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Abstract The extraction of knowledge from a huge volume of data using rough set methods
requires the transformation of continuous value attributes to discrete intervals. This paper
presents a systematic study of the rough set-based discretization (RSBD) techniques found in
the literature and categorizes them into a taxonomy. In the literature, no review is solely based
on RSBD. Only a few rough set discretizers have been studied, while many new developments
have been overlooked and need to be highlighted. Therefore, this study presents a formal
taxonomy that provides a useful roadmap for new researchers in the area of RSBD. The
review also elaborates the process of RSBD with the help of a case study. The study of the
existing literature focuses on the techniques adapted in each article, the comparison of these
with other similar approaches, the number of discrete intervals they produce as output, their
effects on classification and the application of these techniques in a domain. The techniques
adopted in each article have been considered as the foundation for the taxonomy. Moreover, a
detailed analysis of the existing discretization techniques has been conducted while keeping
the concept of RSBD applications in mind. The findings are summarized and presented in
this paper.
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1 Introduction

Due to the rapid growth of organizational data, the manual extraction of hidden patterns and
knowledge in the form of rules is almost an impossible task. To overcome this problem,
researchers have preferred to focus on automatic ways of extracting rules. Usually, for auto-
matic rule extraction, data preprocessing may be performed, such as the transformation
of continuous values to discrete intervals and completing missing values. The former is
termed discretization (Maimon and Rokach 2010; Tsaia et al. 2008; Luengo et al. 2012).
Discretization is an essential task that must be performed over real values in real world
applications, such as medical (Paul and Maji 2011), industry (Wu et al. 2004), and power
systems (Yan et al. 2004). The motivation for discretization is that real values may not be
directly processed by all data mining techniques. Likewise, in most of the knowledge discov-
ery systems, continuous values need to be transformed to discrete intervals before applying
the knowledge extraction process. In data mining applications, data are usually represented
in decision tables and when they are used for processing, they need to be expressed in discrete
value form (Jiang and Zhang 2011).

Discretization can be viewed as a dimensionality reduction problem. In this problem, the
range of continuous value attributes is expressed as smaller discrete intervals. This leads
to generalization of patterns in large quantities of data, which ultimately results in a more
generalized classifier for a particular domain. Similarly, discretization is also necessary for
rough set feature selection; this is a way of reducing dimensionality in terms of features
and improving the performance of a classifier (Tian et al. 2011). Other advantages of dis-
cretization are the classification of unseen instances (Kurgan and Cios 2004; Wu et al. 2006),
simplification of data, faster learning, improved accuracy, compact and shortened results and
reduced noise (Luengo et al. 2012). Discretization is a popular area of research and different
techniques have been proposed so far; these include information entropy (Fayyad and Irani
1993; Dougherty et al. 1995), the statistical χ2 test (Kerber 1992; Liu and Setiono 1997),
likelihood (Wu 1996; Boulle’ 2006) and class-tailored (Shehzad 2012) and rough sets (Zhang
et al. 2005; Xu et al. 2012; Tian et al. 2011).

In the literature, researchers have reviewed existing discretization techniques from time
to time with a focus on the different aspects of discretization. For example, (Dougherty
et al. 1995) have reviewed and empirically evaluated the binning method for entropy-based
and purity-based methods. They showed that the performance of the Naïve Bayes algo-
rithm significantly improves when entropy-based discretization methods are used. Similarly,
(Liu et al. 2002) have reviewed static/dynamic, global/local and univariate/multivariate dis-
cretization algorithms and provided a systematic study in terms of the history of development,
effects on classification and trade-off between speed and accuracy. They have summarized
the existing algorithms in a hierarchical framework. In the same way, a four level taxon-
omy of the existing discretizers has been created in previous studies (Bakar et al. 2009;
Maimon and Rokach 2010; Blajdo et al. 2008). In this taxonomy, the authors have classified
discretizers into hierarchical and non-hierarchical; splitting, merging and combination; super-
vised and unsupervised; and binning, statistic, entropy and some other related techniques.
Recently, Luengo and his group (Luengo et al. 2012) reviewed the existing discretization
algorithms and implemented them as a part of KEEL software (Alcalá-Fdez et al. 2009).
They have empirically analyzed the algorithms over KEEL datasets and produced empiri-
cal results. These reviews are general in nature and not specific to any particular method,
such as rough set theory (RST). RST, proposed for the first time by Pawlak (1982), is an
efficient mathematical tool that can be best used for data analysis and knowledge discov-
ery. A number of RST-based discretization techniques, such as those created by (Xu and
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Yingwu 2009; Jiang and Zhang 2011; Jian-Hua 2004; Hong et al. 2005) can be found in lit-
erature. These discretizers perform even better in cases with inconsistent data. In the existing
discretization literature, Luengo and his co-authors (Luengo et al. 2012) mentioned some
rough set (RS)-based discretizers from a theoretical perspective in their review. Similarly,
(Blajdo et al. 2008) have also discussed some RS-based discretizers and empirically analyzed
their performance on UCI Machine Learning Repository datasets (Frank and Asuncion 2010).
In recent years, many other rough set methods have been proposed for discretization and are
still disregarded as reviews. Moreover, out of previous reviews, no review exists that is solely
focused on RST-based discretization methods and hence no formal categorization has been
made so far. This may provide a road map for the community for further research in this
area. To come up with solutions to these problems, this study is motivated by the objectives
described below, which can also be regarded as the main contributions of the paper.

• To propose a complete taxonomy of rough set-based discretization (RSBD) techniques and
describe the key features of each method observed in it. The taxonomy will help to guide
researchers towards the future trends of research in this field.

• To formalize the RSBD process in four steps and to briefly explain these steps with the
help of a case study.

• In addition to the taxonomy and case study, the proposed study presents a detailed analysis
of the existing discretization techniques while keeping the concept of RSBD applications
in mind in order to depict a domain-wise distribution of the techniques.

The rest of the paper is structured such as follows. Section 2 presents the preliminaries of RST
and its use in discretization. Section 3 presents a case study to fully explain the process of
RSBD. Section 4 defines a criterion for the survey and then reviews each article in detail and
summarizes the findings in a tabular format. After the detailed theoretical study, a taxonomy
is proposed to the readers. At the end of this Section, an analysis of the existing techniques is
made while keeping the applications of each method in mind in order to pictorially represent
them. Section 5 discusses the outcomes of the review and recommends some guidelines to
the readers. Section 6 describes the concluding remarks of this review.

2 Rough set theory and discretization

RST was proposed by (Pawlak 1982) and it is a powerful mathematical tool for analyzing
inconsistent data. RST is widely used in applications such as machine learning, pattern recog-
nition, data mining and decision support systems (Jian-Hua 2004). RST-based approaches
to data analysis perform better with discrete data compared to continuous values. However,
real world problems contain continuous values that cannot be processed directly by RST.
To cope with such situations, the transformation of continuous values to discrete values is
needed. This process is called discretization (Kurgan and Cios 2004; Luengo et al. 2012;
Tsaia et al. 2008). In literature, the problem of discretization has been addressed using dif-
ferent techniques. A brief introduction to RST is presented here, and the notations used are
based on the work of Pawlak (Pawlak 1982, 1992). Let us consider an information system
(IS), represented as follows.

IS =< OBJ, ATTRIB > (1)

where OBJ is a non-empty set of n objects known as examples or training instances (experi-
ence) and ATTRIB is a non-empty set of m conditional attributes. The set of objects, OBJ, is
represented as follows.
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OBJ = {
Obj1, Obj2, . . . , Objn−1, Objn

}
(2)

Similarly, the set of conditional attributes, ATTRIB, is represented as follows.

ATTRIB = {CAttrib1, CAttrib2, CAttrib3, . . . , CAttribm−1, CAttribm} (3)

In Eq. (3), CAttrib represents a conditional attribute. For each IS, there is a corresponding
decision system (DS); the only difference is that it has an additional attribute termed the
decision attribute. Therefore, for the IS in Eq. (1), the corresponding DS is represented as
follows.

DS =< OBJ, ATTRIB ∪ {Dec} > (4)

In Eq. (4), DS represents a training dataset with n training examples, each with m conditional
attributes and one decision attribute. The decision attribute is represented by Dec which is
always non-empty and has more than one value such as, Dec = {d1, d2, . . . , dn}. The values
d1, d2, . . . , dn represent classes. Each Obji belongs to a decision class (i.e., Obji ∈ d). The
domain of the decision attribute is represented as follows.

DomDec : OBJ → ValDec where V alDec = {d1, d2, . . . , dn} (5)

Similarly, each conditional attribute (C Attribi ) has a set of values associated with all of
the objects (Obji ) of the object set OBJ. This set of values represents the domain of the
conditional attribute and is denoted as follows.

DomCAttribi : OBJ → ValCAttribi (6)

If DomCAttribi is a set of continuous values R (i.e., DomCAttribi � R), then the rough set needs
a discretization system to transform the continuous values to a set of discrete intervals. This
transformation must guarantee the discernibility and consistency of the original DS.

To convert continuous value attributes to discrete intervals, data is structured in the DS.
After applying discretization, the DS is transformed into a new discretized decision system
(DDS), which is represented as follows.

DDS =< OBJ,ATTRIBd ∪ {Dec} > (7)

Here, ATTRIBd represents the discretized attributes obtained after discretization. To discretize
continuous value attributes, the domain of each attribute DomCAttribi

is split into discrete
intervals using cut-points. According to Eq. (6), the domain of a conditional attribute is the
set of values of all of the objects in the DS.

Let’s assume l represents the lower value of a continuous value attribute (CAttrib) and
u represents its upper value, then, in terms of intervals, the domain of the continuous value
attribute (CAttribi ) can be represented as follows.

DomCAttribi = [lCAttribi , uCAttribi ] (8)

For discretization, the domain [lCAttribi , uCAttribi ] is split into a set of i intervals (INTR) using
the set of n cut-points represented by C , as shown in Fig. 1.

The set of all possible cut-points for a continuous value attribute C Attrib is represented
by C , as shown below.

C = {c1, c2, . . . , cn−1, cn} where c1 < c2 < · · · < cn (9)

The set of initial candidate cut-points (C) can be calculated by first sorting the values of
CAttrib in ascending order,v1 < v2 <, . . . , < vn−1 < vn , and then taking the average of
every two consecutive values as follows.
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Fig. 1 The method by which real values of a continuous value attribute are divided into discrete intervals
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The cut-points of a continuous value attribute CAttrib are represented as ordered pairs, such
as (CAttrib, ci ). Therefore, all of the cut-points of an attribute CAttrib are represented as
{(CAttrib, c1) , (CAttrib, c2) , (CAttrib, c3) , . . . , (CAttrib, cn)}. Using the values of all of the
cut-points from Eq. (10), the set of all cut-points of an attribute CAttrib is shown by Eq. (11).

CCAttrib =
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2

)
,

(
CAttrib,
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2
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, . . . ,
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(11)

Similarly, the set of all possible cut-points on all attributes of a given DS is represented as
follows.

CCAttrib = ∪
CAttribi ∈AT T RI B

CC Attribi (12)

The set of cut-points C in Eq. (10) splits DomCAttribi into a set of i intervals (partitions)
represented by INTR. The total number of intervals is one more than the number of cut-
points.

INTR = {Intr1, Intr2, . . . , Intri−1, Intri } (13)

Here, Intr represents a sub-interval and INTR represents the set of all sub-intervals of a
continuous value attribute CAttribi . INTR is shown below.

INTRCAttribi =
[
lCAttribi , cCAttribi

1

)
∪

[
cCAttribi

1 , cCAttribi
2

)
∪ . . . ∪

[
cCAttribi

n , uCAttribi
]

(14)

Similarly, the set of all possible intervals of all attributes of the DS is represented as follows.

INTRATTRIB =
⋃

CAttribi ∈AT T RI B

INTRCAttribi (15)

One of the main objectives of discretization algorithms is to optimize Eq. (12) in such a way
that the discernibility and consistency of the DS may not be disturbed. For this purpose,
different techniques are used to optimize CATTRIB and INTRATTRIB to their optimized sets.
The optimum set of cut-points is then used to discretize the original DS to a new DDS, as
represented in Eq. (7).

3 RSBD process: a case study

Discretization is a multi-step process to transform continuous values into discrete intervals.
Some researchers have declared it a two-step process (Jiang and Zhang 2011), while others
have declared it a three-step (Jiang and Zhang 2011; Luengo et al. 2012; Liu et al. 2008) or
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• Sort continious 
value attributes in 
ascending order 

Sorting 

• Find a set of initial 
cut-points over the 
continuous value 
attributes 

Finding candidate

• Find a set of optimal 
cut-points using 
optimization techniques 
combined with RST 

Optimization  

• Optimized set of cut-
points is used to 
discretize the origional DS
to get a discretized DS 

Discretization 
 cut-points

Fig. 2 Working steps of a rough set-based discretizer

Table 1 Decision table showing
three continuous value attributes

OBJ ATTRIB Dec

CAttrib1 CAttrib2 CAttrib3

Obj1 1.8 3 0.5 1

Obj2 2 2.5 2.1 0

Obj3 2.3 4 2 0

Obj4 2.4 2 2.5 1

Obj5 2.4 3 2.1 0

Obj6 2.6 4 2 1

Obj7 2.3 2 1.5 1

four-step process (Liu et al. 2002; Kotsiantis and Kanellopoulos 2006). The two-step process
proposed by Jiang and Zhang (Jiang and Zhang 2011) first finds the initial candidate cut-
points and then validates them for consistency. In the three-step process (Luengo et al. 2012;
Liu et al. 2008), the initial cut-points are first calculated, then a subset of optimal cut-points
is chosen from the list of available cut-points and in the final step discretization is performed.
In the four-step discretization process (Liu et al. 2002; Kotsiantis and Kanellopoulos 2006),
the steps are as follows: sort the values of the continuous value attributes, set and evaluate the
cut points, split/merge the intervals of the continuous values and stop at certain point. To sim-
plify the understanding of these steps, we also formalize discretization into four steps. These
steps are as follows: sorting, finding candidate cut-points, optimization and discretization, as
shown in Fig. 2.

Example 1 Consider a DS with three continuous value attributes, CAttrib1, CAttrib2 and
CAttrib3, and seven objects, Obj1. . .Obj7, as shown in Table 1.

In the first step, the values of attributes CAttrib1, CAttrib2 and CAttrib3 are sorted in
ascending order, as shown in columns 1, 3 and 5 of the decision table in Table 2. In the
second step, the sets of candidate cut-points, shown in columns 2, 4 and 6 of the decision
table in Table 2, are computed for each attribute using Eq. (10). The total number of cut-points
produced by CAttrib1 is 4, by CAttrib2 is 3 and by CAttrib3 is 4. Consequently, the set of all
cut-points CATTRIB has 11 cut-points; it is shown in last row of the decision table in Table 2
and is calculated using Eq. (12). The process is given below.
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CATTRIB =
⋃

CAttribi ∈AT T RI B

CCAttribi

CATTRIB = CCAttrib1 ∪ CCAttrib2 ∪ CCAttrib3

CATTRIB = {1.9, 2.15, 2.35, 2.5} ∪ {2.25, 2.75, 3.5} ∪ {1.0, 1.25, 2.05, 2.3} (16)

Optimization of the initial cut-points is one of the main tasks of any discretization algo-
rithm. Therefore, after computing the initial set of cut-points, shown in Eq. (16), the next step
is to turn them into an optimized set such that the discernibility/consistency of the DS remains
intact. For this purpose, researchers have come up with a number of optimization techniques.
In this survey, we review different methods of optimization that have been proposed in the
literature for RSBD. For the optimization step of the RSBD process, we use the Rough Set
Exploration System (RSES) version 2.2 (Bazan and Szczuka 2005) to turn the initial set
of cut-points into an optimized set of cut-points, as shown in eqs. 16 and 17, respectively.
The RSES uses a global discretization technique proposed by Polkowski et al. (Polkowski
et al. 2000) for optimization. As a result, the possible eleven possible cut-points (shown in
Eq. (16)) are optimized to only four cut-points, two for CAttrib1 and one each for CAttrib2

and CAttrib3.

C = {(CAttrib1, 1.9) , (CAttrib1, 2.35) , (CAttrib2, 2.25) , (CAttrib3, 2.05)} (17)

The last step is to discretize the original decision table (i.e., Table 1, in this case) using the
optimized set of cut-points shown in Eq. (17). The decision table in Table 3 is the final DDS
in interval format while the decision table in Table 4 is the DDS in the discrete value format.

Table 4 is the output of the discretization process. This output can be best used for further
data analysis purposes. The subsequent section, Sect. 4, is focused on the detailed survey of
these techniques that combine RST and optimization approaches together for discretization.
The most commonly used techniques so far for RSBD are statistical measures, entropy, fuzzy
sets, Boolean reasoning (BR) and genetic algorithms.

4 RSBD: techniques, taxonomy and applications

This section presents a categorization of RSBD methods and sets a criterion for constructing
a taxonomy. A criterion is first defined for the review and then each article is studied accord-
ingly. The review focuses on the main features of each article and then categorizes them. At
the end, each article is also reviewed for its application in different domains.

4.1 Key features for evaluation

It is very difficult to determine the effectiveness of a discretization technique; however, there
are some measurement parameters that can grade a discretization technique as good or bad.
The following subsections briefly describe these parameters.

4.1.1 Consistency

The analysis of a large volume of real world data sometimes suffers from the problem of
inconsistencies, which can be characterized as having conflicting decisions for the same
conditional attributes. When discretization takes place, it may produce some inconsistencies
in the DDS. Therefore, while discretizing real values into discrete intervals, consistency
must be guaranteed in the discretized DS (Jian-Hua 2004; Nguyen and Skowron 1995). The
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Table 3 Discretized values in interval format

OBJ ATTRIB Dec

CAttrib1 CAttrib2 CAttrib3

Obj1 (−Inf,1.9) (2.25,Inf) (−Inf,2.05) 1

Obj2 (1.9,2.35) (2.25,Inf) (2.05,Inf) 0

Obj3 (1.9,2.35) (2.25,Inf) (−Inf,2.05) 0

Obj4 (2.35,Inf) (−Inf,2.25) (2.05,Inf) 1

Obj5 (2.35,Inf) (2.25,Inf) (2.05,Inf) 0

Obj6 (2.35,Inf) (2.25,Inf) (−Inf,2.05) 1

Obj7 (1.9,2.35) (−Inf,2.25) (−Inf,2.05) 1

Table 4 Discretized values in
discrete format

OBJ ATTRIB Dec

CAttrib1 CAttrib2 CAttrib3

Obj1 0 1 0 1

Obj2 1 1 1 0

Obj3 1 1 0 0

Obj4 2 0 1 1

Obj5 2 1 1 0

Obj6 2 1 0 1

Obj7 1 0 0 1

number of inconsistencies caused by a discretization technique must be less than the number
of inconsistencies caused by the original DS (Kotsiantis and Kanellopoulos 2006). Thus,
inconsistency is an important evaluating parameter for discretization.

4.1.2 Minimal cut-points

Discretization can be viewed as a data reduction technique which reduces the range of values
of a continuous values attribute into a minimum number of discrete intervals (Kurgan and
Cios 2004). The number of cut-points can determine the level of data reduction. The fewer
the number of cut-points the more the data will be reduced and hence a generalized classifier
will be possible. There is, however, a tradeoff between the number of cut-points and the
consistency and understandability of a DS. The greater the number of cut-points, the smaller
the intervals will be; therefore the understandability will be lower, but the consistency will
be higher. Conversely, the fewer the number of cut-points, the larger the intervals will be
and the better the understanding will be, but the consistency will be lower (Kotsiantis and
Kanellopoulos 2006). Accordingly, minimal cut-points are favored and therefore considered
important in evaluating parameters for discretization.

4.1.3 Classification rate

Any classification method needs discretization as one of its preprocessing step (Lustgarten
et al. 2008; Zhu et al. 2011). Therefore, a discretization algorithm is considered efficient if it
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improves the classification accuracy. Thus, the classification rate is another important factor
for evaluating discretization.

4.1.4 Discretization techniques and complexities

RST is combined with statistical techniques (Singh and Minz 2007), information entropy
(Tian et al. 2011), fuzzy sets (Paul and Maji 2011), BR (Nguyen 1998) and genetic algorithms
(Jian-Hua 2004), to compute an optimal set of cut-points. An optimal number of cut-points
results in a consistent DDS that can be better for solving rule induction and classification
problems. This survey primarily focuses on the techniques adopted in each article and their
key features. In addition to the above criteria, time and space complexities are also considered
important evaluation criterion.

4.2 RSBD techniques and their features

To write this survey, we performed an extensive review of the existing RSBD techniques
proposed in the recent literature. For retrieval purposes, the keywords/phrases used were
‘rough set discretization’, ‘quantization and rough set’, ‘real value attributes and rough set’,
‘continuous values and rough set’ and ‘rough set quantization’. The time frame was set
between 2000 and 2013, but due to the importance of Nguyen’s initial work on RSBD (Nguyen
and Skowron 1995), we have included their articles published in 1995 and 1998.

This section is focused on the enumeration and design of a detailed study of RSBD tech-
niques from a theoretical perspective. We review each article based on the evaluation features
discussed in Sect. 4.1. Based on this review, the existing techniques are categorized into sta-
tistical, entropy-based, genetic algorithms, fuzzy sets and BR-based approaches. Findings
from the review are summarized in the tables. In the tables, some cells are marked as ‘nil’
which means that the required information for these features was not evident in the article.
Likewise, we have used abbreviations as short names for the titles of the articles to make the
representation in the tables and taxonomical chart simple and concise.

4.2.1 Statistical

In the literature, statistical techniques, such as distributional index, clustering, correlation
coefficient and interval similarity, are the most commonly used methods that have been
combined with RST to optimize the initial set of cut-points for discretization. Probability
distribution (Zhang et al. 2005) is used to find the class-separability function for the dis-
cretization in the radar emitter signal processing domain. Similarly, the information entropy
and statistical distribution index are combined together in a hybrid approach that finds clus-
ters in continuous data (Wu et al. 2006). In this approach, the minimal distributional index
determines the border value for splitting an interval and the maximum of the index decre-
ment is applied in order to select the new intervals to split further. In clustering, the centroid
linkage method of agglomerative hierarchical clustering (Wu et al. 2004) is used to find the
center of the closest cluster. Dendrograms and statistical plots are used for the hierarchical
representation of the dataset and the method is applied for the inspection of defects in wood
veneer.

Dynamic clustering techniques (Xu et al. 2012; Jiang and Zhang 2011) are combined
with RST to cluster candidate cut-points dynamically with the help of their entropy value;
the optimized clustered cut points are then obtained using the importance algorithm of cut-
points. Density-based clustering (Singh and Minz 2007) has also been combined with RST,
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where RST offers itself as a tool for measuring the degree of significance of the attributes
and the dependencies among them. After this, the approach is evaluated by using the total
number of intervals produced and the class-attribute interdependence redundancy (CAIR) as
the parameters. In the same way, correlational approaches, such as correlation coefficients,
rough entropy and stability (Xu and Yingwu 2009), and the grey correlation degree analysis
algorithm (RSRGCDMD) (Tinghui et al. 2009) have also been used for RSBD and applied
for the diagnosis of aultsin steam turbines.

Similarly, a static, incremental, supervised and bottom-up quantization method has also
been used in literature (Jing et al. 2013) which applies chi-square statistics to discover accu-
rate merging intervals. This algorithm is heuristic in nature and results in best quantization
and classification accuracy. Zou and his co-authors (Zou et al. 2013) have used an interval
similarity-based algorithm (SIM) for discretizing real values. The technique used is to first
calculate the similar values of the intervals using a similarity function and then check for
those cut-points which have maximum similar values for merging them together. If multiple
similar values exist then adjacent intervals are merged together. A similar approach can also
be found in literature (Jia et al. 2013; Radwan and Assiri 2013). Jia (Jia et al. 2013) have
proposed a heuristic-based quantization method which attains satisfactory results that sig-
nificantly improves the performance of inductive learning. On the other hand, (Radwan and
Assiri 2013) have used RS-based modified similarity relation (RS+MSIR) method for the dis-
cretization of continuous value attributes of thyroid disease patients so that to automatically
induce rules from the data. These methods are enumerated and reviewed in Table 5.

4.2.2 Information entropy

Information entropy is a heuristic-based technique that defines the significance of the can-
didate cut-points of a continuous value attribute to obtain an optimized set of cut-points
(Xu and Yingwu 2009). It is used in combination with RST to improve the discretization
results. Minimum, granular and conditional entropy have been used for RSBD, which obtain
an optimized set of cut-points using an approximation of the information. Discretization
algorithms, such as C-GAME (Tian et al. 2007, 2011), use an approximation of the mini-
mum entropy and constraint satisfaction to select a set of cut-points capable of generating
discrete data with non-empty cores. Minimum information entropy has also been used for
discretizing physicochemical parameters of blood stasis syndrome in Traditional Chinese
Medicine (TCM) (Zheng and Xi 2009). In the same way, granular minimum entropy and
rough set equivalence relations are combined and applied for RSBD that produces improved
results (Zhou 2009). Similarly, the articles (Liu et al. 2008; Hong et al. 2005) also use entropy
for the optimization of cut-points and RSBD. Information gain that is based on conditional
entropy has also been combined with the discernibility relation of RST for the discretization
of power system data (Yan et al. 2004). Recently, Grzymala-Busse (2013) has proposed a new
entropy-based discretization technique which enhances the original entropy-based approach
by introducing two new options of dominant attribute selection and multiple scanning. Using
the first option of dominant attribute selection, an attribute with the smallest conditional
entropy is selected for discretization and then the best cut point is determined. In the second
option, all the attributes are scanned multiple times, and at the end, the best cut points are
selected for all the attributes. Table 6 lists and summarizes features of previous studies that
use information entropy and RST for discretization.
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4.2.3 Genetic algorithm (GA)

A genetic algorithm (GA) is an effective way of searching and optimizing that approach-
es a global optimum solution for non-linear and high dimensional functions (Rangel-Merino
et al. 2005). The combined effect of a GA and RST may therefore produce improved results
for optimizing candidate cut-points. Jian-Hua (2004) has used GA and RST for discretization,
which performs better than Nguyen’s (Nguyen and Skowron 1995) and the ChiMerge (Kerber
1992) algorithms in producing an optimal set of cut-points. In this study, chromosomes
are represented by strings with a length equal to the number of candidate cut-points; a
fitness function is used for representing the consistency. Similarly, Chen and his co-authors
(Chen et al. 2003) have proposed a GA-based approach for discretization. They have used
optimization strategies, such as elitist selection and father-offspring combined selection,
restart and penalty, to optimize the candidate cut-points. Chebrolu and Sanjeevi (2012) used
the discernibility relation of RST and proposed a 2-step discretization algorithm in which the
first step obtains the candidate cut-points with the help of an MD-heuristic algorithm and
the second step optimizes the number of cut-points with the help of a GA. Table 7 shows the
results of the review of those discretization algorithms that use GA and RST together.

4.2.4 Fuzzy set

Fuzzy discretization is characterized by the membership value, group or interval number and
affinity corresponding to an attribute value, unlike crisp discretization, which only considers
the interval number (Roy and Pal 2003). In problem domains where input data for a rough set
classifier overlaps, crisp discretizers may not produce satisfactory results. Therefore, fuzzy
rough set discretization is favored over crisp discretization. Fuzzy sets assign discrete intervals
to continuous values using a fuzzy membership function. A fuzzy membership function and
RST may produce improved results for overlapped data. For the direct computation of the
relevance and significance of continuous valued genes, Paul and Maji (2011) have proposed
fuzzy discretization that improves the classification results over a crisp set. Similarly, Wang
et al. (2012) proposed a two-step fuzzy-rough set discretization technique in which the first
step calculates the K most important cuts using an “MD heuristic” algorithm and the second
step obtains the fuzzy sets for discretization. The trapezoidal membership function of the
fuzzy set has been used for fuzzy rough set discretization by Roy and Pal (2003). Table 8
describes the main features of the fuzzy rough set discretization literature reviewed in this
study.

4.2.5 Boolean reasoning (BR)

Boolean reasoning can be best used for computing prime implicants, therefore its combina-
tion with RST may produce improved discretization results. In the literature (Nguyen 2005,
1998; Dai and Li 2002), heuristic-based approaches have been used for discretization and
rules generation for classification problems. In this literature, BR is proposed to determine
the discernibility formula, discernibility Boolean function and prime implicants in order to
find an optimal set of cut-points for the best discretization results. In the case of a large
quantity of data, their approach may not perform better (Jiang and Zhang 2011), therefore
the phenomenon of bound cuts has been proposed by Dai and Li (2002), which produces
optimized results for a large quantity of data. Table 9 summarizes the results of the review
we have done for the articles that use BR and RST for discretization.
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Rough set-based approaches for discretization

4.2.6 Complementary approaches

Along with the above techniques, other approaches have also been attempted for discretiza-
tion. Jiang et al. (2010) have proposed a rough set-based supervised and multivariate approach.
This approach takes multiple attributes at the same time as the class label and computes the
discernibility function to find an optimal set of cut-points. The results produced by their
method are better than the results of the EF, naive, semi-naive, BR and EM algorithms.
Similarly, for the discretization of interval-valued attributes, Xin et al. (2007) proposed a
supervised RS-based approach. Likewise, Jiang and Zhang (2011) proposed a three-step dis-
cretization algorithm using RST. The first step finds the candidate cut-points, the second
step computes the importance of each cut-point using a top-down approach and the last step
uses a heuristic-based approach for selecting the best cut-points for discretization. Further-
more, in the area of fighters, field programmable gate array (FPGA) devices are used for
faster computation and an algorithm has been proposed to diagnose faults in fighters (Sun
et al. 2013). They have designed a system that consists of eight-modules. FPGA devices are
combined with the attributes dependency degree in RST to improve the processing speed
of discretization. Similarly, for the mechanical fault diagnosis of five-plunger pump, in the
petroleum industry, a maximum covariance-based discretization method has been proposed
in literature (Wang 2013). Table 10 summarizes the review results of these techniques.

4.3 Taxonomy

Tables 5, 6, 7, 8, 9 and 10 present a summary of the review of rough set-based discretizers. In
this study, the main focus of the review is on the techniques adopted by each discretizer for
discretization. Column 2 of the aforementioned tables contains detailed information about
the methods used for discretization in the existing literature. A classification of the RSBD
techniques has been done on two levels and as a result, a taxonomy has been drawn (Fig. 3).
The taxonomy has two levels. The first level represents the main techniques. The main
techniques are categorized into five groups: statistical, entropy, GA, fuzzy and BR methods.
The second level of the taxonomy represents the sub-techniques within the main techniques.
Each technique is mapped with its corresponding example(s) of a discretizer in its abbreviated
form.

The motivation for selecting this order is to clearly represent the RSBD techniques for
better understanding. The proposed taxonomy helps the researchers to classify new rough
set-based discretizers into one of these categories based on its features. This taxonomy depicts
the existing RSBD techniques and clarifies the similarities and dissimilarities among them.

In summary, this categorization delivers a broad picture of the state-of-the-art RSBD for
early-stage researchers of the topic or for those who want to discretize data for an application.

4.4 Applications

Apart from a detailed analysis of the existing literature in RSBD and taxonomy, the survey
has also explored the distribution of these techniques on the basis of their application fields.
An outlook of these fields is depicted in Fig. 4 which shows the scope of the topic. The
RSBD techniques are used in the fields of radar systems for discretizing the radar signals,
power generator systems, steam turbines for diagnosing different faults in turbines, timber
industry for inspecting defects in wood plates, petroleum engineering for analyzing faults in
the pumps, aircraft manufacturing to analyze fighters’ data, and medical domain for different
prognosis tasks.
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Rough set 
discretization
Techniques

Statistical RS-
based approaches

Correlation

Correlation 
coeffecient & entropy HGD-RS

Grey correlation and 
conditional entropy RSRGCDM

Clusstering

Agglometive 
hirarchical clustring DA-RSC

Density-based 
clustring DRST

Dynamic clustring TSID, TSD-RS

Probabality distribution 
and entropy DRSTA

Information entropy & 
statistical distribution NDKD-RS

Interval similarity SIM, SIAR, RS-MSIM

Other statistical 
methods

Chi-Square Staistics SSDQ-ML

Maximum covariance RS-MFD-FPP

Entropy RS-based 
approaches

Minimum entropy
C-GAME:RSFS-Exp, C-GAME:RSFS, 
AD-RSIE-TCM, AD-RSIE, DERS, 
DRST-IE

Granular entropy AD-GE

Conditional entropy DBE-MS

GA RS-based 
approaches GA-RS, GA-DDS, DR-RST-GA

Fuzzy RS-based 
approaches FDFS, FD-RSGS, FRSF-AR

BR RS-based 
approaches RS-BR, DPRS, SD-RST

Complementory 
approaches DRSTA, SMD, NMD-RST, FPGA-based disc

Fig. 3 Taxonomical chart of RSBD techniques

Most of these algorithms are general in nature and are therefore not applied to any specific
field. This general category of algorithms is evaluated by the benchmark datasets from the
UCI ML Repository (Frank and Asuncion 2010). In Fig. 5, this group of algorithms is labeled
as ‘General’ and has twenty articles in this survey. In the same figure, the domain labeled
‘Other’ represents the set of algorithms that have neither been applied in a specific domain nor
evaluated by the UCI ML benchmark datasets; they have been evaluated by simple example
considered by the authors. In this survey, two articles have been reviewed under this label.
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Fig. 4 Outlook of the RSBD application fields

Fig. 5 Domains-wise distribution of the RSBD techniques

In the medical domain, four rough set-based discretizers were found in which two use fuzzy
sets concept. In radar systems, two articles were found, while for the rest of domains, such as
wood industry, steam turbines, aircraft, petroleum, and power system generator only a single
article was found.
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From the technical application perspective, discretization has effectively been used for
generalization and data reduction (Hu and Cercone 1999), increasing the learning efficiency,
classification accuracy and clarity of different data analysis processes (Shehzad 2012), rough
set-based features selection (Tian et al. 2011) and induction of decision rules (Shang et al.
2005). In regard to features selection, the core of discrete datasets can be best calculated
by applying RSBD to select the prominent features out of a high dimensional feature space
in different datasets (Tian et al. 2011). Similarly, the hybrid of RSBD with evolutionary
computation method can generate a smaller number of high quality decision rules to classify
the new instances in different domains (Shang et al. 2005).

5 Discussion

Based on the survey and taxonomy developed above, several guidelines can be recommended
to early-stage researchers who are interested in work within this field. This survey and
taxonomy also help experts in the area of RSBD to select an appropriate method for their
application. Researchers who are interested in applying a particular RSBD method (depicted
in the taxonomy above) must be aware of the properties that define the methods in order to
choose the most appropriate one for their specific application/s. In this paper, rough set-based
discretizers have been categorized into statistical, entropy, GA, fuzzy and BR-based rough set
discretizers, but one cannot provide a single concluding statement as to which approach, out
of these, is the optimum method. This depends on the nature of the problem and the size of
the dataset under consideration. Discretization is a NP-hard problem (Chlebus and Nguyen
1998; Nguyen 1998), which requires an optimization technique to optimize the initial set of
candidate cut-points in such a way that the DS remains consistent. The following remarks
help researchers to limit the set of candidate approaches and to select an appropriate method
for their application according to their requirements.

• Statistical: For RSBD, the most frequently used statistical techniques are clustering (Wu
et al. 2004), correlation (Xu and Yingwu 2009) and distributional index (Wu et al. 2006).
These can be easily combined with RST to obtain an optimized set of cut-points in dis-
cretization. Due to the unsupervised nature of clustering methods, they may produce good
discretization results for data with no classification label.

• Information Entropy (IE): is the measure of the randomness in the distribution of the data
(Batu et al. 2005). This is a heuristic-based technique that approximates the values of
random variables to define the significance of the candidate cut-points in order to select an
optimal set for rough set discretization. Entropy is the local treatment of attributes to find
the significance of the cut-point values; therefore, it may compromise consistency (which
is lower in this case) over the computational complexity (which is better) (Xu et al. 2012).

• Fuzzy sets: are based on membership functions to accurately map the overlapped data
boundaries. In cases with any high-dimensional data from a physical process, where data
is overlapped and has sensitive boundaries, crisp discretization may not result in an optimal
set of cut-points. Therefore, fuzzy RSBD is a good choice to put an optimal set of cut-points
and obtain a consistent discretized DS (Roy and Pal 2003; Wang et al. 2012).

• Genetic algorithm: is an effective searching and optimization technique that achieves a
global optimum solution for non-linear and high dimensional functions (Rangel-Merino
et al. 2005). GAs can obtain consistent and minimal discretization results and are best
applied for problems with high dimensional feature space with continuous values. For a
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huge volume of data records, the only compromise a user has to make is the time and
computational complexity (Chen et al. 2003).

• Boolean Reasoning: is a greedy search method for solving problems that uses heuris-
tics that may get stuck at local optima. In general, due to the high dimensional features
space, it has high time and space complexity (Nguyen 2005), which may not result in an
optimal set of cut-points for discretization in linear time. There is a tradeoff between the
consistency of the DS and the complexities (i.e., time and space) in comparison with a
GA. However, in low dimensional feature space, heuristic-based BR may determine an
optimal set of cut-points for rough set discretization in linear time. As a result, for an
improved quality of RSBD and a suboptimal set of cut-points in cases with high dimen-
sional feature space, GA is favored over BR; however, for low dimensional feature space,
heuristic-based BR is favored due to its fewer time and space complexities (Nguyen and
Skowron 1995).

• For domains with overlapping value boundaries (e.g., medical), fuzzy rough set dis-
cretization may produce better results than other approaches in terms of consistency of
the DS.

At present, with various RSBD methods available in the literature, researchers are facing
difficulties in choosing the best discretization method that could be applied in specific domain.
The scientists need such RSBD methods, which obtain the optimal set of cut-points for the
continuous values with minimum inconsistency and higher accuracy. The literature studied
has revealed that from the perspective of future research trends in this area, consideration
of the applications of hybridized rough set with other machine learning techniques, such as
probability and statistics, heuristic approach like entropy, genetic algorithms, fuzzy logic,
etc. can lead to new and interesting opportunities for future research. The hybrid of different
statistical techniques, such as probability, clustering and covariance and correlation with the
core of rough set theory may add more into this area in terms of robustness. The statistical
techniques may find accurate and optimal set of cut-points while the RST can take care of
the inconsistency issues so that to preserve the fidelity of the original dataset. Similarly, the
hybrid of entropy with RST may approximate the values of random variables for defining the
significance of candidate cut-points to select the optimal set and thus can be more looked in
the future for better performance.

6 Conclusion

This paper provides a detailed survey of the RSBD methods proposed in literature. We have
presented a brief literature survey on discretization in general and the published research in
this field. The process of RSBD has been elucidated with a four-step model and presented with
the help of a case study. In this survey, we have described the techniques used for discretization
and the approaches adopted for optimizing candidate cut-points. We have discussed each
article from the perspective of the domain, datasets used for evaluation, list of algorithms
for comparison, consistency, effects on the classification rate and complexities. Based on the
techniques used for the optimization of cut-points and discretization, we have designed a
taxonomy that can be helpful for readers working in this area. Moreover, the discretization
algorithms have also been theoretically analyzed for the domain areas in which they have
been used. In order to support the study, a discussion section has been added to suggest some
general guidelines to the readers who are new to this field and who desire to continue their
research in it.
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