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Abstract In this paper, we propose to use hierarchical
action decomposition to make Bayesian model-based rein-
forcement learning more efficient and feasible for larger
problems. We formulate Bayesian hierarchical reinforce-
ment learning as a partially observable semi-Markov deci-
sion process (POSMDP). The main POSMDP task is parti-
tioned into a hierarchy of POSMDP subtasks. Each subtask
might consist of only primitive actions or hierarchically call
other subtasks’ policies, since the policies of lower-level
subtasks are considered as macro actions in higher-level
subtasks. A solution for this hierarchical action decomposi-
tion is to solve lower-level subtasks first, then higher-level
ones. Because each formulated POSMDP has a continu-
ous state space, we sample from a prior belief to build an
approximate model for them, then solve by using a recently
introduced Monte Carlo Value Iteration with Macro-Actions
solver. We name this method Monte Carlo Bayesian Hier-
archical Reinforcement Learning. Simulation results show
that our algorithm exploiting the action hierarchy performs
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significantly better than that of flat Bayesian reinforcement
learning in terms of both reward, and especially solving
time, in at least one order of magnitude.

Keywords Reinforcement learning · Bayesian
model-based RL · Bayesian reinforcement learning ·
Model-based reinforcement learning · Partially observable
Markov decision process (POMDP) · Partially observable
semi-MDP (POSDMP)

1 Introduction

Reinforcement learning (RL) [40, 42] is a subfield (This
is an extension of a conference paper (Vien, N.A. et al
(52))) of Machine Learning dealing with learning from
delayed reward and sequential decision making in unknown
environments. RL has had some remarkable practical suc-
cesses in various areas, including learning to play checkers
[36], backgammon [43–45], job-scheduling [62], chess [7],
dynamic channel allocation [37, 48, 49, 55, 57], robotics [1,
4, 27, 28, 50], and other applications [18, 22, 23, 25, 29,
53, 54]. RL algorithms have to deal with the exploration-
exploitation trade-off: they need to balance actions that
reduce the uncertainty about the environment, with actions
that exploit the learned knowledge. A systematic approach
to dealing with this issue is to use Bayesian RL.

Bayesian RL has been intensively studied by many
approaches such as model-based [3, 12, 33, 38, 58], model-
free [10, 13, 14], and policy search [16, 17, 56]. Of these,
Bayesian model-based RL (BRL) is a family of methods
which use Bayesian inference to update a posterior distri-
bution of the underlying model of the environment. This
model is often in the form of a Markov Decision Process
(MDP) [40, 42], a mathematical framework for studying
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RL problems with the Markov property (i.e., memoryless)
assumption on the environment dynamics. BRL has been
known to efficiently utilize the training data and optimally
balance the exploration/exploitation trade-off. There has
been another effort to use deterministic approximate infer-
ence [39] for reinforcement learning such as the work in
[15] using variational Bayes. Though their work provided
new insight into BRL, it can only be tractable for very small
problems, and often converges to a local optimal policy.

Formally, BRL can be reformulated as a partially observ-
able Markov decision process (POMDP) [12, 33, 61]. This
formulation is used in many proposals [9, 19, 33–35, 51,
58, 59]. They use either a conjugate belief distribution to
perform inference for an approximate policy, or sampling
techniques, e.g. particle filtering, to approximately represent
beliefs. Being formulated this way, the posterior distribution
over models given the observations, called belief, is conve-
niently represented in closed form as a product of Dirichlet
distributions. As a result, the optimal value function in BRL
can be represented by a set of multivariate polynomials.
Unfortunately, the size of the polynomials grows exponen-
tially with the problem horizon, which makes computing
Bayes-optimal behavior intractable, severely limiting the
applicability of the method.

Hierarchical action decomposition, which exploits tem-
poral abstraction, has been previously used to accelerate
planning and learning in flat MDP [6, 11, 20, 24, 41] and
POMDP [21, 26, 31, 46]. It has been shown to effectively
improve the performance of traditional RL [2, 6, 41]. How-
ever, there has been very little effort in bridging the gap
between BRL and temporal abstraction; in fact, there is only
one recent work which solves BRL problems with a given
action hierarchy, called Bayesian MAXQ [8]. Bayesian
MAXQ maintains distributions over primitive actions and
pseudo rewards of macro actions [8], then learns a policy
online. Even though this method computes a posterior dis-
tribution over models, the policy is found using model-free
approach. This would not guarantee any Bayesian opti-
mality for exploration/exploitation trade-off. Furthermore,
a policy learned online is only optimal with respect to the
underlying model at solving time, which is changing over
time.

In this paper, we aim to develop an alternative formula-
tion, which not only exploits the hierarchical structure of
the problem, but also preserves the Bayesian optimality for
the exploration/exploitation trade-off. Besides, we solve for
the policy offline, taking into account all possible under-
lying generative environments. Our formulation, however,
will still be used with other online planners (e.i. will still be
used with other online planners).

We propose to formulate Bayesian hierarchical rein-
forcement learning (BHRL) as a partially observable semi-
Markov decision process (POSMDP). The main POSMDP

task is partitioned into a hierarchy of smaller subtasks.
Each subtask may consist of other subtasks’ policies or
only primitive actions. The policies of low-level subtasks
are considered as macro actions in higher-level subtasks.
Therefore, each subtask is again formulated as one POS-
MDP. To solve this BHRL problem, we develop a Monte
Carlo Bayesian Hierarchical Reinforcement Learning (MC-
BHRL) algorithm which solves lower-level subtasks first,
then higher-level ones. MC-BHRL approximates each sub-
task’s POSMDP by applying a similar idea from [59], which
first samples from the prior belief over unknown mod-
els, then solves the approximate POSMDP using a recently
introduced Macro-MCVI solver [5, 26].

We evaluate MC-BHRL on three domains in both fully
and partially observable MDP environments. The simu-
lation results show that MC-BHRL is a promising and
effective approach to solving BRL, allowing BRL to be
more feasible to larger problems. The computational cost of
BRL is reduced significantly when using an action hierarchy
in our MC-BHRL framework, lifting the main barrier which
has previously limited the applicability of BRL in practical
use.

Our main contributions are: 1) A formal formulation of
BHRL with an efficient algorithm to solve. This contribu-
tion gives new insights into BHRL. 2) The establishment
of Bayesian hierarchical optimality for exploration and
exploitation trade-off, as in flat BRL. This hierarchical opti-
mality is in the sense that the optimal policy selects an
optimal abstract action by using both the current infor-
mation (i.e., current belief b—exploration part), and the
one-step look-ahead information by observing the outcomes
of that abstract action (exploitation part).

The paper is organized as follows. Section 2 reviews
background of MDP, semi-MDP (SMDP) formulation for
hierarchical RL, POMDP formulation for BRL, and MC-
BRL method for BRL. Section 3 introduces POSMDP
formulation for BHRL. Section 4 describes a simple and
efficient Monte-Carlo method to solve a BHRL problem.
Section 5 presents simulation results and analysis for three
tasks: Taxi, Cheese-Taxi, and Large Cheese-Taxi. Section 6
concludes the paper.

2 Background

We briefly describe the key notions in BRL to set stage for
our POSMDP formulation of BHRL in Section 3.

2.1 Markov Decision Process

A discrete Markov decision process (MDP) is defined by
a five tuple 〈S,A, T ,R, γ 〉, where S is a discrete state
space, A is a discrete action space, T (s, a, s′) = P(s′|s, a)
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defines the transition probability to a next state given the
current state-action pair, R(s, a, s′) defines the immediate
reward. A control algorithm in RL tries to find an optimal
policy π : S → A with the assumption of unknown envi-
ronment dynamics, in order to maximize the expected total
discounted reward

ρ = E

( ∞∑
t=0

γ tR
(
st , at , s

′
t

))
,

where st , at , s′t , and γ ∈ (0, 1) denote a state, an action, a
next state, and a discount factor, respectively.

2.2 SDMP formulation for hierarchical RL

Semi-Markov decision process (SMDP) framework is an
extension of MDP framework by introducing the con-
cept of options [41] (or macro actions, composite actions,
abstract actions) which is a type of temporal abstraction.
An option is considered as a temporally extended action,
defined by a three-tuple {μ, β, I}, where μ is an option’s
policy, β is a termination condition, and I ⊆ S is the
set of states where an option initiates. It is proved in [41]
that any MDP with a set of defined options is an SMDP
defined as a tuple 〈S,A, T ,R〉, where the state space S
and action space A are primitive or macro actions. The
reward function R(s, a) = ras and the transit-time function
T (s, a, x) = pa(s, x) can be defined by the option’s policy
μ and termination condition β as follows.

The reward of an option a is

ras = E
{
rt+1 + γ rt+2 + · · · + γ k−1rt+k

∣∣μ(st ) = a
}
,

if option a is taken in state s at time t , where t + k is
the termination time of a. The respective internal transition
probability is

pa(s, x) =
∞∑
k=1

γ kp(k, x|s, a)

where p(k, x) is the joint probability when taking option a

in state s and terminating at x after k time steps. It is delayed
relative to γ .

The Bellman equations for the general policy π are

V π(s) = E
{
rt+1 + · · · + γ k−1rt+k + γ kV π (st+k)

}

=
∑
a∈As

π(s, a)

[
ras +

∑
s ′

pa(s, s′)V π(s′)
]

and the option-value function is

Qπ(s, a) = E
{
rt+1 + · · · + γ k−1rt+k

+γ kV π(st+k)
∣∣π(st ) = a

}
= E

{
rt+1 + · · · + γ k−1rt+k

+γ k
∑
a′∈As

π(s, a′)Qμ(st+k, a
′)
∣∣π(st ) = a

}

= ras +
∑
s ′

pa(s, s′)
∑
a′∈As

π(s′, a′)Qπ(s′, a′)

It is easy to show that Qπ(s, a) = V aπ(s). If the
macro actions are decomposed hierarchically, the model{
ras , p

a(s, s′)
}

of an option a can also be re-written as
Bellman-like equations

ras =
∑
a′∈A

π(s, a′)E
{
r + γ (1 − β(s′))ras ′

}
(1)

=
∑
a′∈A

μ(s, a′)
[
r(s, a′)+

∑
s ′

pa′(s, s′)(1 − β(s′))ras ′
]

and

pa(s, x) =
∑
a′∈As

μ(s, a′)γE
{
(1 − β(s′))pa(s′, x)+ β(s′)δs′x

}

=
∑
a′∈As

μ(s, a′)
∑
s′

pa′ (s, s′)
[
(1−β(s′))pa(s′, x)+β(s′)δs′x

]
(2)

2.3 POMDP formulation for BRL

A BRL problem can be formulated into a POMDP, P =
〈SP , A, TP , RP , O, Z〉, whose state space SP consists
of the underlying MDP’s state space S as well as the
parameter space modeling the unknown transition dynam-
ics. Specifically, if each unknown transition probability is
parameterized by a parameter θa

s,s ′ ∈ [0, 1], then the new

state space is SP = S ×
{
θa
s,s ′

}
. The action space A is

kept similarly to that of the original MDP. The transition
model TP (s, θ, a, s′, θ ′) = Pr(s′, θ ′|s, θ, a) is factored into
two parts Pr(s′|s, θs,s ′a , a) = θ

s,s ′
a and Pr(θ ′|θ) = δθθ ′ (the

Kronecker delta). The reward function RP (s, θ, a, s
′, θ ′) =

R(s, a, s′) is as in the original MDP’s reward function.
The observation space O is the observable state space S
of the underlying MDP [12, 33]. The observation function
Z(s′, a, o) = Pr(o|s′, a) is defined as Pr(o|s′, a) = δs ′(o).
Thus, we obtained a continuous state, discrete observation
POMDP problem.

Let the prior belief over all unknown parameters θsa be
b(θ) = Pr(θ). Assuming that the prior belief is a product of
Dirichlets, then the posterior is also a product of Dirichlets

b(θ) =
∏
s,a

D(θsa ; nsa), (3)

where each unknown distribution θsa per one pair (s, a) is

represented by one Dirichlet, D(θsa ; nsa) = k
∏

s ′ θ
n
s,s′
a −1

s,a,s ′ ,

with nsa a vector of parameters
{
n
s,s ′
a

}
.
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In POMDP formulation, o is an observation in the state
space of the original MDP. Thus we can write the Bellman’s
update as

V t+1
s (b)= max

a

∑
s ′

Pr(s′|s, b, a)
[
R(s, a, s′)+γV t

s ′(b
s,s ′
a )

]
.

(4)

By solving this POMDP we can optimally balance the trade-
off between uncertainty in the dynamics and the uncertainty
in the unknown model parameter. Thus, optimal trade-off
between exploration and exploitation can be achieved [33].

2.4 MC-BRL method

MC-BRL builds an approximate P̂ of a POMDP P by
sampling directly from a prior belief b0. For a brief sum-
mary, MC-BRL consists of three steps. First, it samples M
primitive models {θ̂0, · · · , θ̂M−1} from a prior distribution
b0(θ) of P . Second, it creates a new approximate discrete

POMDP P̂ =
〈
S
P̂
,A

P̂
,O

P̂
,T

P̂
,R

P̂
, γ , b0

P̂

〉
. P̂ has state

space S
P̂
= S × {1, · · · ,M}, action space A

P̂
= A, obser-

vation space O
P̂

= S the MDP state space, and reward
function RP (s, m, a, s′, m′) = R(s, a, s′). The transition
and observation functions of P̂ are

T
P̂
(s, m, a,m′, s′, o) = θ̂ k

sas ′δmm′ ,

Z
P̂
(s′, m′, a, o) = δs ′o.

Finally, it uses an existing POMDP solver to solve P̂ for
a policy π̂ . Since our main focus is on a new formulation
for BHRL, which in principle guarantees the Bayesian opti-
mality as in BRL, we assume some general POMDP solver

is given. Specifically, in this paper we use Monte Carlo
Bayesian RL algorithm (MC-BRL), which is recently intro-
duced and has been shown to be an efficient and general
method for BRL [59].

3 POSMDP formulation for BHRL

This section presents our main contribution and gives
insight into how BHRL is in principle formulated as a POS-
MDP. We adopt a similar method of POMDP formulation
for BRL, extended to incorporate macro actions. The new
formulation, a transformed POMDP consisting of macro
actions, is a partially observable semi-Markov decision
process (POSMDP) [60].

Consider a hierarchical model-based RL problem with
an action set A consisting of both primitive and abstract
actions. Assume that the problem’s action hierarchy defined
by a tree is given [11, 24] (e.g., see Fig. 1 and its description
in Section 5). Tree nodes are either abstract actions (internal
nodes) or primitive actions (leaf nodes). For simplicity, we
assume that macro actions are built from primitive actions
(as defined in a hierarchy), and the primitive transition
function is unknown and parameterized as θa

ss ′ ∈ �. The
formulation can also be straightforwardly extended when
the reward function is unknown; one simple method is to
discretize possible reward values as described in [33].

We now formulate BHRL with an extended set of macro
actions as a POSMDP, assuming that an action hierar-
chy and its macro action’s termination condition β are
given. As shown in [26], a POMDP with macro actions
is reformulated as a POSMDP. Therefore, we could for-
mulate BHRL as a hierarchy of multiple sub-POSMDPs,
where a higher-level POSMDP consists of macro actions

Fig. 1 Taxi problem and an action hierarchy
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as policies of lower-level POSMDP. A POSMDP P is for-
mally defined as a tuple 〈SP ,AP ,OP ,TP ,RP , γ 〉. The
state space SP = {S, �} consists of the MDP state space
S and the unknown dynamics’ parameter space �. AP

is an action space consisting of either primitive or macro
actions. The observation space OP = S is the MDP
state space. TP is a joint distribution function of the state
transition, the number of time steps k taken, and the obser-
vation, i.e., TP (s, θ, a, θ

′, s′, o, k) = p(θ ′, s′, k, o|s, θ, a).
It can be factorized into three probabilities: p(s′, k|s, θ, a),
p(θ ′|θ) = δθθ ′ , and observation p(o|s′, θ ′, a) = δs ′o. The
reward function is RP (s, θ, a, s

′, θ ′) = R(s, a, s′), and γ is
a discount factor.

Similar to the POMDP formulation for BRL, the formu-
lated POSMDP has partially observable continuous state,
and discrete action and observation spaces. All unknown
parameters embedded in the state space are monitored as a
belief θsa : b(θ) = Pr(θ). Following [26], we use reweighted
beliefs to represent the belief. The belief update, b′ =
τ(b, a, o), given an abstract action a and an observation o

(or s′), is given by,

b′(θ ′) = Zc

∞∑
k=1

γ k−1
∫

p(θ ′, s′, k, o|s, θ, a)b(θ)dθ, (5)

where Zc is a normalization constant,

Zc =
∞∑
k=1

γ k−1
∫ ∫

p(θ ′′, s′, k, o|s, θ, a)b(θ)dθdθ ′′

=
∞∑
k=1

γ k−1
∫ ∫

p(s′, k|s, θ, a)δθ ′′θ δs ′ob(θ)dθdθ ′′

=
∞∑
k=1

γ k−1
∫

p(s′, k|s, θ, a)b(θ)dθ.

The normalization Zc is also interpreted as the discounted
probability p(o|b, a) of observing o = s′, which is an MDP
next state.

A policy π : BP → AP is defined as a mapping from
the belief space to the action space. The value function V π

measures the expected discounted reward while following
π . The Bellman’s equations recursively updating V π are

V π
s (b) = r(b, s, a)+ γ

∑
o∈OP

p(o|π(b), b)V π
s ′ (b

′). (6)

The optimal policy π∗ is defined to have the best value
V ∗
s (b) ≥ V π

s (b), ∀π, b, s, and can be found under the
backup operator H :

HVs(b) = max
a

⎧⎨
⎩r(b, s, a)+ γ

∑
o∈OP

p(o|a, b)Vs ′(b
′)

⎫⎬
⎭ .

(7)

The Bellman equation optimizes the value functions by
taking in account not only the current belief b, but also
the next belief b′ computed by observing the outcomes of
the macro actions. This guarantees that the optimal policy
maximizes the cumulative reward.

We now present some desired properties of the new POS-
MDP formulation, which is convex and piecewise linear,
similar to continuous POMDP [32] and discrete POSMDP
[26].

Lemma 1 The backup operator is a contraction mapping,

‖HU −HV ‖∞ ≤ γ ‖U − V ‖∞
where U and V are two value functions.

Proof Assuming that ‖HU − HV ‖ obtains maximum
at belief point b and state s, and HVs(b) ≤ HUs(b), then
according to the definition of the mapping H we can write
‖HU −HV ‖ = HUs(b)−HVs(b)

= max
a

{
r(b, s, a) + γ

∑
o∈OP

p(o|a, b)U(b′)
}

−max
a′

{
r(b, s, a′)+ γ

∑
o∈OP

p(o|a′, b)V (b′)
}

≤ max
a

{
r(b, s, a) + γ

∑
o∈OP

p(o|a, b)Us′(b
′)
}

−max
a

{
r(b, s, a) + γ

∑
o∈OP

p(o|a, b)Vs′(b
′)
}

≤ max
a

{
γ

∑
o∈OP

p(o|a, b)Us′(b
′)

−γ
∑
o∈OP

p(o|a, b)Vs′(b
′)
}

≤ max
a

{
γ

∑
o∈OP

p(o|a, b)|Us′(b
′)− Vs′(b

′)|
}

≤ max
a

{
γ

∑
o∈OP

p(o|a, b)‖U − V ‖
}

≤ γ ‖U − V ‖

The following theorem is the result of the Banach fixed-
point theorem and Lemma 1.

Theorem 1 The optimal value function V ∗ is a single fixed
point of the backup operator H : V ∗ = HV ∗.

Finally, we provide an important property of the t-step
policy that its value function can be represented by a set of
linear functions.

Theorem 2 The t-step optimal value function is convex and
piecewise linear, which is represented as

Vt (b) = sup
αit ∈�t

〈
αi
t , b

〉
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where �t is a continuous set of α-functions αi
t : SP → �.

Proof We denote an inner product of two continuous
functions as

〈f, g〉 =
∫

f (x).g(x)dx. (8)

We use induction to prove this theorem. Assuming that it
holds when t = 1

V1(b) = max
a

{
r(a, b)

}
= max

a
〈ra, b〉, (9)

where r(a, b) = ∫
r(a, s, θ)b(θ)dθ (we have simplified the

MDP state s). This satisfies the convex and piecewise linear
property if we represent one α-function for each action. The
continuous set of these α-functions is

�0 = {ra}a∈A.

Assuming that the induction hypothesis holds till t −1, thus
the value function Vt−1 is represented by a continuous set
of α-functions �t−1 as

Vt−1(b) = sup
α∈�t−1

〈α, b〉.

For the step t case, we have

Vt (b) = max
a

{
r(b, a)+ γ

∑
o∈O

p(o|a, b)Vt−1(b
′)
}
. (10)

By the induction hypothesis and the definition of ba,o in (5)
in the paper, we have

Vt−1(b
′) = sup

αt−1∈�t−1

〈αt−1, b
′〉 = sup

αt−1∈�t−1

〈αt−1, b
a,o〉

= 1

p(o|a, b) sup
αt−1∈�t−1

∫
αt−1(θ

′)
∞∑
k=1

γ k−1

×
∫

p(θ ′, s′, k, o|s, θ, a)b(θ)dθdθ ′ .
(11)

Substitute (11) into 10, we obtain

Vt(b) = max
a

{
〈ra, b〉 + γ

∑
o∈O

sup
αt−1∈�t−1

∫
αt−1(θ

′)
∞∑
k=1

γ k−1

×
∫

p(θ ′, s′, k, o|s, θ, a)b(θ)dθdθ ′
}

= max
a

{
〈ra, b〉 + γ

∑
o∈O

sup
αt−1∈�t−1

∫
αt−1(θ

′)
∞∑
k=1

γ k−1

×
∫

p(θ ′, s′, k, o|s, θ, a)b(θ)dθdθ ′
}

= max
a

{
〈ra, b〉 + γ

∑
o∈O

sup
αt−1∈�t−1

∫
b(θ)

∞∑
k=1

γ k−1

×
∫

αt−1(θ
′)p(θ ′, s′, k, o|s, θ, a)dθ ′dθ

}

= max
a

{
〈ra, b〉 + γ

∑
o∈O

sup
αt−1∈�t−1

〈
b,

∞∑
k=1

γ k−1

×
∫

αt−1(θ
′)p(θ ′, s′, k, o|s, θ, a)dθ ′

〉}

We denote

α
j
a,o(θ) =

∞∑
k=1

γ k−1
∫

α
j

t−1(θ
′)p(θ ′, s′, k, o|s, θ, a)dθ ′,

and,

αa,o,b = arg sup{
α
j
a,o

}
j

〈
α
j
a,o, b

〉
.

Therefore, we can form a continuous set of α-functions at
t-step by

�t =
⋃

∀b,a∈A

{
ra + γ

∑
o∈O

αa,o,b

}
.

Finally, the t-step optimal value function Vt can be repre-
sented

Vt (b) = sup
α∈�t

〈α, b〉,

in a continuous set of α-functions.

4 Monte carlo BHRL

We now describe a recursive method, called Monte
Carlo Bayesian Hierarchical Reinforcement Learning (MC-
BHRL), for solving the BHRL formulated as POSMDP with
a given (i.e., predefined) hierarchical action decomposition
H. We adopt the similar idea from MC-BRL method [59],
to sample from a prior to approximate the exact continuous
POSMDP, then use the Macro-MCVI solver [26]. Because
Macro-MCVI uses Monte Carlo simulations to approximate
the value iteration backup, it ignores the number of steps
taken by the macro actions. It only needs to know the primi-
tive actions’ estimate models and macro actions’ policies to
run Monte Carlo simulations. This means we do not need to
explicitly model and estimate macro actions’ reward func-
tions and transition probabilities like in [8, 30]. Therefore,
MC-BHRL needs only to maintain the distribution over the
primitive actions’ models, as described in Section 2.3.

One may also use the same method from BEETLE algo-
rithm [33] to solve each POSMDP by sampling a set of
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reachable beliefs. With such a method, BEETLE failed to
find any good policies even with a small problem, like the
Chain domain, due to the exponentially increasing com-
plexity in the value function’s representation. In POSMDP,
the sampled belief set is required to be exponentially larger
than that of POMDP since terminal time of macro actions is
taken into account.

4.1 MC-BHRL algorithm

Each internal node in the task hierarchy H is a well-defined
POSMDP subtask, which can belong to one of the following
categories of formulation:

– Node has only primitive actions as child nodes: This
subtask is a standard BRL which can be formulated as
one POMDP, a special case of POSMDP.

– Node has both primitive and abstract actions, or only
abstract actions: This subtask is a BRL with macro
actions which can be formulated as one POSMDP.

The subtasks are solved in bottom-up ordering, as in
Algorithm 1. MC-BHRL consists of two stages: The offline
stage outputs a policy with respect to uncertainty of all
unknown models which have been considered as unob-
servable factors in the state space. The online stage uses
the policy for BHRL online learning. To solve each POS-
MDP P in the offline stage, we sample M primitive models
from a prior distribution b0(θ), then create a new approx-

imate POSMDP P̂ =
〈
S
P̂
,A

P̂
,O

P̂
,T

P̂
,R

P̂
, γ , b0

P̂

〉
.

This approximate POSMDP has state space S
P̂

=
S × {1, · · · ,M}, action space A

P̂
= A, observation

space O
P̂

= S, reward function RP (s, m, a, s′, m′) =
R(s, a, s′), the subsumed transition and observation
function

T
P̂
(s, m, a,m′, s′, o, k) = TP (s, θ̂

m, a, s′, θ̂m′
, o, k)δmm′,

and the initial belief b0
P̂

uniformly distributed over
{1, · · · ,M}.

Algorithm 1 MC-BHRL Planning

1: Require: A hierarchy H.
2: for each subtask a ∈ H do solve in bottom-up ordering
3: Formulate a POSMDP P with lower-level macro

actions.
4: Sample M primitive models {θ̂1, · · · , θ̂M} ∼ b0(θ,P).
5: Form a new approximate POSMDP P̂ .
6: Use Macro-MCVI to solve POSMDP P̂ for a policy π̂∗

a .
7: end for
8: return π̂∗

a .

4.2 Theoretical analysis

We compute the error bound of one step solving a subtask of
MC-BHRL. The total error bound (at the root node in hier-
archy) could be computed similarly by adapting the Rmax

value to a total maximum reward of macro actions.
MC-BHRL uses Macro-MCVI to solve the approximate

POSMDP P̂ , and represents its policy as a policy graph.
Thus, there is a correspondence between policies of P̂ and
P if the policy of P is also represented in a policy graph,
because they have the same action space A and observation
space O. We denote that π∗ is an optimal policy of P , π̂∗
is an optimal policy of P̂ , and π̂t is a computed policy of P̂
after t-step approximate backup of Macro-MCVI.

First, we bound the error for solving P̂ , i.e., the dif-
ference between V̂t of π̂t and V̂ ∗ of π̂∗. Let δB =
supb minb′ ‖b− b′‖1 be the maximum L1 distance from any
point in the belief space B to the closest point in B , where B
is a set of belief points sampled from B. Macro-MCVI uses
Monte-Carlo simulations to approximate the exact value
iteration backup by sampling N times from a belief point b.
This results in the approximate backup operator ĤB .

Theorem 3 For every b ∈ B,
|V̂ ∗(b) − V̂t (b)| ≤

2Rmax

(1 − γ )2

√
2
(|S

P̂
| ln(|B|t)+ ln(2|A|)+ ln(|B|t/τ ))

N

+ 2Rmax

(1 − γ )2
δB + 2γ tRmax

(1 − γ )

(12)

with probability at least 1 − τ

Our proof uses the same reasoning as the proof in [5],
and thus omitted here. The difference is in the contrac-
tion property derived in Lemma 1 and Lipschitz condition
obtained by using the convex and piecewise linear properties
established in Theorem 2.

The theorem shows that the error is in order of
O(1/

√
N), and can be reduced by increasing the number of

samples N . The following theorem uses the previous result
to establish the error between an optimal policy π∗ and π̂t

for the original POSMDP P . Recall that the policy π̂t is
computed by solving P̂ . We denote that |π | is the number
of nodes in policy graph used to represent π .

Theorem 4 If π̂t is the policy received by solving P̂ , then
the the difference between it and an optimal policy π∗ can
be bounded as

Vπ∗ − Vπ̂t ≤
2Rmax

1 − γ

√
2
(
(|π̂t ||O| + 2) ln |π̂t | + |π̂t | lnA+ ln(4/τ )

)
M
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+ 2Rmax

(1 − γ )2

√
2
(|S

P̂
| ln(|B|t)+ ln(2|A|)+ ln(|B|t/τ ))

N

+ 2Rmax

(1 − γ )2
δB + 2γ tRmax

(1 − γ )

(13)

The proof is similar to the proof in [59]. The first com-
ponent on the right-hand side is the error between the value
functions of any policy for P̂ and P . The remaining is
from solving P̂ approximately, which has been derived in
Theorem 3.

The first term, decaying at a rate of O(1/
√
M), can be

reduced if we increase the number of samples M from the
initial belief b0(P). Similarly, the errors from solving P̂ in
the remaining terms are reduced if we sample a larger num-
ber N of beliefs, reduce δB to cover better B, and do more
MC-Backup iterations t . However, if M is large, then we
obtain a larger approximate POSMDP P̂ problem (a larger
state space) which would yield a larger policy graph π̂t .
Similarly, decreasing δB by running Macro-MCVI longer
makes the cover |B| larger. So, there is a trade-off between
training error and generalization error. This is similar to the
problem of overfitting in statistical learning theory as also
discussed in [59].

4.3 RL in POMDP environments

We briefly describe how our proposed approach is easily
extended to apply for RL setting in POMDP environments.
Assuming that a BHRL problem in a POMDP environ-
ment is defined with a tuple {S,A,O, T ,Z,R, γ }. This
BHRL is also given an action decomposition hierarchy, and
with the assumption of unknown transition function T , and
unknown observation function Z . The unknown transition
and observation functions are parameterized by θ and ψ ,
respectively, as θss

′
a = T (s′|s, a) and ψs ′o

a = Z(o|s′, a).
Similar to the method in [59], MC-BHRL can be general-
ized to solve these problems. We first sample M hypotheses
(θ, ψ) from the joint prior distribution b0(θ, ψ), then form
the approximate POSMDP P̂ . Solving for an approximate
policy π̂ for P̂ is like before. The policy should reason
over uncertainty of both unknown transition and observation
functions.

5 Evaluation and analysis

We evaluate the performance of MC-BHRL on three simu-
lated RL domains. First, we use a familiar variant of Taxi
domain from [11] which is a fully observable MDP task.
The other two are RL tasks in POMDP: Cheese-Taxi [30]

and large Cheese-Taxi [47]. For the Taxi task, we compare
with flat Q-learning, MAXQ [11], Bayesian MAXQ [8],
and MC-BRL [59] algorithms. For two partially observ-
able tasks, we make comparisons mainly with MC-BRL
algorithm [59]. MC-BRL is a flat Bayesian model-based
RL algorithm which does not use any action decomposi-
tion hierarchy. To make fair comparisons, both MC-BHRL
and MC-BRL use Macro-MCVI [26] as POSMDP/POMDP
solver.

5.1 Taxi domain

The Taxi domain as described in Fig. 1 was first introduced
in [11]. The agent is a taxi whose task is to pickup a pas-
senger, then deliver him to his desired destination. The pas-
senger location and his destination, which is different from
his initial location, are one of four landmarks (Red, Blue,
Green, and Yellow). The taxi is randomly placed in the grid-
world after each episode. There are six actions: 4 movement
actions (North, South, East, West), Pickup, and Putdown.
For each movement action, the agent moves with probabil-
ity of 0.8 to its intended direction, and probability of 0.1
for each perpendicular direction. A movement cost is −1,
each wrong pickup or putdown cost is −10, and a correct
putdown is 20 reward. In this task, we use a similar task
hierarchy in [11] as described in Fig. 1.

In this task, we assume that the dynamics of the move-
ment actions are not given. We evaluate MC-BRL and
MC-BHRL with values of M = 1000, 2000, Macro-MCVI
uses N = 5000. All performance results for comparison
are reported in Table 1. The online time is for running
500 episodes. The reported rewards (cumulative reward per
episode) and success rates of Q-learning, MAXQ, Bayesian
MAXQ are the average performance of episodes from 450
to 500 over 10 runs. The performance results of MC-
BRL and MC-BHRL are averaged over 10 offline simula-
tions. Each simulation is online evaluated with 500 trials

Table 1 Comparisons on average total rewards for taxi domain. For
each algorithm, we report the average rewards, success rates, and the
offline and online running time in seconds

Algorithm Rew. Suc. Offline Online

MC-BHRL (M = 1K) −14.42 74% 2000 4

MC-BHRL (M = 2K) −10.29 85% 4000 4

MC-BRL (M = 1K) −19.76 11% 2000 4

−19.20 12% 10000 5

MC-BRL (M = 2K) −15.01 15% 4000 4

−14.39 17% 10000 5

Q-Learning −8.3 100% 0 4.5

MAXQ −7.5 100% 0 6.5

Bayesian MAXQ −7.88 100% 0 340
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(episodes) to report an average total reward. This is a diffi-
cult task for a BRL algorithm due to a very large continuous
state space (400-dimensional), so MC-BHRL could not find
a near optimal policy in limited time. Since MC-BRL could
not find a better policy than a random policy even after quite
a long time, MC-BHRL still shows promising results over
MC-BRL in terms of running time, success rate and aver-
age reward. The average reward is still less than zero while
the success rate of MC-BHRL is high, because partly we let
the macro action run until reaching its maximum length if
not terminated (a movement takes a cost of -1.0) and partly
it found a non-shortest path at each success. The online
learning of MC-BHRL can be negligible since we already
exploit the offline computing resource to compute a policy.
This policy of MC-BHRL is with respect to all possibili-
ties of underlying model. The online methods like Bayesian
MAXQ must recompute the policy each time the problem’s
model changes.

5.2 Cheese-Taxi domain

The Cheese-Taxi domain was originally described in [30],
as shown in Fig. 2. There are seven actions: 4 movement

actions (North, South, East, West), Query, Pickup, and Put-
down. This is a partially observable MDP task, so the agent
can not know exactly its location which can be disam-
biguated by taking a sequence of proper actions. It can
receive one of ten observations (o1, · · · , o7, d0, d4, null).
If a movement action is taken, then 1 of first 7 observa-
tions will be observed. These are localization observation
depending on the combination of walls around a location.
If a Query action is taken, the agent will be informed
a destination d0 or d4 if the passenger is on Taxi, and
null otherwise. The passenger can change his destina-
tion with a probability of 0.05 if the Taxi is navigating
through state 2 or 6. Thus, the agent must take Query
action again to know the new destination. If either Pickup
or Putdown is taken, null is always returned. The reward
function is similar to Taxi domain described in previous
section.

In this task, we use a similar task hierarchy as described
in [47], which is slightly different from Taxi’s hierarchy as
in Fig. 3. The GET (PUT) abstract actions are similar to
the ones in Taxi domain which are defined on NAVIGATE
abstract action and a primitive action Pickup (Putdown).
The NAVIGATE abstract action consists of 4 movement

Fig. 2 Cheese-Taxi (left) and large Cheese-Taxi (right) problems
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Fig. 3 Action hierarchy of Cheese-Taxi and large Cheese-Taxi
problems

actions and Query in order to both navigate to and reason
about the taxi’s location and the passenger’s destination.

For simplicity, assuming that we are given the deter-
ministic transition and reward functions, the observation
function is partially known at all next state and action pairs,
with two unknown switching probabilities at states 2 and 6.
We evaluate MC-BHRL and MC-BRL with M = 10, and
sample from a uniform prior belief. Both algorithms use
Macro-MCVI with a setting of N = 50. The performance
results are averaged over 100 offline simulations. Each sim-
ulation is online evaluated with 1000 trials to report an
average total reward.

All performance results are reported in Table 2.
PolCA is a hierarchical POMDP solver described in
[30], its performance result is with an assumption of

a known POMDP. This problem is small enough so that
both algorithms could quickly find a near-optimal policy.
However, MC-BHRL with a pre-defined action hierarchy is
hundred times faster than MC-BRL, a flat BRL solver.

5.3 Large cheese-taxi domain

The large cheese-taxi [47] is a larger variant of the cheese-
taxi domain. This task, shown in Fig. 2, has more possible
taxi locations (30 as compared to 11 in cheese-taxi domain),
9 possible passenger’s destinations, thus it also has a larger
observation space. The passenger can switch his destination
between state 0 or 4 if the Taxi is navigating through state
2 or 6 and the destination is 0 or 4. Similarly, he also can
switch his destination between states 20 or 24 if the Taxi is
navigating through states 18, 22, or 26 and the destination is
20 or 24.

Similar to previous task, we assume that we are given the
deterministic transition and reward functions. The observa-
tion function is partially known at all next state and action
pairs, with five unknown switching probabilities at states 2,
6, 18, 22, and 26. We evaluate MC-BHRL and MC-BRL
with values of M = 1000, 2000, and sample from a uniform
prior belief. Both algorithms use Macro-MCVI with a set-
ting of N = 2000 to guarantee Monte-Carlo backup’s error
small. The performance results are averaged over 10 offline
simulations. Each simulation is online evaluated with 1000
trials to report an average total reward.

All performance results are reported in Table 2. Flat-
DDN is a hierarchical POMDP solver described in [47],
its performance result is with an assumption of a known
POMDP. The results show that MC-BHRL outperforms
MC-BRL due to the unfinished long running time of MC-
BRL. This problem has only five unknown parameters,
but MC-BRL still has difficulties in finding a near-optimal

Table 2 Comparisons on
average total rewards for
cheese-taxi and large
cheese-taxi domains

Algorithm Rewards Time (seconds)

Cheese-Taxi

MC-BHRL (M = 10) 8.434 ± 0.16 2

MC-BRL (M = 10) -32.4 ± 2.24 2

6.257 ± 0.10 15

8.223 ± 0.09 450

PolCA � 8.50 N/A

Large Cheese-Taxi

MC-BHRL (M = 1000) -7.56 ± 1.16 1000

MC-BHRL (M = 2000) 4.23 ± 0.49 1000

MC-BRL (M = 1000) -22.6 ± 5.53 1000

-22.0 ± 5.70 10000

MC-BRL (M = 2000) -20.4 ± 4.46 1000

-18.6 ± 5.09 10000

Flat-DDN 8.40 N/A
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policy. There is a performance gap between MC-BHRL and
an optimal policy of Flat-DDN. We have checked that MC-
BHRL has 100% completed the tasks, however it found
longer paths due to the use of policy graph. This task needs
the agent to both disambiguate its state and find the short-
est path to the goal. Each time a NAVIGATE macro action
is used, the agent implementing NAVIGATE’s policy graph
starts as if it just starts to do disambiguation, and ignores all
knowledge from previous called NAVIGATE(s). This is dif-
ferent from the case if we use α-functions to represent each
macro action’s policy like in [30, 47] with which we can
always select the best α-function with respect to the belief
of the current time NAVIGATE call. There is no similar gap
performance in small Cheese-Taxi domain, because the pas-
senger’s position has its own distinct observation, o7, so it
does not need to do more disambiguation after reaching this
position.

This performance gap can be easily suppressed by chang-
ing the Macro-MCVI solver a little bit: If each time calling
a macro action, the agent checks all possible nodes of the
macro action’s policy graph and chooses the best one to start
with. This would make the online stage run much longer.
The better solution, which is also our future research, is
to change the POSMDP solver. Each time a new macro
action node established in higher-level macro action’s pol-
icy graph, we choose the best node from the macro action’s
policy graph to connect to, instead of always connect to the
root node.

6 Discussion & conclusion

We have proposed an efficient and simple method to solve
a BRL, called Monte Carlo Bayesian Hierarchical RL (MC-
BHRL), by utilizing a given action decomposition. MC-
BHRL was inspired from two previous algorithms MC-BRL
and Macro-MCVI. We formulated the underlying BHRL
problem as a POSMDP. The newly formulated POSMDP
has a continuous state space, discrete action and observation
spaces. To solve it, we use a similar method of MC-BRL
to sample from a POSMDP’s prior belief, then apply the
Macro-MCVI solver. This results in an offline BHRL solver,
which is new and brings an alternative solution compared
to the recently introduced online solver Bayesian MAXQ.
We have shown, through three RL domains, that action
hierarchy is necessary for solving BRL, as argued in [8].
The performance of BHRL is better than that of flat BRL
in terms of both reward and especially solving time in
at least one order of magnitude. There are a number of
future research directions of MC-BHRL. An automatic hier-
archy discovery may also be integrated into MC-BHRL
framework. With POSMDP formulation for BHRL, online
POSMDP solvers can be applied to solve BHRL.
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