pixel classification via some ran-

domized decision trees trained using a large Database

(BD) of synthetic depth images. This allowed a real-

time and efficient identification of human body parts:

it could recognize up to 31 body parts from a single hu-
man depth silhouette. To model 3D human pose, they

then applied the mean-shift algorithm [7] on the rec-

ognized human body parts to estimate the body joint

positions. Human body pose was recovered from these
joint points. However, joint position estimation via the

mean-shift algorithm generally suffers from the follow-

ing limitations: (i) the position of estimated joints de-

pend on the shape and size of subject, (ii) the computed

relative information concentrates on the surface of the

body parts, whereas the position of joints are inside

of the parts, (iii) the method requires the value of the

parameters such as window size that is unspecified.

In this paper, to overcome the limitations of the pre-

vious approaches [20,23], we propose a novel algorithm

to recover a 3D human pose in real-time via Princi-

pal Direction Analysis (PDA) on the recognized human
body parts from a single depth image. In our work, hu-

man body parts of the depth silhouette are first recog-

nized via the trained Random Forests (RFs) with our

synthetic training DB (DB) [11]. Using PDA, principal

directional vectors are estimated from the recognized
body parts. Then the directional vectors are mapped

to the each body part of the 3D human body model

to make the recovered 3D human pose which is con-

strained by the kinematic chains to allow feasible body
movements.

The rest of the paper is organized as follows. In sec-

tion 2, we describe our overall system. Sections 3, 4 and

5 introduce the processes of the proposed methodology

including synthetic DB creation, RFs for a pixel-based
classification, body parts recognition, PDA, and recon-

struction of 3D human pose model. Section 6 presents

experimental results and comparisons. Conclusion and

discussion remarks are given in Section 7.

2 Our methodology

Our work focuses on recovering a 3D human pose from
a single human depth silhouette. Fig. 1 shows the key

steps of our proposed 3D human pose recoveringmethod-

ology. In the first step, a single depth image gets cap-

tured by a depth camera. The human depth silhouette

is then extracted by removing the background. In the
second step, human body parts of the silhouette are

recognized via the trained RFs. In the third step, the

principal directions of the recognized body parts are es-

timated by PDA. Finally, these directions are mapped
on to the 3D human body model, resulting in the re-

covered 3D human body pose.

3 Body parts recognition

As aforementioned, to recognize the body parts from a

depth human silhouette, we utilize RFs as performed

in [5,11,20]. This learning-based approach requires a
training DB, therefore, we have created our own train-

ing DB synthetically [11]. More details are given in the

following sub-sections.
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Figure 1: The key processing steps of our proposed system. These steps consist of taking the depth image, removing 

Depth camera Depth silhouette Recognized body 

parts  

Principal directions of 
body parts 
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PDA-based 
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Fig. 1 The key processing steps of our proposed system. These steps consist of taking the depth image, removing backgrounds,
labeling body parts, applying PDA of the body parts and finally recovering a 3D human pose.

(a) (b) (c)

Fig. 2 (a) A 3D graphic human body model used in a train-
ing DB generation, (b) a body part-labeled model, and (c) a
depth silhouette in the synthetic DB.

3.1 A synthetic DB of depth maps and corresponding
body parts labeled maps

In order to create the training DB, we have created

synthetic human body models using 3Ds Max, a com-

mercial 3D graphic package [1]. The body model con-

sists of a total 31 body parts [11]. To create various
poses, motion information from Carnegie Mellon Uni-

versity (CMU)’s motion DB [2] is mapped to the model.

Finally, a pair of depth silhouette and its correspond-

ing body part-labeled map is saved into a DB. The DB

contains 20,000 of depth maps and corresponding body
parts labeled maps. Fig. 2 shows a set of samples of the

human body model, a map of the labeled body parts,

and its corresponding depth silhouette respectively. The

size of images in the DB is 320 x 240 with the 16-bit
depth values.

3.2 Depth feature extraction

In our work, the depth features are computed from the
differences of a neighboring pixel pairs. The depth fea-

tures f are extracted from a pixel x of the depth sil-

houette as done in [12,20]

fθ(I, x) =

[

dI

(

x+
o1

dI(x)

)

− dI

(

x+
o2

dI(x)

)]

(1)

where dI(x) is the depth value at a pixel x in an image
I, and parameters θ = (o1, o2) describe offsets o1 and

o2 from the pixel x. In our work, the maximum offset

value of o1, o2 pairs was 60 pixels corresponding to 3

meters that are the distance from a subject to camera.
The normalization of the offset by 1

dI(x)
ensures that

the features are distance invariant.

3.3 RFs for body parts labeling

In our work, we utilize RFs for body parts recogni-

tion. RFs are a combination of tree predictors such that

each tree depends on the values of a random vector
sampled independently and with the same distribution

for all trees in the forest [5,10]. In order to create the

trained RFs, we used an ensemble of five decision trees.

The maximum deep of trees was twenty. Each tree in

RFs was trained with different pixels randomly sam-
pled from the synthetic depth silhouettes and their cor-

responding body part indices. A subset of 2,000 train-

ing sample pixels was drawn randomly from each syn-

thetic depth silhouette in the DB. A sample pixel was
extracted to get 2,000 candidate features as computed

using Eq. (1). At each splitting node in the tree, a sub-

set of 50 candidate features was considered. For pixel

classification, each pixel of a tested depth silhouette

was extracted to get the candidate features. Based on
all built trees in RFs, at each tree, starting from the

root node, if the value of splitting function is less than

a threshold of the node, goes to left and otherwise goes

to right. The optimal threshold for splitting the node is
determined by maximizing the information gain in the

training process. At the leaf node reached in each tree,

the probability distribution over 31 human body parts
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is computed. Final decision to label each depth pixel

for a specific body part is based on the voting result of

all trees in RFs.

4 3D human pose proposals from the

recognized body parts

In this part, we introduce the mean shift and PDA from

which human poses are recovered in 3D.

4.1 Joint position proposal based on the mean shift

In [20], to recover a 3D human pose, a 3D human skele-

ton model of the joints is used where the joints are

fitted from the recognized body parts using the mean-
shift algorithm with a weighted Gaussian kernel. The

mean shift algorithm is a nonparametric density esti-

mation used for seeking the nearest mode of a point

sample distribution [24]. The technique is commonly

used in image segmentation and object tracking fields
of computer vision [7,21]. Given n data points xi, i =

1, ..., n on a d-dimensional space Rd, the multivariate

density obtained with the kernel K(x), window radius

of kernel h and weight function w is

f̂h(x) =
1

nhd

n
∑

i=1

wiK

(

x− xi

h

)

. (2)

The sample mean with kernel K (G(x) = K ′(x)) at a

point x is defined as

mh(x) =

∑n

i=1 xiwiG
(

x−xi

h

)

∑n

i=1 wiG
(

x−xi

h

) . (3)

The difference between mh(x) and x is called the mean
shift. The mean shift vector always points toward the

direction of the maximum value of the density. There-

fore, the mean shift procedure is guaranteed to con-

verge to a point where the gradient of the defined den-

sity function approaches zero. The mean shift algorithm
process is illustrated in Fig. 3. Starting on the data

point in cyan, the mean shift procedure is performed

to find the stationary point in red of the density func-

tion. In order to optimize the parameters and improve
the efficiency of the mean shift, in [20], the size of win-

dow h was replaced by bc which is a learned per-part

bandwidth and the weight wic is from the probability

distribution of each pixel in a class C and the given

depth dI(xi). The formula is written as

wic = P (x|I, xi).dI(x)
2. (4)

 

Fig. 3 Mean shift iteration process to find the centroid of a
cloud.

To reconstruct and visualize an estimated 3D human
pose, a skeleton model is presented by joint points esti-

mated from the recognized body parts using the mean-

shift. There are some limitations: the optimal window

size that is difficult to find, so that an inappropriate
window size can cause the modes to be merged; the po-

sition of estimated joints depends on the shape and size

of the recognized body parts and only computed on the

surface of the body parts, whereas the position of joints

are inside of the parts. In order to overcome the limi-
tations of this approach, we propose a PDA algorithm

presented in the following section 4.2.

4.2 Principal direction analysis of the recognized body

parts

In this section, our objective is to find principal di-

rection vectors from the recognized body parts. If we
denote the recognized body parts as {P 1,P 2,...,PM}

where, M is the number of body parts. Each body part

is a 3D point cloud Pm consisting of the n 3D points

Pm={xi}
n
i=1, the value of n changes with the size of

body parts. The 3D point clouds {Pm}Mm=1 are used to
determine principal direction vectors { V 1

d , V
2
d ..., V M

d }

by the PDA algorithm. More details of PDA are given

in the following sub-sections.

4.2.1 Outlier removal

The recognized body parts which are represented as

clouds of points contain some outliers and mislabeled
points. These points can hinder PDA, resulting in in-

accurate directional vectors of the body parts. There-

fore, before applying PDA, we have devised a technique

to select only interested points from each labeled point
cloud which are subject to PDA. In order to select these

points from the cloud, we have devised a technique to

estimate the weight value of all points in the selected
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cloud utilizing a logistic function and the Mahalanobis

distance.

The logistic function of the population w can be

written as

w(ti) =
L

1 + eα(ti−t0)
(5)

where, t0 denotes a rough threshold value that is defined

based on the size of the cloud of points, α a constant

value, and L the limiting value of the output (in our
case L = 1). Here, t0 and α are chosen based on the

shape and size of each body part. ti is the Mahalanobis

distance computed at point ith in the cloud and is com-

puted as

ti =
√

(xi − µ)T (S)−1(xi − µ) (6)

where, xi is the i
th point in the cloud, µ the mean vector

of the cloud, and S the covariance matrix of the cloud

which is computed as

S =

n
∑

i=1

(xi − µ)(xi − µ)T

n
. (7)

Our proposed approach is illustrated in Fig. 4. The
selected points, subject to PDA, are shown in red that

are used to determine the direction vector. While the

points in green are regarded as outliers. The size or pop-

ulation of the region containing the points is controlled

by the threshold parameter t0, while the parameter α is
used to control the weight value of points in the cloud.

This means that if we assume that the weight value of

function w ∈ [0,1] then the weight of the points in red

near from the centroid of the cloud is approximately 1,
while the weight of the points in green far from the cen-

troid is approximately 0. The weight of points around

the threshold value t0 is approximately 0.5.

4.2.2 PDA

This part presents how to estimate the directional vec-

tors Vd from the selected point cloud Pm. We apply a

statistical approach to estimate the PDA mean vector

µ∗ and covariance matrix S∗ by using the weight value
of each point as in Eq. (5). The mean vector and the

covariance matrix of PDA are calculated as follows

µ∗ =

∑n

i=1 w(t
2
i )xi

∑n

i=1 w(t
2
i )

, (8)

S∗ =

∑n

i=1 w(t
2
i )(xi − µ∗)(xi − µ∗)T

∑n

i=1 w(t
2
i )− 1

. (9)

To estimate a direction vector Vd from a cloud Pm. The

problem can be expressed as

Vd(Ek) = argmax
{Ek}3

k=1

(ET
k S

∗Ek) (10)

where, E is an eigen-vector matrix of S∗.

Algorithm 1 Principal Direction Analysis (PDA)

Inputs: Given a 3D point cloud Pm

Outputs: A principal direction vector Vd

Method:
Step 1. Find the mean vector µ and the covariance matrix

S of the point cloud Pm, as in Eq. (7).
Step 2. Compute the Mahalanobis distance of all points in

the cloud Pm with its mean vector µ and covariance ma-
trix S in Eq. (6).

Step 3. Assign the weight value for all points in the cloud
Pm using logistic function and the vector of determined
Mahalanobis distance, as in Eq. (5).

Step 4. Compute the PDA mean vector µ∗ and PDA covari-
ance matrix S∗ of the point cloud Pm using the assigned
weight value of each point as in Eqs. (8) and (9).

Step 5. Find the eigen-vector corresponding to the largest
value of eigen-value computed from the covariance matrix
S∗ in Eq. (10). The eigen-vector is a determined principal
direction vector Vd.

We apply PDA to estimate the directional vectors

of body parts on the 3D point clouds. Note that a 3D

point cloud Pm, is presented as an n by 3 matrix, where
n denotes the number of the 3D points in the cloud Pm

and each point consists of three x, y, and z coordi-

nates, respectively. To find the direction vector Vd of

the cloud Pm, PDA starts with a covariance matrix S

determined from the Pm=(Pm
x , Pm

y , Pm
z ) and a vector

of values with mean µ = (µx, µy, µz). From the covari-

ance matrix and mean vector, Mahalanobis distance of

each point in the cloud is computed in Eq. (6). The re-

sult of Eq. (5) provides the weight vector corresponding
to the points in the cloud Pm. Based on the weight vec-

tor of each pixel in the cloud, a PDA covariance matrix

S∗ and mean vector µ∗ are determined by Eqs. (8) and

(9). Finally, a direction unit vector Vd of the cloud Pm

is estimated. The details of the PDA algorithm are pre-
sented in Algorithm 1. Some comparison results of the

PDA were performed on the point clouds with outliers

as illustrated in Fig. 5. The results of the estimated

principal directions shown as lines in blue were directly
drawn on the clouds.

5 3D human pose representation

To represent a recovered 3D human pose, we utilize a

3D synthetic human model that is created by a set of
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Fig. 4 (a) Logistic function with t0 = 2 and α = 2, α = 4. (b) Effect of the parameters t0 and α on threshold value of 3D
point clouds to eliminate outliers (t0 = 2, α = 4).

 

 

 

 

(a) (b)

Fig. 5 Comparison results of PDA (a) without outlier removal and (b) with outlier removal. The resultant principal directions
are blue lines superimposed on the point clouds. Two set of 3D point clouds indicate an upper arm part (left, cyan) and a
lower arm part (right, green) with some outliers.

        

(a)                

         

               (b) 
(a) (b)

Fig. 6 3D synthetic human model. (a) Orientation model
and (b) 3D model with super-quadrics shapes.

super-quadrics. The joints of the model are connected
with a kinematic chain and parameterized with rota-

tional angles at each joint [22,23]. Our 3D synthetic hu-

man body model is defined in the 4-D projective space

as

me(X) = XTV T
θ QTDQVθX − 2 = 0 (11)

where X is the coordination of the 3D point on the

surface of super-quadrics. D is a diagonal matrix con-
taining the size of super-quadrics. Q locates the center

of super-quadrics in the local coordination system. Vθ

is a matrix containing relative kinematic parameters

that is computed from the directional vectors Vd. Our

model is composed of ten human body-parts (including
head, torso, left and right upper arm and lower arm,

left and right upper leg and lower leg) and nine joints

(two knees, two hips, two elbows, two shoulders, and

one neck). There is a total of 24 DOFs (including two
DOFs at each joint and six free transformations from

the global coordinate system to the local coordinate

system at the hip) as shown in Fig. 6. In Fig. 6(a),
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the dash line and its arrow superimposed on the model

show the results of PDA and Fig. 6(b) is the result of

its corresponding recovered 3D human pose with the

3D model of super-quadrics.

6 EXPERIMENTAL RESULTS

In this section, we have evaluated our proposed method-

ology through the quantitative and qualitative assess-

ments using synthetic and real data as well as though
comparison against the previous works [20,23].

6.1 Experimental settings

In order to evaluate quantitative assessments, we uti-
lized synthetic depth silhouettes and the ground-truth

information extracted from the synthetic 3D body pose.

For each synthetic 3D human pose, we measured joint

angles of four major joints including the left-right el-
bows and knees from the 3D human body model and

saved as the ground truth. Then, each recovered 3D

human pose from the corresponding body depth silhou-

ettes were recognized via the trained RFs and estimated

the principal directions by PDA. Finally, We derived
the same joint angles from the recovered 3D pose and

compared them against the ground truth. For quali-

tative assessments on real data, we utilized the depth

silhouettes that were captured by a depth camera [3].
These directions were finally mapped on to the 3D hu-

man body model, resulting in the recovered 3D human

body pose. To assess on real data, visual inspection be-

tween the results of the recovered 3D human poses and

RGB images was performed. Pose recovery was run on
the standard desktop PC with Intel Pentium Core i5,

3.4 GHz CPU, and 8GB RAM.

6.2 Experimental results with synthetic data

We performed a quantitative evaluation using a series of

500 depth silhouettes containing various unconstrained

movements. In this experiment, the evaluation results

with the synthetic poses of our proposed methods are

provided in Figs. 7 and 8. At each plot of Fig. 8 corre-
sponds to an estimated joint angle by PDA. The solid

and dashed lines indicate the PDA estimated and its

ground truth joint angles, respectively.

Based on the results of estimated joint angles and
the ground truth joint angles, we have computed the

average reconstruction error as

ǫθ =

∑nf

i=1 | θesti − θ
grd
i |

nf

, (12)

where nf is the number of frames, i the frame index,

θ
grd
i the ground-truth angle, and θesti the estimated an-

gle. To assess the reconstruction errors, we performed
the another experiment on the four different sequences

of swimming, boxing, cleaning, and dancing activities.

Each sequence contains 100 frames. The average errors

at four considered joint angle of the second experiment
are given in Table 1. The average reconstruction error

of the four different sequences at four considered joint

angle is 7.07degree.

6.3 Experimental results with real data

In the evaluation with real data, we asked three subjects

to perform unconstrained movements. Two experiments
were performed. In the first experiment, we examined

the principal direction estimation using PDA on one

subject. Fig. 9 shows the results in which the princi-

pal directions are shown as lines superimposed on the
subject’s poses. In the second experiment, we assessed

the movements of the elbows and knees with arbitrary

poses (some simple and complex poses). The results of

the experiments with arm movements and leg move-

ments of the first subject are shown in Fig. 10. The 2nd

and the 3rd rows are results of the 3D human poses

reconstruction in the front and side views. With the

real data, since the ground truth joint angles are not

available, only qualitative assessments were performed
by visual inspection between the results of the 2nd, 3rd

rows and RGB images at the 1st row. Fig. 11 shows the

qualitative assessments on two other subjects who were

different in body size and shape.

6.4 Comparisons against conventional methods

We have evaluated the performance of our proposed
methodology by comparing against the conventional meth-

ods in [20,23].

In comparison against the mean shift method [20],

we implemented the real-time human pose recognition
system as done in [20]. Our own synthetic DB was used

to train RFs in this system.We evaluated the mean shift

method through the quantitative and qualitative assess-

ments using synthetic and real data. Table 2 provides

the comparison results of quantitative assessments on
the same tested synthetic data, the average reconstruc-

tion error at the four considered joint angles of our

method is 7.07 degree compared to 9.79 degree from

the mean shift method. We also performed a qualita-
tive assessment on the same real data. The results of the

recovered 3D human poses are represented on the same

3D synthetic pose model as shown in Fig. 12. As can
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              Frame 50 Frame 100        Frame 150          Frame 200 

                         

                                        

              Frame 250         Frame 300              Frame 350            Frame 400 
Fig. 7 Sample results of our proposed 3D human pose estimation on our synthetic data. The 1st and 3rd rows: the synthetic
depth map. The 2nd and 4th rows: the estimated 3D human poses.

Table 1 The average reconstruction error of the evaluated angles joint angle in degree of 100 frames per each activity

Activities Left elbow Right elbow Left knee Right knee

Swimming 5.11 5.12 8.34 8.67
Boxing 6.78 6.57 8.12 9.24
Cleaning 5.45 5.62 7.56 7.67
Dancing 5.42 5.19 8.86 9.34
Average reconstruction error (o) 5.69 5.63 8.22 8.73

be seen in Fig. 12, our proposed methodology has sig-
nificantly improved accuracy compared with the pose

reconstruction based on the mean shift method. In par-

ticular, our proposed method has proved more robust

than the mean shift method in some poses of overlapped
or intersected body parts.

In comparison against the EM method [23], we used

the average reconstruction errors, which is computed

from the four experiments as given in [23] at left-right
elbows and knees, were 7.50, 7.63, 8.03, and 13.81 de-

gree compared to 5.69, 5.63, 8.22, and 8.73 degree from

our proposed method as shown in Table 2. The obtained

average reconstruction error of the proposed system in
[23] are higher than our proposed system.

7 Conclusion and discussion

A novel method to recover a 3D human pose from a sin-

gle depth silhouette has been proposed. The technique

estimates the principal direction vectors from the rec-

ognized body parts by PDA. The quantitative assess-
ments indicate the average reconstruction error of 7.07

degree, whereas the conventional approach of the mean

shift and the EM methods produce 9.79 degree and 9.24
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Fig. 8 A comparison between the ground-truth and the estimated joint angles in synthetic data: (a) joint angle of left elbow,
(b) joint angle of right elbow, (c) joint angle of left knee, and (d) joint angle of right knee.

    

  
Fig. 9 Sample results of PDA. The blue lines indicate the directions of the four body parts such as upper arms and legs. The
red lines indicate the directions of the four body parts such as lower arms and legs.
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    Fig. 10 Sample results of our proposed 3D human pose estimation on four different poses of arm and leg movements: the 1st

row shows RGB images of four different poses, the 2nd and 3rd rows show the results of estimated 3D human poses in the
front and side views respectively.

    

    

                         

  Fig. 11 Sample results of our proposed 3D human pose estimation on four different poses of difference shape subjects: the
1st row shows RGB images, the 2nd row shows the results of estimated 3D human poses from two different subjects.
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Fig. 12 Comparison results against [20] of four different poses: the 1st row shows RGB images, the 2nd row shows the depth
silhouettes, the 3rd row shows the results obtained from the mean shift algorithm and the 4th row shows the results obtained
from our proposed PDA algorithm.

Table 2 A comparison about the average reconstruction error (0)

Evaluated angles Left elbow Right elbow Left knee Right knee Average error of the four joints

The method proposed by [23] 7.50 7.61 8.03 13.81 9.24
The method proposed by [20] 9.24 9.41 10.15 10.34 9.79
Our proposed method 5.69 5.63 8.22 8.73 7.07

degree in the four key joint angles, respectively. Our

methodology runs at a speed of 20 FPS on a standard

PC showing that our system is be suitable for real-time
human activity recognition and human computer in-

teraction applications for personal life-care and health-

care service of the elderly and disabled people. The ex-

periments on real data show that our system reliably
performs on sequences containing unconstrained move-

ments of various appearance and differently shaped sub-

jects.
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