
1 23

The Journal of Supercomputing
An International Journal of High-
Performance Computer Design,
Analysis, and Use
 
ISSN 0920-8542
 
J Supercomput
DOI 10.1007/s11227-014-1369-5

Oblivious user management for cloud-
based data synchronization

Mahmood Ahmad, Zeeshan Pervez,
Taechoong Cheong & Sungyoung Lee



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



J Supercomput
DOI 10.1007/s11227-014-1369-5

Oblivious user management for cloud-based data
synchronization

Mahmood Ahmad · Zeeshan Pervez ·
Taechoong Cheong · Sungyoung Lee

© Springer Science+Business Media New York 2015

Abstract One of the main issues with data sharing in cloud environment is to man-
age user access and its auto revocation in a controlled and flexible way. The issue
becomes more complex when privacy on user access has to be ensured as well to hide
additional leakage of information. For automatic revocation over cloud data, access
can be bounded within certain anticipated time limit so that the access expires beyond
effective time period. This time-oriented approach is more rigid and not a one-size-
fits-all solution. In certain circumstances, exact time anticipation is not an easy choice.
Instead, the alternate solution could be task oriented to restrict user beyond certain
number of permissible attempts to access the data. We have proposed oblivious user
management (OUM) in which a user can have access on cloud data for certain num-
ber of attempts without imposing any time restriction. For user authorization and her
subsequent revocation, owner will perform one time setup activity and that is same
for all users. The model also alleviates the burden of managing different access para-
meters at user end with each request as she will always use the same parameter for all
valid attempts. Our approach also conceals the privacy of user attempts throughout the
communication. Hiding this information helps to avoid distinguishing importance of

M. Ahmad · T. Cheong (B) · S. Lee
Ubiquitous Computing Lab, Department of Computer Engineering, Kyung Hee University,
Global Campus, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
e-mail: tcchung@khu.ac.kr

M. Ahmad
e-mail: rayemahmood@oslab.khu.ac.kr

S. Lee
e-mail: sylee@oslab.khu.ac.kr

Z. Pervez
School of Computing, University of the West of Scotland, Paisley PA1 2BE, UK
e-mail: zeeshan.pervez@uws.ac.uk

123

Author's personal copy



M. Ahmad et al.

particular user that has more authorization over others. Evaluation results have proved
that OUM hides (N − 1) number of permissible attempts until N th request arrives at
Cloud Storage. The Performance analysis conducted on Google App Engine revealed
that the cost of operations performed in OUM is within the range of 0.097–0.278 $
per 1,000 requests.

Keywords Cloud storage · Private matching · Oblivious access · Privacy

1 Introduction

Cloud computing has a profound impact towards society over the past few years. As a
significant technology trend, its evolutionary role has reshaped IT services manifold
[1,2]. Features like scalability, elasticity and fault tolerance have made cloud com-
puting most suitable for a robust business environment. Usage of cloud computing is
quite economical due to its pay-per-use model where a subscriber does not need to
manage the computing resources [3,4]. These features have made it possible for cloud
proponents to afford computers and storage resources that, just a few years ago, would
have been available only to enterprises [5,6].

The need for massive storage space and its intelligent utilization are two main
reasons in building towards the epitome of cloud computing which otherwise not
possible on commodity hardware [7,8]. It is believed that the amount of data is doubling
after every eighteen (18) months and world creates five exabytes of information every
2 days [9,10]. This trend will make data growth 44 times between 2009 and 2020 [11].
Besides social media, data generated from machines and sensors massively contribute
to this data explosion [12]. The cloud storage accommodates this intensity, volume and
variety of data easily which is then used to extract functional intelligence and hidden
knowledge from it. Specialized and highly skilled professionals transform tons of data
into crux of useful information, e.g., [12,13]. Companies that once use to rely on their
in house data streams have now started utilizing this functional knowledge as a catalyst
for effective business proliferation. Realization of this fact has changed the business
landscape where organizations are now totally data driven [14].

Authorization on cloud data has various access models depending upon its type [2]
and priorities set by its owner and user. A public data [15,16] have an open access,
whereas sensitive data, e.g., related to health, individual or organization are protected
with encryption [17,18] and are accessible by authorized users only. Temporal data
bear its value for certain interval of time and customized data are prepared for a
selected range of audience [12,13,19]. If outsourced data are sensitive or valuable,
owner concern would be to protect it from unauthorized access by applying techniques
of encryption or anonymization [17,18,20]. While utilizing cloud services, it is desired
that leakage on data contents must be avoided or kept minimal at least. For this purpose,
encrypted outsourcing is strongly encouraged [21,22] which also hides details on
data for a curious cloud service provider (CSP). From user perspective who will
use this data has altogether different requirements. She might be interested to hide
her identity or does not want to show off her authorization limit in advance for a
particular resource. For example, Alice, Bob and Malory are solving a criminal case.

123

Author's personal copy



OUM for cloud-based data synchronization

Alice is the lead detective and has higher authority and access permission on this
case. To avoid any external influence on Alice, this information has to be concealed
until the case is solved completely. In this task-oriented scenario and others similar to
this, besides protecting the original data, achieving privacy on user access is equally
important.

Leakage of unnecessary information is not limited with outsourced data alone, user
access models and patterns on access log is another avenue for a curious CSP to
know about additional information. Considering another example where a resource
being accessed frequently by a large pool of users reveals its importance. A single
resource, which is accessed sequentially by multiple users from within an organization,
can sketch out the work flow of that organization. A particular resource, which is
accessed on cloud, usually ends up in a valid reply or with response of “Not Found”
which tells about its presence or absence. While preventing the unsolicited disclosure
of sensitive information, additional measures like oblivious access policies [23–25]
and oblivious term matching [44] help to avoid indirect leakage of information. It
includes Ciphertext-Policy attribute-based encryption (CP-ABE) [26] and Key-policy
ABE [27], which are the branches of Attribute-Based Encryption (ABE) [28]. Besides
all these access patterns, there is another parameter, which is a potential resource
for leaking the unnecessary and unwanted information and that is related with user
management.

The user that has been granted with permission to access cloud data usually requires
to be revoked for subsequent requests at a later stage. This revocation can be done by
the owner who gave her the authorization at first step; however, this activity becomes
hectic when number of users and frequency of authorization and revocation are very
high. Therefore, the owner of information has choice to delegate authority of user
revocation to CSP or semi trusted third party (TTP). A similar realization on user
revocation has been addressed in [31] where user access is bound for certain time
period. The methodology presented in [31] also meets the user’s concerns where she
does not want to disclose her access period in advance. In this time-oriented system, a
user access remains active on cloud data for predetermined time. This technique might
work well where anticipation of time is trivial. For situations where time anticipation is
hard to determine in advance, this technique would not be that much effective. We will
augment this with a simple example where a user Alice has been granted permission for
certain period of time, say, until March 2014 for a particular data resource on a cloud.
Alice would like to use these data with additional information which she is expecting
from another resource and that is delivered to her in April 2014. In this situation, Alice
access rights on cloud data have already been expired for which she needs to be given
with fresh account or extension in the existing one. Reliance on external factor which
is time independent can make entire situation task oriented rather time oriented. The
permission that has been granted to Alice has to be availed before her time expires,
no matter it is useful for her or not, which is too strict. The solution for this scenario
could be to allow herself for certain number of permissible attempts which should
be independent from time and that too without disclosing them in advance. She can
access the data when it is most suitable for her and her authorization will become
ineffective after the permissible attempts have been availed.

123

Author's personal copy



M. Ahmad et al.

Through OUM, following contributions have been made in the area of oblivious
access policies while interacting with cloud data:

– for user revocation, owner does not have to be online 24/7,
– task-oriented provisioning of cloud data makes it convenient for users to access

data in their own time,
– users concern for hiding their permissible attempts from their peers as a business

secret is possible with OUM,
– oblivious evaluation of user request does not help cloud service provider (CSP)

to infer total number of permissible attempts at any stage before all have been
availed. For this purpose, services of trusted third party have been utilized.

The rest of the paper is structured as follows. Section 2 is on related work. Technical
preliminaries used in this paper are presented in Sect. 3. System Model, design goal
and assumptions are given in Sect. 4. Construction of OUM including main idea is in
Sect. 5. Detail on implementation is given in Sect. 6. Section 7 is on result evaluation.
Salient features, discussion on user request patterns and system limitations are given
in Sect. 8. Finally, we conclude our paper and provide future direction in Sect. 9.

2 Related work

We assume that user management starts with her authorization and ends with revoca-
tion over cloud data. To incapacitate any single out of N users on encrypted data, there
exist few approaches. The first one, which is a naive solution, is to re-encrypt the com-
plete data and re-distribute the new decryption keys to (N−1) users. This approach
is quite computationally intensive when frequency of users entering and leaving the
system is very high. In addition, data owner has to be online all the time to execute
this operation, which is difficult to maintain 24/7. Relaxing responsibilities for data
owner can be achieved using Proxy Re-Encryption (PRE) [18,29] either through TTP
or through CSP. PRE converts a cipher text that can be decrypted by Alice into another
cipher text that can be decrypted by Bob. This whole operation hides the actual data
being transformed from one key to another. Work done by [30] is considered a pioneer
to combine Key-Policy ABE (KP-ABE) and PRE to delegate most of the computation
tasks involved in user revocation to the CSP. Still, activating PRE by CSP awaits for an
event to trigger, which is again the responsibility of data owner. To handle this issue,
activation of PRE has been coupled with time in such a way that user authorization
expires on predetermined time [31]. This approach also conceals user effective time
period from CSP to know in advance. Allowing CSP to know about user effective time
period on cloud data can reveal user importance who has permission for longer time
than other users.

The outsourced data in a public cloud have its own importance and value. Employing
encryption on this trove of information is mostly a favorable choice by the data owner.
On the other hand, hiding access patterns is more desirable and appreciated by users
who will use these data. Recent research, which is cited in upcoming discussion, is
related to concealing user access and possible leakage of information on her behalf.
Instead of giving exact IDs to authorized users, certain descriptive attributes are more
suitable for identification. If Alice is working as a manager in a company then instead

123

Author's personal copy



OUM for cloud-based data synchronization

of using Alice as her ID, the attribute of ‘manager’ is preferred. The same idea has
been chosen in (CP-ABE) [32,33] by employing the Ciphertext-policy attribute-based
encryption (CP-ABE) Using this technique, identities of users can be concealed using
feature of attributes instead of exact IDs.

User revocation is a complex process and very few techniques have been used to
handle this issue in cloud model. In [31], the idea of time-based proxy re-encryption
has been employed. In this work, usage of CP-ABE is extended with HABE [34,35]
using the concept of time to trigger automatic proxy-re encryption. In this approach,
the granularity of time has been sliced into three layers, namely year, month and day.
This solution is prepared for situation where time anticipation can be determined in
advance before a user is granted access over cloud data. Revoking user access rights
using this methodology is appealing for situations where time anticipation is a trivial.
In task-oriented situations, this solution will be least effective.

The authors in [46] employed the functional encryption as a new way with larger
possibilities for sharing and using encrypted data. In comparison to previously pre-
sented schemes of ABE, the proposed work is claimed to be fully secure with attribute
hiding properties with both ABE and predicate encryption (PE). Chase [47] presented
the problem of ABE with multiple authorities. To help the audit process and to discover
the identities of misbehaving users leaking their secret keys to others is presented in
[48]. While introducing the concept of access control list (ACL), the work presented
in [49] is based on symmetric key and public key cryptographic system. In this model,
the data ownership first specifies an ACL for data and then encrypts the data with
symmetric key which is then encrypted with the public key of users in the ACL.

Besides revoking a user from subsequent request on cloud data, it is also very
important to determine the mechanism with which CSP will evaluate and come to
know that further access has to be ceased. The simple solution is to let CSP know
about effective time of all users in advance. If longer access duration implies user
importance, then it is open to CSP with this naive solution.

The work in [36], which requires users to expose their tickets to CSP, may also
expose effective time of each ticket. This approach might also be interesting to know
for a curious CSP when two competitors are assigned on a same resource where
authorization of one user is higher than the other. For users who consider this infor-
mation as their business secret would avoid to go with this solution or any other
similar to it. In this paper, we have considered two issues, which are subset of above
discussion: first, automatic user revocation and that too independent from time; sec-
ond, hiding user authorization attempts throughout her communication with cloud.
For CSP, these attempts would remain unknown to predict and hard to distinguish
between any number of users. In OUM’s design, we have utilized the cryptographic
primitives of homomorphic encryption [39] and private matching [37] to meet the
desired results.

3 Technical preliminaries

Before we elaborate the design and working methodology of OUM, we introduce few
preliminaries used in its development.

123

Author's personal copy



M. Ahmad et al.

3.1 Homomorphic encryption

A cryptographic mechanism is said to be homomorphic if its encryption function EH

holds the property, EH (x)× EH (y) = EH (x + y). A homomorphic encryption is said
to be semantically secure if EH reveals no information about x and y, and making
it computationally infeasible to ascertain and distinguish the case where x �= y and
x = y [38].

Paillier [39] proposed a public key encryption scheme which is additively homo-
morphic, and consists of subsequent fundamental algorithms.

3.1.1 Key generation

Let p and q be two large primes and n = p · q. Euler’s totient function is denoted
by φ(n) and λ(n) represents Carmicheal’s function. For n, the product of two primes
φ(n) = (p−1)(q−1) and λ(n) = lcm(p−1, q−1). These two functions hold the
following properties over the multiplicative group Z

∗
n2 , i.e.,

|Z∗
n2 | = φ(n2) = n · φ(n) (1)

and for any ω ∈ Z
∗
n2

ωφ(n) = 1 (mod n) (2)

ωnφ(n) = 1 (mod n2) (3)

Public key PK is defined as (n, g), where g is an element of Z
∗
n2 , and secret key SK

as λ(n).

3.1.2 Encryption

To encrypt any message ‘m’ where m ∈ Zn , randomly choose y ∈R Z
∗
n2 , and define

an encryption function EH , such that

EH : Zn × Z
∗
n �→ Z

∗
n2 (4)

EH (m, y) = gm yn(mod n2) (5)

3.1.3 Decryption

To decrypt the ciphertext c, L is defined as (u − 1)/n, ∀u ∈ {u|u = 1(mod n)}.
Ciphertext c can be decrypted using secret key SK = λ(n), Dg as:

DH (c, λ(n)) = L(cλ(n) (mod n2))

L(gλ(n) (mod n2))
(6)

3.1.4 Homomorphic operation

Arithmetic addition between the ciphertexts, c1 = EH (m1, y1) and c2 = EH (m2, y2),
is obliviously computed as:

123

Author's personal copy



OUM for cloud-based data synchronization

EH (m1, y1) = gm1 y1
n(mod n2)

EH (m2, y2) = gm2 y2
n(mod n2)

EH (m1, y1).Eg(m2, y2) = gm1+m2(y1 · y2)
n(mod n2)

= EH (m1 + m2) (7)

3.2 Private matching

Private matching (PM) [37] is a value matching protocol. It assists two interactive
parties to find set intersection over their private set of values, without revealing any
element of their private set to each other.

Suppose, there is a client C and a server S. C has its own private set of values X :
{x1, x2 . . . xn}, and S has values Y : {y1, y2 . . . yn}. C wants to compute set intersection
with S over the private set of values (i.e., X ,Y). To identify the commonalities between
X and Y , C computes a polynomial (see Eq. 8), whose roots are members of X .

P(x ∈ X ) = (x − x1)(x − x2) · · · (x − xn)

=
n∑

i=0

αi x i (8)

C then sends the homomorphicly encrypted coefficients (α̂0...n) of P(x) to S. Using α̂,
S evaluates P(y) for every element of its private set. It then computes oblivious value
by multiplying evaluated P(y)with a random number r and adding it to y, i.e., EH (r ·
P(y)+ y), where EH is a homomorphic encryption algorithm. These oblivious values
are then send to C for decryption. At C, the decryption of an oblivious value results
in y, if P(y) computed by S is evaluated at z, such that

〈
z ⊆ ⋂ | (z ∈ X ) ∧ (z ∈ Y)〉.

Otherwise, C ends up generating a random value. At the end of this protocol, C learns
only the intersection set, whereas S ascertains nothing more than the cardinality of
X .

Although we have used the same idea in OUM but instead of creating polynomial
with higher degree, we used only Ua and ψ , where ψ is offset value of user such that

P(x ∈ X ) = (x − ψ)(x − (ψ + Ua) (9)

Here, ψ is unique for each user.

4 Models, design goals, and assumptions

4.1 System model

CSP, TTP, data user and data owner are considered to be the involved entities to
realize oblivious evaluation of user request in cloud storage. For brevity, we have
also referred them as cloud storage, third party, user and owner, respectively. Due

123

Author's personal copy



M. Ahmad et al.

to large volume and variety of data, it is shared with users through synchronization
service. Upon receiving request, cloud storage sync the updated version of data with
authorized user. The owner owns the rightfully processed data useful for its users
on pay per access model. The pricing model on data synchronization depends upon
its volume and number of user attempts. Only authorized users who are willing to
pay for this information have access to the data synchronization facility on cloud
storage. Third party acts as a mediator and transforms the user request obliviously
for cloud storage. Cloud server obliviously evaluates forwarded request and only
learns that the request falls within the subscription or not. In case the request falls
within the subscription limit, cloud storage synchronizes data with user or denies
otherwise.

4.2 Security model

The protection mechanism like encryption is a non-trivial barrier for a malicious or
curious user to know about unauthorized data. The indirect knowledge that slips away
through legitimate communication is another source for acquiring allied information.
In OUM, allied information means ‘user permissible attempts’ and legitimate com-
munication means ‘communication made by authorized users’. Our model of OUM
safeguards privacy of user access by hiding the permissible attempts. Neither the third
party nor curious cloud storage can learn about exact attempts in advance or during
evaluation process of user request. Partially and obliviously execution of user request
at both, third party and cloud storage helps to achieve this model. This model further
incapacitates cloud storage to calculate the entire life cycle for user access in advance.
The indication for cloud storage to stop further requests is popped only when a user
forwards her request beyond authorized quota. This is the only situation where CSP
will learn about it.

4.3 System design goal

Controlling and restricting user access on cloud storage have been met with various
access policies and security models depending upon requirements of user and owner.
These access policies facilitate owner and user according to their needs while exploit-
ing cloud resources at maximum. OUM is also claimed as a similar system but with
distinctive design features. In OUM, bar of managing user revocation is handled by
third party and CSP, whereas privacy of user authorization is also preserved during
the legitimate communication. Further, user is free to avail her access rights indepen-
dent of time restriction. The automatic termination of user access under constant set
of operations boosts up system’s efficiency. The pivotal design goal of our system is
threefold. First, any particular user has same access mechanism and execution time
irrespective of how many attempts she is authorized with. Second, the owner does
not need to revoke authorized user herself; the system mechanism itself informs on it.
Third, the cloud storage and semi trusted third party will learn nothing about the valid
attempts until all have been availed.

123

Author's personal copy



OUM for cloud-based data synchronization

Table 1 Notations used in the
descriptive detail of OUM

Notation Description

Dp Periodically updated data that is outsourced for
sharing on a cloud

Ua User attempts for which authorization is granted

∂ User access parameter for unique identification

EH , DH Homomorphic encryption and decryption algorithms

σpk, σsk Public and secret keys for homomorphic encryption
algorithm

EA , DA Asymmetric encryption and decryption algorithms

kpub, kpri Public and private key pair for asymmetric
encryption algorithm

α0...n List of coefficients of a polynomial P that defined
for TTP

	y1...n,n+1 Oblivious values: result range of homomorphic
evaluation at CSP for a particular user with n
number of valid requests. Oblivious value for
(n + 1)th request is denoted with 	yn+1

ψ Offset value for user


 Constant operation performed by TTP with user
request over α0...n

ϒ1...n Partialy computed result at TTP


 Constant operation performed by CSP on ϒ1...n
which ends up in 	y1...n,n+1

Ev Echo value, which repeats itself only twice during
the entire lifetime of user access period such that.
Ev = 	y1 and Ev = 	yn+1

Rv The evaluation results at CSP with each user request
other than Ev are considered as residual values
such that Rv = ∑n

i=2 	yi

Œ Digital certificate of TTP

4.4 Assumption and notations

Oblivious user management focuses on enabling task-oriented and privacy-aware data
access from cloud storage. We intentionally neglected the details of data sharing from
security and privacy point of view. Readers may refer to [40] for more details on
efficient and secure data sharing in cloud storage. Third party is assumed to process
the partial computation with honest operation and rightfully issuing the offset value
for each user request. Table 1 illustrates the notations that we use to explain the core
concept of OUM.

Dp represents the periodically updated data outsourced to cloud storage, accessible
by authorized subscribers only. Uid represents the ID for authorized user over Dp. Ua

is the number of user attempts for which user is authorized to access Dp. EH and DH

are homomorphic encryption and decryption functions, respectively. For realizing
secure communication between TTP and CSP, EA and DA are asymmetric encryption

123

Author's personal copy



M. Ahmad et al.

functions, which ensure that only CSP can decrypt the information sent by TTP.
α0...n are polynomial coefficients that are evaluated partially by third party. 	y1...n,n+1

represent oblivious values that are calculated by CSP as a result of private matching
protocol. ψ represents the offset value for a particular user. 
 is a constant operation
performed withα0...n,n+1 by TTP. 
 is a constant operation performed by cloud storage
that ends up in Ev or Rv which is echo or residual value, respectively.

5 Proposed system

Following discussion is about the main idea, data outsourcing, user registration and
initial setup and evaluation of user request at TTP and CSP.

We have used OUM in a system which is task oriented. In this system, multiple users
are interested to access cloud data to enhance their respective business models. This
data resource is shared through synchronization with valid users, having valid requests.
As a business secret, the number of permissible attempts for each user is kept unknown
throughout the communication and for flexibility the access model does not impose any
time restriction. With each request initiated by the user, it travels through third party
and reaches at CSP. Upon receiving user request, CSP performs a constant operation on
it and ends up in a finite value. This value indicates either the user request falls within
the subscription limit or not. In very first request made by a particular user, this value
is noted by CSP against her ID. During user interaction, this value repeats itself only
once if request falls beyond the subscription limit. Repetition of this value is adjusted
during the setup process by owner and it cannot be predicted until user has availed all
attempts. On this repeating value, further access is ceased by CSP. We call this as echo
value Ev and all others in between them as Residual values Rv . This mechanism is
designed in such a way that CSP cannot predict any pattern from this key or residual
values even for two users having same number of permissible attempts. To accomplish
this model, we have also utilized services of a semi trusted third party (TTP).

We first briefly present the main idea for this oblivious data synchronization, then
we describe the details of our methodology and setup activity.

5.1 Main idea

DataKon is a large research enterprise that deals with data related to weather, health,
crime and social media. Statistical analysis on its data-hive provides interesting and
useful patterns for hospitals, law enforcement agencies and few business organizations
which are permanent stakeholders with DataKon. Voluminous growth of data under
analysis and realization of Big-data [41] have made DataKon to utilize cloud services
offered by Eve for both storage and computation. An expert team of analysts and
computer programmers fully exploits the offered resources for deep insight to reveal
the hidden knowledge and functional intelligence. The ability to analyze and forecast
crime, health issues, drug consumption and social interaction has improved well due
to DataKon services. Recently, few small/medium organizations have realized that
utilizing these data can assist their business model more efficiently to enhance their
product line. FutureLife is a famous insurance company in the town, which is inter-

123

Author's personal copy



OUM for cloud-based data synchronization

Fig. 1 Abstract model for oblivious user management (OUM) in a cloud storage

ested to access this service to assist its business policies. FutureLife also wants that
value of its subscription limit should not be revealed to anyone until all attempts have
been availed. Desire of this preference by FutureLife is to hide this fact from peer
organizations that how frequent it may revise its business plan (Fig. 1).

FutureLife wants to consult DataKon service for n times and got the authorization
for that. During the setup phase of OUM , DataKon shares certain parameters with TTP
and CSP for its new customer i.e, FutureLife. OUM ensures that neither the TTP nor
the CSP can deduce the valid attempts in advance. The request made by FutureLife
routes through the TTP and reaches at CSP. Evaluation results by CSP distinguish
between valid and invalid requests. For valid request, updated information is shared
with FutureLife and this activity is logged at CSP for the billing purpose. DataKon
will pay the CSP for this synchronization service on behalf of FutureLife only for
valid logs (valid attempts only). After availing the permissible attempts if FutureLife
forwards its request for (n +1)th attempt (beyond authorization), the evaluation result
will end up in Ev , which is an indication for CSP to cease user access from that point
onward. Explanation on this indication through Ev is given in Sect. 5.1.4. Other indirect
supportive factors to OUM are:

– hiding subscription limit is the user priority; therefore, access beyond authorized
quota would automatically be discouraged from user side,

– from CSP perspective, only valid logs of valid attempts are subject to payment by
DataKon; therefore, entertaining user request beyond subscription limit cannot be
claimed.

The access request forwarded by user first goes through the third party where all the
computation process take place homomorphically. The only information known at third
party is the incremental value of offset which isψ against ∂ . Further evaluation on these
results by CSP tells that either request is valid or not. To make everything functional,
entire process has been divided into four steps which are Data Outsourcing, Process

123

Author's personal copy



M. Ahmad et al.

for User Authorization, User Request Evaluation and Provisioning of Authorized Data
Through Synchronization.

5.1.1 Data outsourcing

Data outsourcing is a periodic activity by DataKon on Eve’s cloud. Reason for these
periodic updates is mainly due to the most updated analysis and with furnished user
requirements. With each update, previous data are overwritten; hence at any instance
of time, these data are considered as the latest version. For any authorized user, these
data are represented as Dp. The user request has to route through third party for
which digital signature file of third party Œ is shared with the CSP in advance. Using
digital signatures helps DataKon and CSP in assuring that user request has followed
a legitimate path. Usage of cloud services and volume of data that travel towards
authorized users are logged on Eve’s cloud. As an evidence on utilization of cloud
resources, this log file is used during the payment process between DataKon and Eve.

5.1.2 User registration and initial setup

A user with desired number of attempts Ua over Dp forwards her request to Datakon.
After the mutual financial agreement in between Datakon and current user to access
the Dp for Ua number of times, Datakon performs the following steps to complete the
user registration process.

For unique identification, an identifier ∂ is given to user. Value of ∂ is also shared
with third party and CSP. Next is the generation of random number which we will
refer to as offset value ψ for user. This value ψ is shared only with the third party.
The following step is the creation of polynomial P(x) using ψ and (ψ + Ua). List
of coefficients α0...n is forwarded to third party. With each user request, third party
will perform a constant operation 
 on these coefficients. For a particular user, the
operational sign ± on these coefficients α0...n is shared with CSP. To evaluate this
polynomial P(x) homomorhpcially Datakon shares σpk and σsk with third party and
CSP, respectively. All communications that will take place between TTP and CSP are
encrypted asymmetrically and for this purpose public Kpub and private keys Kpri are
shared with TTP and CSP, respectively. With completion of registration process, user
is now ready to request for Dp.

5.1.3 Evaluation of user request at TTP

The request arrives at third party with user id (∂) where this access parameter remains
the same throughout the entire lifetime of user access period. Against this (∂), an
offset value ψ and public key for homomorphic operation σpk have already been
communicated by Datakon in previous step. Third party performs a constant operation

 by employing the homomorphic encryption over α0...n . Results of this calculation
(ϒ1...n) are then multiplied with a random number r and finally ∂ is added into this.
These values are then sent to the CSP for further evaluation. The multiplication with
random number r helps to hide a unique access pattern at CSP which is discussed in
Sect. 8.2. This process is repeated whenever a request arrives at third party. Complete

123

Author's personal copy



OUM for cloud-based data synchronization

set of values which are encrypted and then sent to CSP by TTP with each request is
given in Eq. 10

EA({ϒ1...n,Œ, ∂}, Kpub) (10)

5.1.4 Evaluation of user request at CSP

During the user registration process, CSP is shared with Œ, ∂ , Kpri and σsk. After
receiving values from third party, it is decrypted using the asymmetric key Kpri.

DA(EA((ϒ1...n,Œ, ∂), Kpub)), Kpri) (11)

Result of Eq. 11 ends up in {ϒ1...n , Œ, ∂}. CSP will use function of homomorphic
decryption on ϒ1...n .

DH (ϒ1...n, σsk) (12)

A constant operation of 
 starts with the output of Eq. 12. Its work flow is shown in
Fig. 2. If user request comes for the first time, output value of 12 will be equal to ∂
which would be same as third parameter of Eq. 11. For first request, this value, i.e., ∂ is
compared with already communicated values by data owner. If this value matches, user
is marked active and provided with the synchronization service for data provisioning.
Other than first request, value outcome from Eq. 12 will fall within

∑n
i=2	yi which

is the residual value Rv . After availing authorized attempts Ua , if user forwards her
request to CSP, the output of Eq. 12 will echo back with same value as earlier recorded

Fig. 2 Flow of user request evaluation at CSPlabelfig

123

Author's personal copy



M. Ahmad et al.

as echo value, Ev . With this observation, CSP will come to know that user has already
availed desired number of attempts Ua , and her current and subsequent requests are to
be ceased. The purpose of using digital signature Œ of third party is to let CSP know
that request has been forwarded through designated trusted party. The log activity
which is stored at CSP will assist for transparent pecuniary matters with Datakon.
Mandatory values stored in this log for each users are ∂ , Œ and 	y1...n .

6 Implementation

For the viability of OUM and its efficacy, the idea has been implemented and tested on
Google cloud [42]. The process of user registration and responsibility of third party
is tested on local machine. Further processing on user request via third party is then
transported on Google cloud using the Google app engine SDK [42] and deploying
a Java Web Service. A user request for specific number of attempts is initialized
using local machine and all parameters are shared as discussed in Sect. 5.1.2. User
request is then initiated from local machine to third party where it is evaluated and its
computational results are then send to Google cloud. The web service running there
interacts with incoming parameters and evaluates the results. The application has been
tested and verified for complete range of values at CSP which are	y1...n,n+1 . The graph
pattern on these values which is discussed in Sect. 8.2 found unique and unpredictable
during the entire life-cycle of user access period. All operations that are performed
homomorphically are achieved using the Pascal Paillier cryptosystem. We have used
standards Java SE 7.0 for developing the OUM.

7 Evaluation and results

Oblivious user management is tested on local machine, Google App Engine [42], and
Android platform. Process of user registration and subsequent evaluation on behalf
of TTP are executed on local machine. Initial setup and third party evaluation time
are shown in Fig. 3. Role of CSP and relevant execution on user request are done on
Google App engine. While evaluating user request on App engine, we have selected
the F4 front end instance. This instance has 2,400 MHz processing power and 512 MB

Fig. 3 Time required for initial setup and trusted third party for request evaluation

123

Author's personal copy



OUM for cloud-based data synchronization

Fig. 4 Time, cpu and cost estimation on cloud while evaluating user request

Fig. 5 Time comparison for user request evaluation on cloud and Android

of RAM. Figure 4 shows the cpu time, response time and cost analysis of user request
on F4 instance. Initial setup by owner and execution steps by third party are tested on a
local machine with Intel(R) Core(TM) i3 processor and 4 GB of RAM. Microsoft(R)
Windows7(TM) X 64 bit is the OS installed on it. Other than Google App engine,
OUM has been evaluated on Android platform too. Comparison of execution time for
request evaluation at App engine and Android is shown in Fig. 5. For this purpose,
Nexus emulator with 512 RAM and VM heap of 32 MB is selected using Android
SDK [43].

8 Discussion

In this section, we will discuss salient features of OUM, pattern evaluation for Residual
values at CSP followed by system limitations.

8.1 Salient features and efficiency

The main concept of system design is twofold. First, it authorizes users to avail cloud
resources in a more flexible way without imposing any time restriction. Secondly,

123

Author's personal copy



M. Ahmad et al.

Fig. 6 Execution time for different number of attempts

the efficacy of hiding user attempts has been achieved using the cryptographic prim-
itives, i.e, homomorphic encryption and private matching. Minimum complexity of
our design has made it light weight at all frontiers which are setup activity at owner
end and partial execution at TTP and CSP. The worth mentioning contribution of our
idea is its negligible reliance on number of attempts. The computational activity for
three different users having 10, 500 and 1,000 attempts, respectively, consumes almost
similar amount of time as shown in Fig. 6. Execution time that is consumed at TTP
and CSP for different users reveals no clue about which user has more subscription
limit over the others. It is the constant operation that is performed each time at TTP
and CSP no matter it ends up in Kv or Rv .

For multiple attempts, a particular user can be given with various access keys where
each key is assumed to be used only once. Using this approach might be efficient where
user has few number of attempts. Managing these unique keys for each attempt will be
the responsibility of authorized user which is an additional burden, especially when
number of keys is very high. To overcome this, we used polynomial with multiple
roots; for more detailed discussion refer to Sect. 3.2 on defining polynomial with
multiple roots. Instead of creating a polynomial whose degree and complexity grow
with number of user attempts Ua , we devised a more efficient approach that is free
from this limitation. Using only Ua and its offset value ψ kept degree of polynomial
same for all users. For this purpose, we used ψ and (ψ + Ua) while defining the
polynomial as given in Eq. 9.

In initial version of our work, this Rv has been found helpful to predict the number
of attempts by CSP. This weakness of prediction is removed and discussed in next
section.

8.2 Pattern evaluation of residual values

For every request forwarded by a user, CSP performs a constant operation 
. Outcome
of this operation helps CSP to perform various activities like user registration, data
provisioning, and freezing user account. After implementing the proposed methodol-
ogy, these values are tested to ensure presence of any pattern that might be helpful in

123

Author's personal copy



OUM for cloud-based data synchronization

Fig. 7 Pattern of Residual values—without randomization

predicting the user attempts at any stage before it is consumed in totality. To explain
it, a user who is authorized for N number of attempts, the value of Rv appeared with
following observations:

N/2∑

i=1

Rvi+1 > Rvi (13)

This pattern reflects itself back in reverse value when half of the attempts have been
achieved which is

N∑

i=(N/2)+1

Rvi+1 < Rvi (14)

with this pattern, CSP will remain unaware until (N /2) attempts, however; after that,
it can predict the remaining attempts easily. At this stage, the role of TTP will become
ineffective as remaining attempts are now obvious to CSP. The pattern of residual
values given in Eqs. 13 and 14 is shown in Fig. 7. In this figure, two users with
even and odd number of attempts have been tested to find out these identifiable pat-
terns. In both cases, the output value at CSP can be seen as normal distribution.
After half of this distribution is availed, the remaining values are just in reverse order.
To overcome this drawback, OUM design is tweaked by incorporating randomiza-
tion by adding a random value in 
. This randomization is applied in 
 such that
ri ×ϒ1...n , where r is a random number. The additional computational cost is again a
constant operation and hence never affected the overall performance. Now all values∑N

i=1 Rvi that end up at CSP do not follow any specific pattern or normal distribu-
tion. For verification, two users having similar number of attempts have been tested.
Now, the residual values calculated by CSP are logged and shown in Fig. 8 which
gives no clue to predict remaining number of valid attempts. With this tweak, also
the role of TTP remains effective for the entire lifetime of user validity on cloud
data.

123

Author's personal copy



M. Ahmad et al.

Fig. 8 Pattern of Residual values—with randomization

It has always been a great deal to balance both security and performance [50].
Encryption and oblivious data processing are aimed to achieve desired level of
security, however, at the cost of performance. To ensure performance in such sce-
nario, distributing the participating algorithms of oblivious processing by practicing
high-performance computing (HPC) can be considered to boost the performance.
For applications where response time is a critical factor, HPC can play its signif-
icant role. The proposed design of OUM is independent of underlying infrastruc-
ture and it can be implemented for cloud and HPC with required modifications.
In its present design, OUM relies on the services of a single cloud server and
primarily aims to assure high privacy; however, for data intensive application the
synchronization services can be engaged with more than one instances of cloud
server for optimal performance. For secure and fast data sharing, reader may refer
to [45].

8.3 Limitations

The scheme proposed in OUM is best suitable where time anticipation is non-
deterministic to access the cloud data. In the current approach, the data which become
inaccessible after permissible number of attempts can still be shared by CSP to that user
if user still holds the effective decryption keys. Our model works under the assump-
tion that CSP will not collude with malicious user. This breach can be effective as
long as data are not encrypted again by the owner. To meet this limitation, the idea of
proxy re-encryption can be incorporated into the existing system through third party
or CSP.

9 Conclusion and future work

Cloud services that are related with sensitive data usually raise concerns for security
and privacy by owner as well as its consumer in terms of storage and subsequent usage.

123

Author's personal copy



OUM for cloud-based data synchronization

Instead of accepting the underlying coarse premise of trust, applications of specific and
fine-grained solutions are required to harness the formidable challenges of security
and privacy. Realization on this has been addressed using our proposed model of OUM
to resolve the secure usage of sensitive data, especially from the usage perspective.
With OUM, we provide task-oriented data access model for users and at the same
time it facilitates owner with mechanism of auto revocation of users and that too with
minimal managerial burden. The novelty of time-independent approach adopted in
OUM takes an advantage where time-dependent models are hard to implement, thus
giving another option to meet the user requirements. With evaluation and experimental
results, we highlighted the design efficiency of OUM in terms of time and user privacy.
Considering legitimate access limit of an authorized user over sensitive data as her
business secret, we have achieved to preserve it throughout system execution. The
design and evaluation mechanism of user requests through OUM have been made
independent from number of authorized attempts. This key feature makes the process
of user registration and request evaluation light weight and oblivious for both data
owner and cloud server, respectively. The evaluation results appearing as residual
value give no additional information to cloud server to discover the echo value prior
the user has availed her authorized limit.

While considering the element of flexibility for user access over encrypted data,
the proposed model of OUM focuses on a task-oriented approach. Under existing
model of OUM, a user once authorized will remain active until she avails all permis-
sible attempts. Although this access model is flexible enough but this indeterministic
access period needs to be bounded with certain time threshold, thus establishing the
need of a hybrid solution. This hybrid approach is envisioned to adopt its underlying
model on authorized limit as well as certain time bounds. In our future work, we
will combine both approaches of task and time in building a more comprehensive
system.

Acknowledgments This research was supported by a grant from the Kyung Hee University in 2013[KHU-
20130439].

Appendix: Performance evaluation: Data tables

Performance evaluation presented in Sects. 6 and 7 is based on the following data
tables. Figure 3 presented the visual representation of Table 2. Similarly, Figs. 4, 5,
6, 7, 8 are represented by Tables 3, 4, 5, 6 and 7 respectively.

Table 2 Time required for
initial setup by owner and
request evaluation at TTP with
variable key length

Key size Setup time-ms (owner) Execution time-ms (TTP)

256 9.5 8.3

512 20.06 18.33

1,024 89.66 103.13

2,048 528.7 749.3

123

Author's personal copy



M. Ahmad et al.

Table 3 Cost analysis and
execution time at F4 instance of
Google cloud

Key size CPU time (ms) Response time (ms) Cost ($)

256 27 42 0.097

512 75 160 0.123

1,024 551 1,120 0.175

2,048 4,438 9,013 0.278

Table 4 Execution time on
android and Google app engine

Key size Android time (ms) Google app engine time (ms)

256 151 27

512 585 75

1,024 2,703 551

2,048 13,487 4,438

Table 5 Execution time for
different numbers of
attempts(10,500,1000) where
key size is 1024 for all

Attempts Setup time
(ms) by owner

Execution time
(ms) by TTP

Execution time
(ms) by Google app
engine

10 88 99 674

500 87 105 678

1,000 89 106 690

Table 6 Values of users request
after evaluation at CSP, i.e.,
	y1...n (without randomization)

User attempt User 1 (9 attempts) User 2 (12 attempts)

1 111 55

2 119 66

3 125 75

4 129 82

5 131 87

6 131 90

7 129 91

8 125 90

9 119 87

10 111 82

11 – 75

12 – 66

13 – 55

123

Author's personal copy



OUM for cloud-based data synchronization

Table 7 Values of users request
after evaluation at CSP, i.e.,
	y1...n (with randomization)

User attempt User 1 (12 attempts) User 2 (12 attempts)

1 90 166

2 726 1,155

3 1,960 1,860

4 432 2,619

5 2,784 1,728

6 385 1,470

7 1,188 3,168

8 2,695 560

9 1,728 1,216

10 1,404 2,916

11 1,140 1,320

12 1,287 748

13 90 166

References

1. Mell P, Grance T (2011) The nist definition of cloud computing (draft). NIST Spec Publ 800(145):7
2. Motahari-Nezhad HR, Stephenson B, Singhal S (2009) Outsourcing business to cloud computing

services: Opportunities and challenges. In: IEEE Internet Computing, Palo Alto, 10
3. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging it plat-

forms: Vision, hype, and reality for delivering computing as the 5th utility. Future Gener Comput Syst
25(6):599–616

4. Armbrust M, Fox A, Griffith R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I et al (2010) A
view of cloud computing. Commun ACM 53(4):50–58

5. Giles J (2012) Big data: lessons from the leaders. economist intelligence unit limited
6. Leavitt N (2009) Is cloud computing really ready for prime time? Computer 42(1):15–20
7. Dikaiakos MD, Katsaros D, Mehra P, Pallis G, Vakali A (2009) Cloud computing: Distributed internet

computing for it and scientific research. IEEE Internet Comput 13(5):10–13
8. Catteddu D (2010) Cloud Computing: benefits, risks and recommendations for information security.

Springer
9. Gammage B, Plummer D, Valdes R, McGee K, Potter K, Tan S, Dave A, Richard H, Jay H, Brian P et

al (2011) Gartners top predictions for it organizations and usersand beyond: Its growing transparency.
Document ID G00208367:2010

10. Weller M (2010) Big and little oer. In: 2010 Proceedings. Barcelona. http://hdl.handle.net/10609/4851
11. Jacques B, Corb L, Manyika J, Nottebohm O, Chui M (2011) Borja de Muller Barbat, and Remi Said.

Search, The impact of internet technologies
12. Dijcks J-P (2013) Oracle:big data for the enterprise. http://education.oracle.com/pls/web_prod-plq-dad

/db_pages.getpage?page_id=609&p_org_id=15&lang=KO&get_params=dc:D75058GC10,p_previe
w:N

13. (2013) dunnhumby. Dunnhumby:customer science company. http://www.dunnhumby.com/
14. Kaplan AM, Haenlein M (2010) Users of the world, unite! the challenges and opportunities of social

media. Bus Horiz 53(1):59–68
15. University of California (2013) Uci machine learning repository. http://archive.ics.uci.edu/ml/datasets.

html
16. The world bank (2013) The world bank data catalog. http://datacatalog.worldbank.org/
17. Mao W (2001) Modern cryptography. In: Selected Areas in Cryptography VIII (SAC’01. Citeseer
18. Ateniese G, Kevin F (2006) Improved proxy re-encryption schemes with applications to secure dis-

tributed storage. ACM Trans Inf Syst Secur (TISSEC) 9(1):1–30
19. Simmons G, Armstrong GA, Durkin MG (2011) An exploration of small business website optimization:

enablers, influencers and an assessment approach. Int Small Bus J 29(5):534–561

123

Author's personal copy

http://hdl.handle.net/10609/4851
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=609&p_org_id=15&lang=KO&get_params=dc:D75058GC10,p_preview:N
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=609&p_org_id=15&lang=KO&get_params=dc:D75058GC10,p_preview:N
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=609&p_org_id=15&lang=KO&get_params=dc:D75058GC10,p_preview:N
http://www.dunnhumby.com/
http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html
http://datacatalog.worldbank.org/


M. Ahmad et al.

20. Bayardo RJ, Agrawal R (2005) Data privacy through optimal k-anonymization. In: Proceedings 21st
International Conference on Data Engineering, 2005. ICDE 2005, pp 217–228

21. Chow R, Golle P, Jakobsson M, Shi E, Staddon J, Masuoka R, Molina J (2009) Controlling data in the
cloud: outsourcing computation without outsourcing control. In: ACM Proceedings of the 2009 ACM
workshop on Cloud computing security, pp 85–90

22. Kamara S, Lauter K (2010) Cryptographic cloud storage. In: Financial Cryptography and Data Security.
Springer, pp 136–149

23. Coull S, Green M, Hohenberger S (2009) Controlling access to an oblivious database using stateful
anonymous credentials. In: Public Key Cryptography-PKC 2009. Springer, pp 501–520

24. Camenisch J, Dubovitskaya M, Neven G, Zaverucha GM (2011) Oblivious transfer with hidden access
control policies. In: Public Key Cryptography-PKC 2011. Springer, pp 192–209

25. Frikken K, Atallah M, Li J (2006) Attribute-based access control with hidden policies and hidden
credentials. IEEE Trans Comput 55(10):1259–1270

26. Waters B (2011) Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably
secure realization. In: Public Key Cryptography-PKC 2011. Springer, pp 53–70

27. Goyal V, Pandey O, Sahai A, Waters B (2006) Attribute-based encryption for fine-grained access control
of encrypted data. In: Proceedings of the 13th ACM conference on Computer and communications
security, ACM, pp 89–98

28. Sahai A, Waters B (2005) Fuzzy identity-based encryption. In: Advances in Cryptology-EUROCRYPT
2005. Springer, pp 457–473

29. Blaze M, Bleumer G, Strauss M (1998) Divertible protocols and atomic proxy cryptography. In:
Advances in Cryptology EUROCRYPT’98. Springer, pp 127–144

30. Yu S, Wang C, Ren K, Lou W (2010) Achieving secure, scalable, and fine-grained data access control
in cloud computing. In: IEEE, INFOCOM, 2010 Proceedings IEEE, pp 1–9

31. Liu Q, Wang G, Wu J (2014) Time-based proxy re-encryption scheme for secure data sharing in a
cloud environment. In: Information Sciences, 2014, vol 258. Elsevier, pp 355–370

32. Bethencourt J,Sahai A, Waters B (2007) Ciphertext-policy attribute-based encryption. In: IEEE Sym-
posium on Security and Privacy, IEEE, 2007. SP’07, pp 321–334

33. Müller S, Katzenbeisser S, Eckert C (2009) Distributed attribute-based encryption. In: Information
Security and Cryptology-ICISC 2008. Springer, pp 20–36

34. Wang G, Liu Q, Wu J (2010) Hierarchical attribute-based encryption for fine-grained access control in
cloud storage services. In: Proceedings of the 17th ACM conference on Computer and communications
security, ACM, pp 735–737

35. Wang G, Liu Q, Guo M (2011) Hierarchical attribute-based encryption and scalable user revocation
for sharing data in cloud servers. Comput Secur 30(5):320–331

36. Patel B, Crowcroft J (1997) Ticket based service access for the mobile user. In: Proceedings of the 3rd
annual ACM/IEEE international conference on Mobile computing and networking, ACM, pp 223–233

37. Freedman MJ, Nissim K, Pinkas B (2004) Efficient private matching and set intersection. In: Advances
in Cryptology-EUROCRYPT 2004. Springer, pp 1–19

38. Paillier P (2000) Trapdooring discrete logarithms on elliptic curves over rings. In: Proceedings of the
6th International Conference on the Theory and Application of Cryptology and Information Security:
Advances in Cryptology, ASIACRYPT ’00. Springer-Verlag, London, pp 573–584

39. Paillier P (1999) Public key cryptosystems based on composite degree residuosity classes. In: Pro-
ceedings of the 17th international conference on Theory and application of cryptographic techniques,
EUROCRYPT’99. Springer-Verlag, Berlin, pp 223–238

40. Yu S, Wang C, Ren K, Lou W (2010) Achieving secure, scalable, and fine-grained data access con-
trol in cloud computing. In: Proceedings of the 29th conference on Information communications,
INFOCOM’10. IEEE Press, Piscataway, pp 534–542

41. James M, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers AH (2011)The next frontier for
innovation, competition, and productivity, Big data

42. Google (2013) Google app engine. https://cloud.google.com/products/app-engine
43. The Android open source project (2013) Netbeans android plugin. http://plugins.netbeans.org/plugin/

19545
44. Pervez Z, Ahmad A, Masood A, Lee S (2013) Privacy-aware searching with oblivious term matching

for cloud storage. Supercomputing 63(2):538–560
45. Allcock B, Bester J, Bresnahan J, Chervenak AL, Kesselman C, Meder S, Nefedova V, Quesnel D,

Tuecke S, Foster I (2001) Secure, efficient data transport and replica management for high-performance

123

Author's personal copy

https://cloud.google.com/products/app-engine
http://plugins.netbeans.org/plugin/19545
http://plugins.netbeans.org/plugin/19545


OUM for cloud-based data synchronization

data-intensive computing. In: Eighteenth IEEE Symposium on Mass Storage Systems and Technolo-
gies, 2001, IEEE, MSS’01, pp 13–13

46. Lewko A, Okamoto T, Sahai A, Takashima K, Waters B (2010) Fully secure functional encryption:
Attribute-based encryption and (hierarchical) inner product encryption. In: Advances in Cryptology-
EUROCRYPT 2010. Springer, pp 62–91

47. Chase M (2007) Multi-authority attribute based encryption. In: Theory of Cryptography. Springer, pp
515–534

48. Li J, Huang Q, Chen X, Chow SS, Wong DS, Xie D (2011) Multi-authority ciphertext-policy attribute-
based encryption with accountability. In: Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security, ACM, pp 386–390

49. Goh E-J, Shacham H, Modadugu N, Boneh D (2003) Sirius: Securing remote untrusted storage. NDSS
3:131–145

50. Venkatesh VP, Sugavanan V (2009) High performance grid computing and security through load balanc-
ing. In: IEEE, International Conference on Computer Engineering and Technology, 2009. ICCET’09,
vol 1, pp 68–72

123

Author's personal copy


	Oblivious user management for cloud-based data synchronization
	Abstract
	1 Introduction
	2 Related work
	3 Technical preliminaries
	3.1 Homomorphic encryption
	3.1.1 Key generation
	3.1.2 Encryption
	3.1.3 Decryption
	3.1.4 Homomorphic operation

	3.2 Private matching

	4 Models, design goals, and assumptions
	4.1 System model
	4.2 Security model
	4.3 System design goal
	4.4 Assumption and notations

	5 Proposed system
	5.1 Main idea
	5.1.1 Data outsourcing
	5.1.2 User registration and initial setup
	5.1.3 Evaluation of user request at TTP
	5.1.4 Evaluation of user request at CSP


	6 Implementation
	7 Evaluation and results
	8 Discussion
	8.1 Salient features and efficiency
	8.2 Pattern evaluation of residual values
	8.3 Limitations

	9 Conclusion and future work
	Acknowledgments
	Appendix: Performance evaluation: Data tables
	References


