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Abstract: Activity recognition for the purposes of recognizing a user’s intentions using 
multimodal sensors is becoming a widely researched topic largely based on the prevalence 
of the smartphone. Previous studies have reported the difficulty in recognizing life-logs by 
only using a smartphone due to the challenges with activity modeling and real-time 
recognition. In addition, recognizing life-logs is difficult due to the absence of an 
established framework which enables the use of different sources of sensor data. In this 
paper, we propose a smartphone-based Hierarchical Activity Recognition Framework 
which extends the Naïve Bayes approach for the processing of activity modeling and  
real-time activity recognition. The proposed algorithm demonstrates higher accuracy than 
the Naïve Bayes approach and also enables the recognition of a user’s activities within a 
mobile environment. The proposed algorithm has the ability to classify fifteen activities 
with an average classification accuracy of 92.96%. 
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1. Introduction 

Activity Recognition (AR) solutions are capable of identifying physical actions, postures or 
movements using various sensors which have the ability to capture the intention and the condition of 
the current situation of the subject. Existing AR research has utilized wearable sensors which have 
been attached on the human’s body or 2D/3D cameras for the purposes of capturing video-based 
images [1,2]. A range of studies have also considered the use of mobile phones for the purposes of  
AR [3–5]. In those studies, the data is collected using a mobile phone and the AR is normally 
performed offline. Thus, the AR algorithms are not implemented in real-time on the phone and the 
classification is not performed in real-time. In [6], an AR system running purely on a smartphone is 
presented. The system can be trained on the mobile phone itself and also has the ability to perform the 
data classification in real-time on the phone. The recognition is based on features calculated using a 
geometric template matching approach and a support vector machine (SVM) is used as the classifier. 

There are several advantages of smartphone-based AR. The first one is the availability of various 
sensor devices already embedded in the phones, so the users are not required to use external sensors in 
order to collect activity information. The flexibility and readiness of the smartphone as a sensor device 
are also seen as advantages. The second one is that the smartphones already have many properties that 
enable AR related implementations. They provide processing capability, adequate storage space and 
communication ability, etc. The third one is that a smartphone is likely to be with a user during daily 
activities, so the system easily acquires activity and context data from users in an unobtrusive way. 
The fourth and final advantage is that most smartphones also have relatively long operation duration. 
In order to recognize a whole day of a user’s activities, a smartphone should have at least a day’s 
worth of operation time before recharging is required. Current smartphones already have sufficient 
operating system properties and battery power reliability. 

Smartphones have multiple embedded sensor devices and are able to process collected data 
independently. For recognizing physical movements of the user, accelerometer and gyroscope sensors 
can be utilized. For gathering contextual data such as location, situation or environmental information, 
data from GPS, proximity sensors and the sound microphone are also used. A smartphone also has 
enough storage space, processing capability and communication modules, hence is a good choice as a 
sensing and processing platform for recognizing a user’s activities. 

General AR is divided into two phases. Firstly a training phase is required to build the activity 
models and secondly a recognition phase where based on activity models the data collected is processed. 
Probability-based AR algorithms for example hidden Markov models (HMM), SVM or k-nearest 
neighbor (kNN) are difficult to apply to smartphone applications given that they requires sample data 
for modeling in addition to their computational complexity [7]. 

For a lightweight activity classification framework, the Naïve Bayes algorithm is used as a basic 
algorithm for recognizing human activities. If the activity information of users is matched to the 
candidate who has the highest possibilities among pre-constructed activity models, that one is chosen 
by the algorithm. The algorithm must be lightweight and fast, especially if the target platform is a 
mobile device such as a smartphone. A comparison of several classification methodologies is given  
in [8] and shows that the Naïve Bayes classifier achieves the fastest modeling time than other machine 
learning algorithms. With regard to comparing model generation time, Naïve Bayes shows the fastest 
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modeling results among popular machine learning algorithms such as Decision Table (DT), Decision 
Tree (ID3), Tree-augmented Naïve Bayes (TAN), Artificial Neural Network (ANN). That is mainly 
due to the absence of ‘searching’ in the Naïve Bayes algorithm. Based on these findings, we have used 
a Naïve Bayes algorithm in real-time activity modeling and recognition on a smartphone in our  
current work.  

Although the Naïve Bayes classifier generates an activity model quickly, it has several limitations 
such as relatively low processing speed, and difficulties to apply it in mobile environments which have 
less resources. First, in the modeling phase extracting features from collected data can result in many 
errors occurring due to insufficient memory allocation in the mobile device. Second, one of the 
inherent characteristics of the Naïve Bayes classifier is that every attribute has the same priority. This 
causes lower accuracy of the posterior probability, therefore in order to resolve the above problems, 
the Adaptive Naïve Bayes (A-NB) algorithm is proposed in the current work. 

In this paper, a lightweight activity modeling and recognition framework defined as the  
Lightweight Hierarchical Activity Recognition Framework (HARF) which enables the modeling and 
recognition of user activities on a smartphone is proposed. The proposed HARF has the ability to 
recognize 15 activities and uses the accelerometer, gyroscope, proximity sensor and GPS modules that 
all come with the smartphone (Figure 1). 

Figure 1. Overall architecture of the proposed system–HARF. 

 

2. Related Works 

Many of the popular AR approaches have proposed the use of body-worn sensors with different 
sensors commonly placed on different parts of the body. The following two examples have been 
selected to show how the placement of sensors and corresponding devices was proposed. Researchers 
in [1] used five sensor boards on different parts of the body such as arm, wrist, knee, ankle and waist. 
Each sensor board consisted of a biaxial accelerometer, four AAA batteries and a memory card for 
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storage. As shown in Figure 2, the authors in [9] investigated activity recognition using 12  
body-worn tri-axial accelerometers. Both investigations have shown that accelerometer-based AR can 
provide over 90% accuracy. Nevertheless, in order to enable the recognition of basic activities, the 
approaches suggest the use of additional sensors placed at fixed strategic positions depending on the 
targeted activities. 

Figure 2. Sensor replacements in two activity recognition research studies using body-worn 
sensors. Figures are adapted from the corresponding papers [1,9]. 

 
 

(a) (b) 

In [10], authors claim that such approaches are obtrusive for a person. In the investigation of [1], the 
authors mentioned that in some of the experiments participants have reported that they felt self-conscious 
in public spaces. This was due to the sensor devices used being visually noticeable. Researchers in [11] 
stated that the placement of sensors in multiple predefined locations could be quite obtrusive. They 
contended this as a limitation for common AR approaches using body-worn sensors. 

Others have made similar observations on the same issue. In [12] the authors suggested the use of a 
single sensor placement as a less obtrusive alternative. The authors in [13] discussed this issue saying 
that wearable multi-sensor solutions are very obtrusive since wired techniques are used and were 
required most of the time and users have to strap sensors on with Velcro strips or even wear special 
suits for the intended AR. Instead of placing different sensors on the person’s body for continuous 
monitoring, we propose to use unobtrusive and a minimum number of devices. The person should not 
consciously feel intruded or disturbed by the number or the placement of the sensors. 

A smartphone can be seen as a potential unobtrusive sensor device. Currently, most smartphones on 
the market have multiple built-in sensors, such as accelerometers, microphones, proximity sensors, 
GPS and light sensors. Particularly in the case where the person already owns a smartphone, it is not 
necessary for them to use an additional device for sensor data collection. If there is such a demand in 
the near future, additional external sensor devices can still be connected wirelessly to the smartphone 
for data collection, processing, transfer and even evaluation. Smartphones can be used as alternatives 
to current body-worn sensor devices based on the following factors: 
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① The available sensors are built-in. As long as the desired context can be derived and 
recognized from the data of the built-in sensors, the users are not required to use any external 
sensors in order to collect the required information. In cases where the need occurs, additional 
sensors and devices can be interfaced to smartphones to extend their functions with the 
necessary sensors other than those which are built-in. The flexibility and readiness of the 
smartphone as a sensor device are viewed as advantages.  

② Smartphones already have many properties that enable activity recognition-related 
implementations. Most smartphones have relatively high processing power and sufficient 
memory for data processing tasks. They also contain more than adequate storage space for the 
storage of raw and computed data. Smartphones also provide communication possibilities that 
allow information exchange between users and external services. The smartphone itself can 
be viewed as a small computing device with common connectivity integrated. 

③ A smartphone is likely to be with a user during daily activities. It can be considered as a 
natural choice of an unobtrusive device. The chances of users feeling awkward or 
uncomfortable will be much lower compared to approaches that affect the usage habits of  
the users. 

④ Most smartphones have also relatively long operation durations. For an average user, under 
normal usage patterns (some daily phone conversations and text messages), a smartphone 
should have at least a day’s operation time before a recharge is required. With proper 
management for sensor data polling, an entire day of sensor data collection and processing  
may therefore be achievable. 

There are several existing studies for activity modeling and recognition algorithms. In [14], the 
authors used multiple sensors or heterogeneous sensors for recognizing user’s activities by attaching 
them to the body. The approach required a physical connection between sensor devices; however, such 
an approach is not suitable for long-term AR. For accelerometer data classification, several approaches 
to feature extraction and classification have been investigated [15]. Nevertheless, existing approaches 
are difficult to apply to mobile devices which have relatively less resources than computers or servers 
for the initial stages of training. 

3. The Proposed Algorithm and Systems 

In this paper the Naïve Bayes algorithm is used as a basic algorithm for recognizing a human’s 
activities. If the activity information of users is matched to the model which has the highest 
possibilities among pre-constructed activities models, it is chosen by the algorithm. Generally the 
Naïve Bayes classifier achieves faster modeling time and less computation overheads than other 
machine learning algorithms. The Naïve Bayes classifier can generate an activity model quickly, 
however, it has several limitations such as relatively low processing speed and it is difficult to deploy 
in a mobile environment which is resource constrained. In addition, one of the inherent characteristics 
of the Naïve Bayes classifier is that every attribute has the same priority, which results in a lower 
accuracy of the posterior probability. In the current work, an Adaptive Naïve Bayes approach is 
proposed in an effort to address the aforementioned issues and a lightweight hierarchical activity 
recognition framework is proposed based on an Adaptive Naïve Bayes approach. 
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3.1. Adaptive Naïve Bayes Algorithm (A-NB) 

Naïve Bayes is a statistical classification method which can estimate the possibility of a given 
sample. The Naïve Bayes probabilistic model assumes that sample data 𝐹1  to 𝐹𝑛  have possibilities 
relating to an independent class C. The probability of C after the sample data 𝐹1 …𝐹𝑛 are collected is 
𝑝(𝐶|𝐹1, … ,𝐹𝑛) which is referred to as the posteriori probability. In order to calculate  𝑝(𝐶|𝐹1, … ,𝐹𝑛), 
𝑝(𝐹1, … ,𝐹𝑛) and 𝑝(𝐶) are required. These can be estimated from training data and are referred to as 
the boundary probability. By using Bayes’s theorem the a posteriori probability is defined by  
Equation (1): 

𝑝(𝐶|𝐹1, … ,𝐹𝑛) =
𝑝(𝐶)𝑝(𝐹1, … ,𝐹𝑛|𝐶)

𝑝(𝐹1 , … ,𝐹𝑛)
 (1) 

Consider a maximization of 𝑝(𝐶)𝑝(𝐶|𝐹1, … ,𝐹𝑛) because 𝑝(𝐹1, … ,𝐹𝑛) has values to every class. If 
the boundary probability of the class is now known, only 𝑝(𝐹1, … ,𝐹𝑛|𝐶)  may be considered. 
𝑝(𝐹1, … ,𝐹𝑛|𝐶) is calculated by the independent assumption of Naïve Bayes. As a result, 𝐹1, … ,𝐹𝑛 can 
be classified as the class which has the largest a posteriori probability. If a sample data 𝐹𝑖  is a 
classification attribute and contains one value out of several limited values, a calculation of 𝑝(𝐹𝑖|𝐶) 
may be made according to traditional probability. Nevertheless, the characteristic of the training data 
for AR is continuous data. In this case, the distribution of probability is utilized for calculating the 
conditional probability and the Gaussian distribution is utilized for representing a distribution of 𝐹𝑖: 

𝑃(𝐹𝑖 = 𝑣|𝐶) =
1

�2𝜋𝜎𝐶2
𝑒
−(𝑣−𝜇𝐶)2

2𝜎𝐶
2  (2) 

In Equation (2), the mean value of 𝐹𝑖 in class 𝐶 is 𝜇𝑐 and the distribution is 𝜎𝑐2.  
In the current work, the proposed approach utilizes multiple sensor data gleaned from a smartphone. 

Taking this into consideration a lightweight modeling and recognition algorithm is therefore required 
due to the limited resources. Mobile devices, including smartphones, have a limited memory space for 
storing and processing collecting raw sensor data in real-time. This causes memory overflow problems 
as described in Figure 3a. To avoid the memory overflow problem, the adaptive approach, repetitive 
calculation, which is periodically calculate accumulated sensor data is proposed as depicted in Figure 3b. 
A-NB keeps calculations to every certain period time t. This lowers the allocated memory and 
increases the processing frequency. After collection of raw sensor data is completed, all of the 
temporarily calculated results are utilized for activity modeling.  

In addition, given the performance issues associated with the Naïve Bayes approach a lightweight 
classification algorithm A-NB, which enables activity modeling and recognition in a smartphone,  
is proposed. When a system builds an activity model using Naïve Bayes, the complexity of the 
calculation is dependent on the number of sample data i. 
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Figure 3. (a) Memory usage using Naïve Bayes; (b) Memory usage and processing 
frequency using adaptive Naïve Bayes. 

  
(a) (b) 

If the AR features are increased, this requires significant processing capabilities while calculating 
the mean value 𝜇𝐶 and the distribution 𝜎𝐶2 of data 𝐹𝑖. To overcome memory overflow problems which 
may occur during real-time activity training, A-NB calculates the mean and distribution  
values of data 𝐹𝑖  periodically. The repetitive approach considering memory usage and efficiency is 
described below: 

𝜇𝑁 =
𝜇(𝑁−1) × (𝑁 − 1) + 𝐹𝑁

𝑁
 

𝑣𝑁 =
𝑣(𝑁−1) × (𝑁 − 1) + 𝐹𝑁2

𝑁
 

σ𝑁2 = 𝑣𝑁 − 𝜇𝑁2  

(3) 

In Equation (3), 𝑁 is the number of collected data for time 𝑡, 𝜇𝑁 is the mean of data 𝑁, 𝑣𝑁 is the 
mean of the square of data N and 𝜎𝑁2  is the distribution. If the number of calculated means and 
distributions is 𝑗, the proposed A-NB approach calculates the total mean value by combining 𝜇1 to 𝜇𝑗, 
the total distribution value by the mean value of 𝜎12 to 𝜎𝑗2. In order to calculate the 𝑝′(𝐹𝑖|𝐶) value, 
Equation (2) is transformed to Equation (4): 

𝑃′(𝐹𝑖 = 𝑣|𝐶) =
1

�2𝜋𝜇𝑣
𝑒−

(𝑣−𝜇𝑚)2
2𝜇𝑣  (4) 

𝜇𝑚 is the mean value of 𝜇1 … 𝜇𝑗, 𝜇𝑣 is also the mean value of the distribution 𝜎12 … 𝜎𝑗2. Hence the 
mean and distribution are calculated by data sample  𝐹𝑖 , and by using these values the posteriori 
probability 𝑃′(𝐹𝑖 = 𝑣|𝐶) are able to be calculated. 

3.2. Lightweight Hierarchical Activity Recognition Framework (HARF) 

Although the AR using multimodal sensors can increase recognizable activities and enable the 
recognition of various situations, it lowers the accuracy of the overall recognition result given that the 
classifier is required to consider more factors from the input data. In order to overcome this issue, 
HARF, which recognizes activities in a hierarchical approach, has been proposed. The approach 
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includes the ability to not only recognize a simple activity, however, also to consider the spatial 
location of the users and their activity within a given context. The approach also considers that there 
may be different meanings associated with the user’s location. The activities are categorized into three 
types, as presented in Table 1. There are 15 activities described in Table 1. Ten of them, for example, 
Walking, Sitting, Standing and Jogging are related to physical movement. Even though the physical 
action is the same in different locations, the pattern of movement or contextual information of the 
actions are totally different. For example, the moving pattern or Degree of Freedom (DoF) of walking 
at home and outdoors are obviously different. Also from a contextual point of view, we can say sitting 
at home as ‘taking a rest’, however, we can also assume the same physical action sitting at office as 
‘working’, so four different physical activities are categorized according to the location where the 
action is recognized.  

Table 1. Activity categorization for hierarchical AR. 
Type Area Activity Sensors 

Location & multimodal sensor 
based activity recognition 

Home 
Walking 

Accelerometer, Gyroscope, 
Proximity and GPS 

Sitting 
Standing 

Office 
Walking 
Sitting 
Standing 

Outdoor 

Walking 
Sitting 
Standing 
Jogging 

Location based  
activity recognition Outdoor 

Waiting for bus at bus stop 

GPS Having a meal at cafeteria 
Exercising at gym 
Visiting a park 

Heuristic based  
activity recognition Outdoor Riding a car 

Accelerometer, Gyroscope, 
Proximity, GPS  
and Heuristic 

Figure 4 depicts the proposed HARF architecture for real-time AR processing based on the A-NB 
algorithm. If the A-NB is applied to AR, classification is performed firstly using location information 
and a heuristic approach is applied as described in Table 1. For recognizing the location of the user, we 
only used the GPS sensor embedded in a smartphone. In Type 1, location & multimodal sensor-based 
AR, the GPS is utilized to decide if the user is located indoors or outdoors. We determine that if the 
GPS signal is available and strong enough, the user is located in an outdoor area. We did not consider 
any other indoor locatization methdologies such as RSS using WLAN, Bluetooth or ZigBee etc. 
because we only need to differentiate whether the user is in Home/Office or Outdoors. In case of the 
Type 2, location-based AR, the GPS is a dominant sensor to recognize a current activity among four 
different location activity labels. In Type 2, GPS is the only option because specific coordinates are 
required to classify the location.  

Once recognition is performed, the system recognizes the location first for differentiating indoors 
(Home and Office) and outdoors. If the user is at an unregistered location, the system tries to recognize 
the current activity among outdoor activities (Walking, Sitting, Standing, Jogging and Riding a Car) 
with a heuristic-based approach. Nevertheless, if the user is at a registered location, the system firstly 
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looks up the location-based activity list. If the user is at home or the office, the system tries to 
recognize the activity using the proposed approach with multimodal sensor data. 

Figure 4. Hierarchical AR framework for enhancing recognition accuracy. 

 

As described in Figure 4, the HARF firstly compares the current location with the registered 
location list. If the current location is matched with one of the existing lists, the activity is categorized 
as indoor activities of Type 1 or Type 2 as described in Table 1. If not, the activity is recognized as 
ocurring in an outdoors area where it can then be one of four physical activities or riding a car. For 
recognizing a Type 3 activity, we used the moving speed information from GPS sensor data. Whatever 
physical activities are recognized using the proposed A-NB algorithm, if a moving speed of the user is 
over 25 km/h, it is compulsorily labeled as ‘riding a car’ activity. We named this intended labelling 
approach a Heuristic based activity recognition of our proposed HARF. By applying the heuristic 
approach, we can easily recognize the activity, riding a car, even when the activity can be misclassified 
if confused with several other physical activities such as sitting or standing. According to our 
experimental experiences, riding a car activity is somtimes recognized as Walking or even Jogging due 
to the road conditions without a heuristic methodology. 

4. Implementation of the A-NB Based HARF 

For evaluating the proposed algorithm in a smartphone environment, a real-time activity training  
and recognition system referred to as Personalized Activity Recognizer and Logger (pARNL) is 
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proposed. Implementation using the pARNL enables personalized activity recognition and life-logging 
and users can add or monitor their own activities or contexts. pARNL is organized into four  
sub-modules as described in Figure 5.  

Figure 5. pARNL: Real-time activity recognition system using A-NB and HARF. 

 

The component, Embedded Multimodal Sensors, consists of four sensors (3-axis accelerometer,  
3-axis gyroscope, proximity sensor and GPS) embedded in the smartphone for recognizing activities.  
The Pre-processing component collects sensing data from multi-modal sensors periodically (50 Hz) 
and unifies the data format for efficient data processing sharing. It also extracts features from collected 
sensor data for activity modeling and recognition. The Activity Training & Recognition Framework is 
composed of the proposed A-NB algorithm-based activity training and recognition modules. Activity 
models and user-defined activities are stored at the Repository. Lastly, the User Interface permits the 
users to monitor the collection of data from multimodal sensors and visualize 3-axis accelerometer 
data. It also provides an interface for users to add or train their own activities. 

For an implementation of the pARNL system, a smartphone which has four available sensor 
modules: 3-axis accelerometer, 3-axis gyroscope, proximity sensor and GPS, is required. We used a 
Samsung Galaxy S3 cellphone for our evaluation. The information below is the detailed specifications 
of the device related to our proposed system: 

• Display: Super AMOLED capacitive touch screen 
• Internal ram size: 1 GB 
• Network connectivity: Not required 
• OS: Android V4.3(Jelly Bean) but successfully tested on the lower version 2.3.3 (API level 10) 
• CPU and GPU : Quad-core 1.4 GHz Cortex-A9 / Mali-400MP4 
• GPS: Assisted GPS, GLONASS 
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5. Performance Evaluation 

For the verification of the A-NB algorithms and the HARF framework, a real-time AR system has 
been implemented in the form of a smartphone application using the Android OS. The application 
which uses the Android OS can be installed easily on a smartphone or mobile device. In addition, a 
variety of smartphone UI (touch screen, keyboard, sound, etc.) enables to the users to add or model 
their own activities by themselves. The smartphone application was developed based on Android 2.3.3 
(API level 10), as shown in Figure 6, on the Samsung Nexus S model.  

Figure 6. Smartphone application which implements real-time activity recognition 
framework. (a) Initial state of application. Sensor monitoring, accelerometer visualization, 
UI for activity training & recognition; (b) Visualizing 3-axis accelerometer values of 
walking activity; (c) Screenshot of activity recognition results. 

   
(a) (b) (c) 

Table 2 presents the results of the AR using the smartphone application. The experiments were 
conducted on 15 activities including four location-based activities (waiting for bus at bus stop, having 
a meal at a cafeteria, exercising at gym, visiting a park). Nevertheless, the results of recognizing these 
four location-based activities are not presented. There was only one misrecognized case out of 200 
testing samples. Nevertheless, if the GPS on the smartphone is guaranteed to work well, location-based 
activities are recognized well in the proposed system. Therefore, the experimental results in Table 2 
present the accuracy of 11 activities without location-based activities included.  

The recognition results of the 15 activities provided an accuracy of 92.96% and the result of  
11 activities, without including the activities based on only location, was 90.4%. There are several 
cases which show different accuracies for the same activities. This indicates that the activity can be 
recognized differently depending on where the activities took place. For example, walking activities in 
the home or outdoors are seldom recognized as a standing activity given that the user is frequently 
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stopped to change direction. The recognition accuracy of both sitting and standing activities are 
relatively higher than the others due to their static characteristics. 

Table 2. Activity recognition accuracy of 11 activities for validating the proposed HARF. 

Location 
Home Office Outdoor 

Standing Walking Sitting Standing Walking Sitting Standing Walking Sitting Jogging Car 

Home 
Standing 90.32 - 9.68 - - - - - - - - 
Walking 10.43 83.47 6.1 - - - - - - - - 
Sitting 2.56 - 98.44 - - - - - - - - 

Office 
Standing - - - 95.2 - 4.8 - - - - - 
Walking - - - 4.84 94.35 0.81 - - - - - 
Sitting - - - 1.2 0.61 98.19 - - - - - 

Outdoor 

Standing - - - - - - 94.34 - 5.66 - - 
Walking - - - - - - 12.77 80.85 6.38 - - 
Sitting - - - - - - 2.5 - 97.5 - - 

Jogging - - - - - - 2.17 10.86 1.47 85.5 - 
Car - - - - - - 16.25 6.25 1.25 - 76.25 

In the case of jogging and riding in a car, there are some misrecognition results given that a jogging 
activity is similar to walking and a car is frequently stopped or driven slowly. Figure 7 depicts True 
Positive and False Negative of the 11 activities based on Table 2. 

Figure 7. Activity recognition accuracy graph of 11 activities (*: Home, **: Office,  
O: Outdoors). 

 

A performance comparison of HARF, HMM and Naïve Bayes algorithm is presented in Figure 8. 
The Hidden Markov Model is commonly used in offline processing and it shows more accurate 
performance, however our proposed algorithm combination, A-NB and HARF, is running on a 
resource limited mobile environment for the purposes of real-time processing. The average accuracy of 
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recognizing 15 activities (including four location-based activities) using Naïve Bayes and HMM was 
81.17% and 94.42% respectively. On the other hand, the proposed HARF provided 89.88% accuracy. 
This means that the proposed algorithm and framework enhanced the Naïve Bayes and can replace the 
heavier but more accurate approach—HMM based methodology.  

Figure 8. Accuracy comparison of Naïve Bayes, HMM and HARF for 15 activities. 

 

Among the average accuracies of three different approaches, HMM-based AR showed the best 
performance, however, the proposed HARF showed better performance on ‘sitting’ and ‘visit specific 
location’ activities than HMM. Also in the case of recognizing Car Driving, HARF and HMM showed 
76% and 90% accuracy, however, the Naïve Bayes showed much lower accuracy of around 50%. The 
result means that a complex activity such as ‘car driving’ is recognized well using the powerful and 
heavy algorithm, HMM, however, the proposed HARF recognizes simple activities such as ‘sitting’ 
and ‘visit specific location’ and others better.  

6. Conclusions and Future Work 

In this paper, we have proposed a personalized activity modeling and real-time AR framework for 
understanding a human’s intention or requirements based on multimodal sensors in a smartphone.  
A Hierarchical Activity Recognition Frame-work for modeling and recognizing user activities in a 
resource restricted smartphone was proposed. For compensating the memory overflow errors which 
may occur within the constrained resources of the smartphone when considering data from multimodal 
sensors, we have proposed a hierarchical activity modeling and recognition approach. Results 
following testing demonstrate that the proposed system can recognize 15 activities with an accuracy of 
92.96%. This is 10.73% higher than using a conventional Naïve Bayes approach. 

The proposed HARF exhibited relatively high accuracy when recognizing simple or fixed activity 
patterns (jogging, standing). In the case of activities such as riding a car or walking, which may have 
various patterns, it showed lower accuracy. In order to compensate for these problems, other studies 
using not only a smartphone, however, also external sensor devices or utilizing environmental sound 
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are required. A compound approach utilizing multimodal sensor data and external sensor data is 
expected to enhance the accuracy of activity modeling and recognition. 

Our current implementation of the proposed HARF uses four sensor modules all the time when the 
application is running. This means each sensor module is generating raw sensor data continuously and 
the system is being required to process everything. One of our future planned works is to optimize a 
proposed hierarchical framework. For example, we first enable only the GPS sensor for classifying the 
current activity based on location. If other sensor data are required to classify detailed activities; we 
turn on the required sensors one by one. By applying the optimization approach, battery consumption 
may be naturally reduced.  
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