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Abstract Ontology matching is among the core techniques used for heterogeneity
resolution by information and knowledge-based systems. However, due to the ex-
cess and ever-evolving nature of data, ontologies are becoming large-scale and com-
plex; consequently, leading to performance bottlenecks during ontology matching.
In this paper, we present our performance-based ontology matching system. To-
day’s desktop and cloud platforms are equipped with parallelism-enabled multicore
processors. Our system benefits from this opportunity and provides effectiveness-
independent data parallel ontology matching resolution over parallelism-enabled
platforms. Our system decomposes complex ontologies into smaller, simpler, and
scalable subsets depending upon the needs of matching algorithms. Matching pro-
cess over these subsets is divided from granular to finer-level abstraction of inde-
pendent matching requests, matching jobs, and matching tasks, running in parallel

This research was supported by Microsoft Research Asia, Beijing, China, under the research
grant provided as MSRA Project Award 2013-2014 and MSIP(Ministry of Science, ICT&Future
Planning), Korea, under IT/SW Creative research program supervised by the NIPA(National
IT Industry Promotion Agency) (NIPA-2013-(H0503-13-1010). Microsoft Azure public cloud
platform was provided for the development and evaluation of this research under Microsoft
Azure4Research initiative.

M.B. Amin · W.A. Khan · S.Y. Lee �
Ubiquitous Computing Lab, Department of Computer Engineering, Kyung Hee University,
Global Campus, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
E-mail: sylee@oslab.khu.ac.kr

M.B. Amin
E-mail: mbilalamin@oslab.khu.ac.kr ·

W.A. Khan
E-mail: wajahat.alikhan@oslab.khu.ac.kr ·

S.Y. Lee
E-mail: sylee@oslab.khu.ac.kr ·

B.H. Kang
School of Computing and Information Systems, University of Tasmania, Australia
E-mail: Byeong.Kang@utas.edu.au



2 Muhammad Bilal Amin et al.

over parallelism-enabled platforms. Execution of matching algorithms is aligned
for the minimization of the matching space during the matching process. We com-
prehensively evaluated our system over OAEI’s dataset of fourteen real world
ontologies from diverse domains, having different sizes and complexities. We have
executed twenty different matching tasks over parallelism-enabled desktop and
Microsoft Azure public cloud platform. In a single-node desktop environment, our
system provides an impressive performance speedup of 4.1, 5.0, and 4.9 times for
medium, large, and very large-scale ontologies. In a single-node cloud environment,
our system provides an impressive performance speedup of 5.9, 7.4, and 7.0 times
for medium, large, and very large-scale ontologies. In a multi-node (3 nodes) en-
vironment, our system provides an impressive performance speedup of 15.16 and
21.51 times over desktop and cloud platforms respectively.

Keywords Ontology Matching · Heterogeneity resolution · Multithreading ·
Parallel Processing · Parallel Programming · Semantic Web

1 Introduction

In this era of automated knowledge aggregation, integration of data and informa-
tion from heterogeneous sources is the key [1]. The excess of available information
over ubiquitous platforms, contributed by various domains using various input
devices has substantially increased the amount of disparate information; conse-
quently, semantic heterogeneity issues have emerged. The primary solution for
semantic heterogeneity problem is ontology matching. It determines correspon-
dence between semantically related ontologies. This correspondence is termed as
mappings or alignment [2]. These mappings are further used by information sys-
tems, electronic commerce systems, knowledge-based systems, search engines and
social networking systems. Due to the greater benefits of ontology matching, on-
tologies are extensively utilized in multiple domains. For example, in biomedicine,
ontologies are used for representing medical knowledge and clinical guidelines [3],
standardization of medical data formats [4], clinical data integration and medi-
cal decision-making [5]. Consequently, biomedical ontologies like the Gene Ontol-
ogy (GO) [6], the National Cancer Institute Thesaurus (NCI) [7], the Foundation
Model of Anatomy (FMA) [8], and the Systemized Nomenclature of Medicine
(SNOMED-CT) [9] have emerged; furthermore, infrastructures like OBO Foundry
[10] and BioPortal [11] are promoting the usage of ontologies in biomedicine. Sim-
ilarly, in electronic commerce, ontologies are used for mediation among two or
more web services [12] and their discovery [13]. The vast usage of ontologies has
compelled researchers and experts to invest more in development of newer ontolo-
gies and provide continuity to the already created ones. As a result, ontologies
are becoming larger in size, complex in structure, and their matching process has
become computationally expensive.

Ontology matching is a two-fold problem where challenges and issues are clas-
sified into two categories; (i) accuracy that deals with the effectiveness of the
matching algorithms and (ii) performance that is based upon scalability, resource
utilization, and overall execution time of the whole matching process [14]. Although
the trade-off between accuracy and overall execution time exists, by implementing
scalable and optimal resource utilization techniques, performance of the ontology
matching process can be largely improved with effectiveness independence.
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Ontology matching is a computationally intensive task with quadratic com-
putational complexity [15]. It is a Cartesian product of two candidate ontologies,
which requires Resource-based element-level (String-based, Annotation-based, and
Label-based)[2] and structural-level (Child-based, Graph-based, and Property-
based) [2] matching algorithms to be executed over candidate ontologies for the
generation of the required mappings. In our experiments, executing these matching
algorithms over various size ontologies has taken from hours till days to generate
desirable results. This delay in mapping results makes ontology matching ineffec-
tive for dynamic applications with in-time processing demands.

Ontology matching systems developed over the years have taken the execution
time into consideration and have implemented possible resolutions. However, the
performance aspect of these systems is tightly coupled with the accuracy and com-
plexity of matching algorithms. Their implemented resolutions are more focused
on optimization of the matching algorithms and partitioning of larger ontologies
into smaller chunks for performance benefits [16]. In these implementations, a clear
distinction between the resolutions for accuracy and performance does not exist.
Furthermore, an explicit and decoupled runtime has not been proposed yet which
can improve the performance factors without inflicting any changes in the effective-
ness of matching algorithms. Therefore, these resolutions fall into the category of
effectiveness-dependent solutions where a trade-off between matching effectiveness
(accuracy measures, precision, recall, and F-Measure) and execution time (perfor-
mance) exists. Moreover, the performance improvement based-on exploitation of
newer hardware technologies has largely been missed. Among these technologies
are affordable parallel systems that are easily available as stand-alone and dis-
tributed platforms [14]. Current ontology matching systems are design time tools
which are not optimized for resource consumption [14]. Therefore, they have not
provided substantial performance-gain by just deploying over parallelism-enabled
stand-alone and distributed platforms.

In earlier years, parallelism and distributed platforms were associated with
High Performance Computing (HPC) [17]. To support HPC, expensive platforms
have been developed over the years. These platforms are not only scarce, but also
have higher costs and skill-set requirements, making them incurious for average
developers and platform administrators. However, more recently, parallelism has
been applicable over personal computing devices like desktop PCs, laptops, and
even over smartphones because of the advent of multicore processors [18]. These
processors are equipped with multiple cores on a single die, enabling each core
to serve as a virtual microprocessor, providing parallelism at the hardware level.
Moreover, with the arrival of Cloud computing as a backbone platform for ubiqui-
tous computing [19], these multicore processors are always available as distributed
platforms of commodity machines with utility-based pricing model. With these
readily available, yet affordable parallel platforms, an opportunity emerges for
their utilization in ontology matching. Furthermore, their utilization can lead to
an effectiveness-independent performance-gain ontology matching solution where
the accuracy of the matching algorithms remains preserved and performance-gain
is extracted from smarter use of available computing resources.

The innovation of hardware architecture has brought parallel computing over
personal and ubiquitous platforms; however, the utilization of these resources re-
quires parallel programming techniques. Ontology matching being a compute in-
tensive task can be resolved by several parallel programming paradigms including
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Message Passing over high-end hardware and communications devices [20], Task
Parallelism, and Data Parallelism [21]. Message passing requires inter-process com-
munication that is appropriate for iterative problems where dependency between
operations exists [22]. In task parallelism, independent threads execute different
operations on same data. However, data parallelism is one such technique where
the same or different autonomous operations are performed on the same or different
pieces of data repeatedly [23]. Looking from the perspective of ontology match-
ing problem, data parallelism is a candidate technique in which these ontologies
can be divided into smaller pieces and assigned over to computing resources for
executing matching algorithms in parallel. The data parallel implementation over
other parallel paradigms affects the ontology matching performance by large. By
implementing data parallelism, thread-level parallelism gets implemented with a
set of independent matcher threads executing the same matching algorithm on
a different part of candidate ontologies. This mechanism also enables matching
space reduction as every following set of matching threads will only match ontol-
ogy resources left by the previous set with another algorithm. Moreover, unlike
message-passing, data parallel resolves ontology matching by independent threads
with zero inter-thread communication and network I/O during matching. In case
of task parallelism for matching ontologies, matcher threads cannot be truly in-
dependent because: (i) redundant matching on same part of candidate ontologies
will occur, i.e., a concept matched by one algorithm will be matched in parallel
by another algorithm, unless communicated. Redundant matching not only costs
extra computation time at matching but also has an aggregation overhead; (ii)
higher chances of idle cores, i.e., as the computational complexity and overall time
taken by an algorithm running by a thread on same part of candidate ontologies
will be different from other algorithms running by other threads, therefore one
thread will finish early and wait in idle for others to finish unless a costly load
redistribution is performed at runtime. Data parallelism with its better scalability,
matching space reduction, and no communication overhead is more performance
efficient than other parallel paradigms for ontology matching. In addition, work
distribution among a set of threads running the same algorithm is based on hav-
ing an equal amount of workload per thread, which reduces the chances of idle
processing cores to a bare minimum, i.e, no runtime load redistribution required.

By accumulating the opportunities mentioned earlier, i.e., delay in ontology
matching, effectiveness-dependent nature of current ontology matching systems,
absence of exploitation of parallelism-enabled stand-alone and ubiquitous plat-
forms for effectiveness-independent performance-gain during matching, and like-
lihood of data parallelism over these platforms for ontology matching, provides
the motivation for a performance-based ontology matching system. This paper
contributes by presenting one such system that implements data parallelism over
parallelism-enabled platforms for parallel ontology matching. Utilization of these
platforms leads to an effectiveness-independent performance-gain, as our system
decouples the performance aspect from accuracy and explicitly provides resolution
to earlier mentioned performance challenges of ontology matching. Consequently,
no change is inflicted in the implementation of matching algorithms, keeping the
accuracy preserved. Moreover, with the availability of better computational re-
sources, faster-matched results are obtained. In our proposed system, we provide
resolution to performance challenges by:



Performance-based Ontology Matching 5

• decomposing the complex ontologies into smaller Resource-based ontology sub-
sets depending upon the needs of matching algorithms. These subsets are in-
dependent and simpler (reduced computational complexity) with performance
and scalability-friendly data structures. This method contributes to our sys-
tem’s performance by only loading the ontology resources required by matching
algorithms and data structures that can be easily partitioned for data paral-
lel matching. These subsets are also preserved by serialization to reduce the
matching effort for future matching requests of same ontologies;
• division of the matching process over these subsets into three levels of abstrac-

tions (independent Matching Requests, Matching Jobs, and Matching Tasks)
depending upon the available parallelism-enabled platform. Matching Requests
are assigned to participating node(s), matching jobs are the division of one
matching request over available computing cores within a node, and each core
is assigned with a set of equal numbers of matching tasks to complete the
whole matching process. Matching task invokes assigned matching algorithm
for effectiveness-independent matching. This method contributes to our sys-
tem’s performance by distributing matching tasks over participating comput-
ing cores and executing them in parallel at finer level with optimal computing
resource utilization;
• aligning the execution of matching algorithms to minimize the matching space

for every following matching algorithm execution during the whole matching
process. This method contributes in performance by reducing the number of
matching tasks to unmatched resources only, thus avoiding redundant expen-
sive matching operations.

As performance-gain of our proposed system is substantially achieved from our
data-parallel methodology. Therefore, the requirement of our system is the avail-
ability of parallelism-enabled platforms. We have used quad-core desktop PCs and
Microsoft Azure public cloud platform configured in single- and multi-node envi-
ronments for the deployment, execution, and evaluation of our system. In case of
availability of subpar computational resources, our system scales down to conven-
tional sequential matching. Furthermore, our proposed system is independent of
ontology types and domains. Any ontology following RDF/XML1 syntax specifi-
cation is processed by our system for matching; thus, no changes in the original
structure of the candidate ontologies is required for our performance-based ontol-
ogy matching solution.

We have comprehensively evaluated our system with Ontology Alignment Eval-
uation Initiative (OAEI)’s 2013 dataset of real world ontologies (14 ontologies in
total) from diverse knowledge domains, having various sizes and complexities. For
ontologies from Anatomy track (Adult Mouse Anatomy with human anatomy part
of NCI Thesaurus), our system has been able to achieve an impressive performance
speedup of 4 times over the desktop and 5 times over the cloud platform (single-
node). For ontologies from Library track, our system has been able to achieve an
impressive performance speedup of 3.9 times over the desktop and 6.3 times over
the cloud platform (single-node). For all six tasks of Large Biomedical Ontologies
track, our system has been able to achieve an impressive performance speedup of
4.4, 4.7, and 5.3 times over the desktop and 6.5, 7.5, and 7.25 times over the cloud
platform for tasks 1, 3, and 5 respectively (single-node). For tasks 2, 4, and 6, our

1 http://www.w3.org/TR/REC-rdf-syntax/
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system has been able to achieve an impressive performance speedup of 14.65, 15.64,
and 15.19 times over desktop and 21.6, 21, and 21.93 times over cloud platform
respectively (multi-node). We have also evaluated our system with small ontologies
from Conference track over a dual-core Azure Virtual Machine. We have executed
12 different tasks from this track and recorded an average performance speedup of
1.25 times. Furthermore, we have compared our system with GOMMA’s [24] paral-
lel matching techniques. For large category, our system outperforms intra-matcher
by 5.2% on desktop and 55% over cloud platform. For very large category, our sys-
tem outperforms intra-matcher by 4.6% on desktop and 47.7% over cloud platform.
Our system also outperforms Intra&Inter multi-node matcher by 12.8%.

The rest of the paper is structured as follows. In Section 2, we describe the
related work in the field of ontology matching from the perspective of perfor-
mance. Section 3 describes our proposed methodology on which our system has
been constructed. Implementation details of our system, including the stack de-
sign of components and their details are presented in section 4. Section 5 provides
a comprehensive evaluation of our system on real-world ontologies of various do-
mains, types, and sizes over multicore desktop PC and Microsoft Azure’s public
cloud platform. Section 6 concludes this paper.

2 Related Work

Nowadays, Internet has grown to become a huge public resource for large and
ever-growing heterogeneous data [25]. This excess of knowledge provides a great
opportunity for integration by heterogeneity resolution; consequently, researchers
have developed ontology matching systems and techniques. As our work is related
to performance, In this section we have discussed performance aspect of two types
of ontology matching systems, i.e, generic ontology matching systems and ontology
matching systems implemented in particular for biomedical ontologies due to their
usage, complexity, and size. Furthermore, we have also discussed candidate parallel
techniques and their feasibility for ontology matching.

From the technique perspective, a considerable amount of research has been
done towards optimizing ontology matching algorithms for better performance
[16]. Consequently, various structural partitioning approaches for ontologies have
emerged. Falcon-AO [26], a famous ontology matching tool provides a divide-and-
conquer approach called PBM [27]. Similarly, an ontology segmentation approach
called Anchor-Flood is proposed by [28]. However, in both of these techniques,
performance is coupled with the complexity of the partitioning approach. None of
these techniques benefits from readily available parallelism-enabled platforms for
ontology matching.

Among the generic ontology matching strategies and systems, multi-agent sys-
tems based on the semantic negotiation have also been proposed in [29] and
[30]. These works are based on semantic negotiation protocols HISENE [31] and
HISENE2 [32]. In [29], an algorithm is proposed to compute the ontology-based
similarity and an agent-based system to perform this computation in a distributed
fashion called clustering method. For agent deployment, JADE (Java Agent DEvel-
opment Framework)[33] is utilized. Although the semantic negotiation has shown
promising results in efficiency; however, its performance is dependent on the amount
of communication over an asynchronous message passing protocol, required for ne-
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gotiation between distributed agents. In case of a homogenous cluster of agents,
this mechanism is efficient; however, in case of increased heterogeneity the com-
munication among the agents will increase, adding the network I/O overhead. In a
decentralization approach proposed in [30], the communication cost for large multi-
agent systems has been reduced but the semantic negotiation is a learning process
that is based on strong collaboration among agents over iterative communication.
Thus, communication overhead can be reduced but will fluctuate during the on-
tology evolution. Furthermore, behavior scheduling of an agent is not pre-emptive,
making an agent to be a single Java threaded instance [33] . Although this can be
efficient in limited computational resource environment, but under-utilization of
computational resources in current multicore systems.

In current state-of-the-art generic ontology matching systems, i.e., AgrMaker
[34], LogMap [35], and GOMMA [24], performance has been given a considerable
focus to complement accuracy of these systems. AgrMaker with its effectiveness-
dependent performance-gain implementation tightly integrates matching algorithms
and the system’s user interface and relies on user interactions and feedback. Perfor-
mance of AgrMaker depends upon the iterative execution of matching algorithms
as the sample set for the following matching algorithms gets reduced. However,
with no parallelism at all, baseline performance of AgrMaker depends upon the
complexity of the first matching algorithm. From OAEI 2011.5 campaign, Agr-
Maker scored highest precision but lagged over performance. It did not participate
in 2012 and 2013s OAEI campaign.

Analogous to AgrMaker, LogMap is another generic ontology matching system.
Its implementation is claimed as highly scalable from the perspective of ontology
matching; however, this scalability is not of any parallel or distributed nature.
From the anatomy of LogMap described in [35], it is clear that LogMap is based
on a step-by-step matching process (from the lexical indexation to compute over-
lapping) with a core iterative process for mapping repair and discovery. Although
it uses highly optimized data structures for lexical and structural indexing, the
whole matching process is sequential in nature. The performance of the system
varies with the effectiveness of the matching process; thus, accuracy of the system
cannot be preserved for performance-gain.

GOMMA is another ontology matching tool that is considered the most perfor-
mance efficient. The researchers of GOMMA understand the benefit of parallelism-
enabled platforms and provide an effectiveness-independent performance-gain im-
plementation in [36] and [16]. In [36], authors acknowledge the fact that very
little research has been performed in devising parallelism for matching problems;
furthermore, it describes size-based partitioning scheme to perform parallel match-
ing. Research presented in [36] discusses entity matching in general. However, in
[16], authors specifically discuss parallelism techniques pertaining to life science
ontologies. They propose inter- and intra-matcher parallelism techniques, which
uses parallel and distributed infrastructure for ontology matching to improve per-
formance. Inter-matcher parallelism processes independent matchers on a parallel
platform. However, as acknowledged by the authors, inter-matcher has memory re-
quirements as matchers evaluate on complete ontologies creating memory strains
during execution. In this case, a matcher thread is loading the ontology informa-
tion which may not be required for its matching algorithm (e.g., a synonym-based
matcher does not require ontology’s structure information). On the other hand,
intra-matcher parallelism deals with the decomposition of ontology resources into
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several finer parts with limited complexity so that matcher on these parts can
be executed in parallel (e.g., tokenization of concept names). However, defining
the granularity for decomposition is not a one-size-fits-all solution. Some ontology
concepts may not require to be decomposed. In this case, parallelism technique
becomes subjective to the complexity of the ontology resource. By over or under
decomposing ontology resources can end up inflicting performance degradation
instead. Moreover, neither inter- nor intra-matcher guarantees the optimal com-
putational resource utilization and ontologies used for their evaluation are only
of smaller to medium size, i.e., AdultMouseAnatomy MA (2,737 concepts) with
anatomical part of NCI Thesaurus (3,289 concepts) and two GO sub-ontologies
Molecular Function (9,395 concepts) with Biological Processes (17,104 concepts).

Due to the excessive utilization of ontologies in biomedical and bioinformatics,
some of the ontology matching systems are developed particularly for matching
biomedical ontologies [37]. Among them, SAMBO [38] is a pioneering system which
provides a framework for aligning and merging biomedical ontologies. SAMBO’s
implementation is focused towards its matcher algorithms, i.e., a terminological
matcher that uses WordNet [39] as thesaurus, a structural matcher that matches
the hierarchies, a domain knowledge matcher that uses UMLS as Meta-thesaurus,
a learning matcher that generates PubMed [40] abstracts for alignments, and a
combination matcher for using more than one matcher for an integrated execu-
tion. Despite the fact that integration with third-party thesauri and resources
is highly beneficial for the effectiveness, slow nature of these resources creates
performance bottlenecks while matching over millions of concepts. Besides that,
SAMBO’s sequential nature of execution, limits its abilities to overcome its per-
formance bottlenecks with better and parallel platforms. In [38], authors failed to
mention any performance related aspect of SAMBO while integrating third-party
resources. Furthermore, authors have used very small subsets of biomedical ontolo-
gies GO (57 and 73 terms) with SigO (10 and 17 terms) [41], and MeSH (15, 39,
and 45 terms) [42] with MA (18, 77, and 112 terms) [43] for system evaluation and
have not provided any benchmarks regarding large-scale biomedical ontologies.
However, results of OAEI 2008 [44] provides performance evaluation of SAMBO,
it took 12 hours to complete the anatomy track of biomedical ontologies NCI and
MA.

Similar to SAMBO, a hybrid ontology matching strategy for biomedical ontolo-
gies is explained in [45]. This technique also utilizes UMLS thesaurus for lexical
matching during its sequential execution. The authors failed to mention any as-
pect related to performance and repercussions associated while using a third-party
thesaurus.

Another ontology matching system with the motivation of producing align-
ments for biomedical ontologies is ASMOV [25]. With its effectiveness dependent
performance, authors of [25] acknowledged that effort is required to improve the
computational complexity of the system. With high coupling between ASMOV’s
performance and computational complexity of matching algorithms and its sequen-
tial execution, it is incongruous for ASMOV to avail any performance benefits from
parallel platforms. Evaluation of ASMOV is provided in [25]. It is evaluated over
anatomy parts of NCI (3304 classes) with Adult Mouse Anatomy (2744 classes)
which are far smaller subset of biomedical ontologies. Even for such a small match-
ing task, ASMOV took 3 hours to complete the matching process.
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ServOMap [46] is another biomedical ontology matching system but built with
the motivation of matching large-scale biomedical ontologies. Instead of using lex-
ical resources like WordNet and UMLS, ServOMap relies on information retrieval
and an ontology repository technique. Ontology repository acts as a server of se-
mantic indexes that later contributes to perform similarity operations between
ontology entities. Moreover, ServOMap uses lexical and context-based matching
algorithms for mapping generation. ServOMap has been able to record better per-
formance over large-scale biomedical ontologies FMA, NCI, and SNOMED-CT;
however, from [46] it is understood that this performance gain is because of the
absence of third-party resources and thesauri. ServOMap does not implement any
performance gain techniques that can exploit parallelism over available multicore
platforms for the benefit of large-scale biomedical ontology matching.

From the perspective of data parallelism over distributed platforms, BigData
technologies like Hadoop with its MapReduce programming model, queries over
distributed data with larger volumes. From this regard, it can be considered as a
candidate technology for ontology matching; however, the performance benefits of
Hadoop and MapReduce are primarily coupled with two aspects, i.e., the size of
the data that is typically in gigabytes and terabytes [47] and the structure of the
data as Hadoop is unsuitable in situations where structure of the data is important
as the data itself [48]. The ideal size of single chunk of data in Hadoop is 64 MB,
which is relatively equal to whole larger-size ontologies; for example, large-scale
biomedical ontologies like FMA = 46 MB, NCI = 50 MB, SNOMED extended =
142.6 MB, making an ontology too small to be distributed over HDFS (Hadoop
File System). If distributed, it will inflict performance degradation instead. Fur-
thermore, Hadoop is built for unstructured data, distributed in binary format
over participating nodes. On the other hand, ontologies are graph like constructs.
During matching, relationships among the ontology resources are of vital impor-
tance; in case of the binary distribution these relationships are lost. To preserve
these relationships, the resources need to be labeled prior to distribution, adding
an additional storage and processing overhead. In MapReduce, mappers have to
classify whether an incoming ontology resource belongs to which candidate ontol-
ogy before matching in the reducers at runtime, adding more processing overhead
and increased memory footprint. In our experiments, Hadoop-MapReduce based
matching has shown 5 times slower performance in contrast with our proposed
system due to the stated reasons. From these aspects, Hadoop and Hadoop-like
solutions (e.g., CloudBLAST [49]) are unsuitable for the ontology matching prob-
lem. Moreover, Hadoop-MapReduce has yet to be equipped with an efficient RDF
and OWL plugin. Projects like Reasoning-Hadoop [50], Heart [51], and Hadoop
Distributed RDF Store (HDRS) [52] have yet to prove their efficiency and perfor-
mance.

Parallel ontology matching has been theoretically discussed in [20]. It provides
a generic ontology distribution mechanism for selecting a priority ontology and
matching it with other candidate ontologies over participating nodes. For paral-
lelization, authors propose the data distribution from the standard parallelization
provided by Flynn’s taxonomy [53], i.e., SCMD, MCSD, and MCMD. For ac-
tual parallel implementation, authors recommend generic techniques like Message
Passing and Hadoop-MapReduce. The limitations of both of these approaches in
perspective of ontology matching have been discussed earlier; furthermore, [20]
fails to provide any details of how an ontology matching system should be using
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Message Passing middleware or Hadoop-MapReduce platform. Also, it does not
provide any evaluation to complement the proposed theoretical details.

In contrast with the above-mentioned techniques and systems, our proposed
system implements data parallelism over parallelism-enabled platforms for effectiveness-
independent performance-gain during ontology matching. It decomposes complex
ontologies into smaller and simpler resource-based scalable subsets depending upon
the needs of the matching algorithms. These subsets are serialized to preserve the
parsing effort for future matching requests of the same ontologies and their usage
reduces memory strains during execution as subsets required by the matching al-
gorithms are loaded instead of whole ontologies. Our system provides three levels
of abstraction for the distribution of matching process, enabling every computing
resource to be used at a finer level for effectiveness-independent parallel matching.
Equal number of independent matching tasks is assigned to all matching jobs,
reducing the chances of idle cores and ensuring the optimal utilization of com-
puting cores during execution. Furthermore, our system aligns the execution of
matching algorithms to minimize the matching space; consequently, contributing
in performance-gain by large.

3 Proposed Methodology

This section provides an overview of our proposed methodology. The primary ob-
jective of this methodology is to implement effectiveness-independent performance-
gain by drawing abstraction over ontology matching process. These abstractions
are drawn to a primitive level such that an independent execution can invoke any
matching algorithm without inflicting a change in the implementation of the al-
gorithm. This independent execution is called a matching task (MT) which is the
unit of matching process; defined as, a single independent execution of a matching
algorithm over a resource from source (OS) and target ontologies (OT ). These
matching tasks are distributed over available computing cores and become the
foundation of our data parallelism based ontology matching system. Equations (1,
2, and 3) describe this distribution process.

MT i ∩MT i+1 ∩MT i+2.... ∩MTn = ∅ (1)

MTTotal ≥ m× n ∀ m ∈ OS & n ∈ OT (2)

MTCore ←
MTTotal

CoresTotal
(3)

A primitive example of MT is illustration in Fig 1, where a concept C0 of a
source ontology is matched with C0 of target ontology. Four independent match-
ing tasks perform the complete matching process, for example, MT1, MT2, and
MT3 perform element-level string-based, properties-based, and annotation-based
matching respectively and MT4 performs structural-level child-based relationship
matching. All these matching tasks are mapped to individual cores available in a
single- (e.g., multicore desktop) or multi-node platforms (e.g., cloud).

In a single-node, all the matching tasks execute within the computational ca-
pacity the node offers. On multi-node platform, the request receiving node be-
comes the primary node, and it communicates with other participating (secondary)
node(s) by sending and receiving control messages for distributed matching.
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Fig. 2 Execution flow of the matching process

As illustrated in Fig 2, to complete the whole matching process, a request is
processed through Pre-Matching, Parallel-Matching, and Post-Matching stages.
By default ontologies are not scalable structures from the perspective of perfor-
mance ([54], [56], and [55] ). Therefore, the pre-matching stage is introduced where
candidate ontologies OS and OT are converted into simple subsets with perfor-
mance and scalability-friendly data structures (e.g., arrays and lists). Furthermore,
these subsets are generated depending upon the needs of the matching algorithms
making them encapsulated and independent (equation (4), (5), and (6)); for ex-
ample, a string-based matching algorithm for concept names only requires a linear
data structure of concepts. As a result, two subsets of candidate ontologies with
only concept names will be loaded for matching tasks executing the string-based
matching algorithm. Accessing ontology resources from these subsets in following
stages is significantly faster due to their smaller size, independent nature, and
data structures that can easily be partitioned for data parallelism. This approach
effectively contributes in overall performance-gain especially when matching large-
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scale ontologies. In our experiments, we have recorded as much as 8 times faster
ontology resource loading with 4 times smaller memory footprint working with
ontology subsets instead of whole ontologies for matching. These subsets are seri-
alized and persisted in repositories, preventing us to re-generate ontology subsets
of already serialized ontologies for future matching requests.

i ∈ Algorithms : Algorithms = {String, Label, Properties, ..., Child} (4)

Oi
x ← f i (Ox) : x ∈ {source, target} (5)

Ox =
n⋃

j=1

Oj
x : n = NumberOfAlgorithms (6)

After pre-matching, parallel-matching stage is invoked. Data parallelism re-
quires each processing core to perform the matching task on a separate piece of
candidate ontologies. To enable this, the total number of matching tasks is deter-
mined from serialized subsets of ontologies. As illustrated in Fig 2, by distribution
abstractions over matching process, these matching tasks are distributed among
the participating nodes as matching requests (single request per node) and their
cores (single job per core). As described in equation (3), number of matching tasks
across all matching jobs is equal. This strategy ensures the reduced chances of hav-
ing an idle processing core during later stages of parallel matching and optimal
computing resource utilization. In a single-node platform, matching tasks are only
distributed among existing cores as matching jobs; however, in a multi-node plat-
form, distribution is among the participating nodes as matching requests. Each
set of matching tasks is assigned to a computing core with knowledge of matching
algorithm to be executed on them. Subsequently, all cores in participating nodes
are invoked in parallel for the matching process. Following equations (7, 8, 9, and
10) describe this distribution abstraction implemented by our methodology:

MR←
n∑

i=1

MRi : n = TotalNodes (7)

MRi ←
c∑

i=1

MJ i : c = TotalCoresPerNode (8)

MJ i ←
{

t⋃
i=1

MT i

}
: t = TotalTasksPerCore (9)

MT i ← m× n ∀ m ∈ OS & n ∈ OT (10)

Apart from distribution over the available computing cores, parallel-matching
also aligns the execution of matching algorithms to minimize the matching space
for every following matching algorithm execution (equation 11 and 12).

O1
b ← (m× n)i=1 ∀ i ∈ Algorithms, m ∈ Oi

s & n ∈ Oi
t (11)

OB ←
t⋃

i=2

((
mi −

(
mi ∩Oi−1

b

))
×
(
ni −

(
ni ∩Oi−1

b

)))
| Oi

b ≥ Oi+1
b (12)
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As illustrated in Fig 3, a matching process with two matching algorithms is
described where element-level string-based matching algorithm determines more
matching results than structural-level child-based matching algorithm. Therefore,
string-based algorithm is executed in parallel first and generates its intermediate
bridge ontology (O1

b ). In the following execution (child-based), ontology resources
that are already matched and now part of O1

b are removed from loaded ontology
subsets (OC

s and OC
t ) prior to parallel-matching. By this method, the number of

expensive matching operations is reduced as they only execute on ontology re-
sources that are still unmatched; consequently, eliminating chances of redundant
matching tasks and improving overall matching performance during run-time. Fur-
thermore, this method also eliminates the chances of redundant matches in the
final bridge ontology (OB).

After completion of parallel-matching stage, i.e., all the parallel matchers have
finished their respective matching jobs over their assigned cores in a single- or
multi-node environment, post-matching stage is invoked. For this stage, all the
matched results are aggregated and the final mediation bridge ontology is gener-
ated. In a multi-node environment, the primary node waits for all the secondary
nodes to submit their match results before generating the aggregated bridge on-
tology. Following equations (13, 14, and 15) describe this process in a multi-node
platform.

OJob
b ←

t⋃
i=1

(m× n)i : m× n 6= ∅, t = TotalTasksPerCore (13)

ONode
b ←

j∑
i=1

OJob=i
b : j = TotalJobsPerNode (14)
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OB ←
n∑

i=1

ONode=i
b : n = TotalNodes (15)

On a single-node environment, where utilization of computing resources scales
down to multicore, generation of mediation bridge ontology is a two-step process
(described in equations 16 and 17):

OJob
b ←

t⋃
i=1

(m× n)i : m× n 6= ∅, t = TotalTasksPerCore (16)

OB ←
j∑

i=1

OJob=i
b : j = TotalJobs (17)

Firstly, results of matching tasks are combined (
⋃

) to become an intermediate
bridge ontology per matching job. Secondly, these intermediate bridge ontologies
are accumulated (

∑
) to generate a formal mediation bridge ontology (OB). The

finalized OB is delivered to the client as the matching response.

4 Implementation Details

This section provides the implementation details of our system based upon the
proposed methodology. It includes the overall stack design of our system and the
details regarding the core components.

4.1 Stack Design

Our proposed system has a layered architecture, following a stack design. With
agility in mind, this design supports incremental development and over-the-time
updates without propagating implementation changes across the system. The stack
view of system’s layers and components is illustrated in Fig 4. This stack is de-
ployed as an integrated system on all participating nodes involved in ontology
matching.

Our system provides two interfaces to interact with the client, i.e., a web ser-
vice and a graphical user interface (GUI). If a third party system, service, or a
client wants to use the parallel matching facility, they can interact by utilizing On-
tology Matching Request Interface. This interface is hosted by a SOAP-based web
service to be consumed by client programs and systems. Adjacent to the request
interface is a GUI-based interaction component which facilitates the utilization of
our system by an individual researcher via browser. In parallel, there is an Ontol-
ogy Change Request interface that is used to implement the evolution process of
ontology’s design. Ontology change request interface receives the change updates
for serialized ontologies to support continuity in ontology change management.
These interfaces and GUI rely on lower-level core components for actual paral-
lel matching and change implementation, executing over single- and multi-node
platforms.
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Fig. 4 Stack design

The core of our system consists upon six loosely coupled components (File
IO, Init Daemon, Multi-node Distributor, Aggregator, Communication2, and a
Multicore Distributor) and an ontology repository. These components with their
focused responsibilities are integrated with an intermediate workflow layer called

2 Utilization of communication by each core component is described in the components
explanation.
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Matcher Workflow. This workflow layer hosts two paths for system execution, i.e.,
a matcher execution for parallel matching request and a change implementation to
support ontology’s design evolution. Among the core components, init daemon is
responsible for setting up the multi-node environment by providing a socket table
for all the participating nodes. This setup is required, prior to any distributed
matching. File IO component is used for parsing and loading candidate ontolo-
gies. It is responsible for serializing candidate ontology subsets and implementing
CRUD operations on these subsets for change implementation. Multi-node distrib-
utor is responsible for distribution of matching process as matching requests over
participating nodes via control messages. These messages are sent and received by
the communication component. This component also hosts an ontology synchro-
nization service to replicate ontology changes over secondary repositories hosted
by participating nodes. For local distribution of matching tasks as matching jobs
over available cores, multicore distributor is used. This component exploits the
existing cores by implementing thread-level parallelism. Each matcher thread is
assigned to its matching job coupled with instance of matching algorithms over
candidate ontologies.

For the utilization of multicore platforms, a programming language is required
with a strong emphasizes on concurrency and platform independence. Java is one
such language that is equipped with an effective multithreading model and is
available for most of the computing platforms. Keeping these facts in perspective,
we have provided our system’s implementation in Java and used its concurrency,
collection, NIO and stream libraries for our benefit.

4.2 Core Component Details

This section provides details regarding the inner workings of the core components
of our proposed system.

4.2.1 Init Daemon

Initialization Daemon (Init Daemon) is responsible for setting up the environ-
ment for the matching process. It executes in pre-matching stage of the system.
In a multi-node platform, init daemon is responsible for providing communication
objects of every participating node in a collection called socket table. This table
is generated at every node and contains the collection of socket objects for every
other node, distinguished by unique identifiers (UUID). From a higher level ab-
straction, each UUID represents a running instance of a participating node in a
multi-node environment.

Algorithm 1 describes the details of init daemon’s socket table creation. Prior
to execution, each daemon holds a text file containing ranks (unique integer val-
ues) of participating nodes and their respective IP addresses. Algorithm 1 enables
each node to generate its own UUID, attach it with information regarding avail-
able computational resources on that node and shares it among the participating
nodes; consequently, each daemon receives a UUID with available number of cores
over a particular node on a socket object. All the receiving UUIDs with their cor-
responding number of cores and socket objects are stored as a socket table in every
node’s main memory. At communication level, sharing of UUIDs among the nodes
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Algorithm 1 Generate socket table
Require: node ≥ 2,

temp = 1
uuidMsg ← generateUUID()
cores ← Runtime.getNumberofCores()
rank ← getRankforThisNode()
while temp < ShiftLeft(1, nodes) do

if temp ≥ nodes then
stop

end if
sender = rank
receiver ←XOR(rank, temp)
socket←getSocket(receiver)
if sender > receiver then

sendMessage(socket, uuidMsg, cores)
socketTable.add(socket,receiveMessage(socket))

else
socketTable.add(socket,receiveMessage(socket))
sendMessage(socket, uuidMsg)

end if
temp = temp + 1

end while

add to 
socket table add to 

socket table

Node 1 Node 2

0 0 0 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4

Ctrl Key UUID
MSB LSB

cores

barrier read send

barrier read receive

acknowledge

Fig. 5 Barrier read sequence diagram

is performed by a barrier read. This communication is illustrated in the sequence
diagram of Fig 5. Barrier read is initiated by invoking a 24 byte control message,
sent from one node to the other node(s). This message contains the respective
UUID of the sending node (16 bytes), number of available computing cores (4
bytes), and ctrl key (3 bits). Every receiving node acknowledges the control mes-
sage by similar reply and subsequently attaches the receiving port number with
the received UUID and forwards it to its socket table. Fig 6 provides a depiction
of socket tables in a tri-node environment after init daemon setup. This strategy
enables the system to avoid unnecessary file access and re-creation of socket ob-
jects for every communication. Socket tables are further used by each node to send
and receive control, ontology change and synchronization messages during system
execution.
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Fig. 7 Ontology subset replication sequence diagram

4.2.2 File IO

File IO component is responsible for ontology loading, subset creation, and provid-
ing an interface to ontology repository for ontology persistence. It also executes in
pre-matching stage of the system. File IO provides serialization and deserialization
operations. When the system receives a new ontology, i.e., a candidate ontology
that has not been converted into subsets, file IO parses it to create a respective
object model. This object model is persisted as serialized subsets according to the
needs of matching algorithms along with the ontology hash value. For matching
request of already serialized ontology, deserializer loads the required subsets into
respective ontology models and provides these models to distributor component
for parallel matching operations.

To facilitate parallel matching in a multi-node platform, ontology subsets need
to be available on every participating node; therefore, the ontology subsets are
replicated over secondary repositories with the help of connectivity information
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provided by the init daemon. Communication between primary and secondary
node(s) for subset replication is illustrated in the sequence diagram of Fig 7. Unlike
barrier read, control messaging for ontology subset replication is a two-step process.
Firstly, primary node sends a 24 byte message to secondary node(s) containing
ontology UUID (16 byte), size of the subset to be sent (4 bytes) and ctrl key (3
bits). Secondary node(s) receive this message and create receiving buffers of size of
the subset and send prompt acknowledgments to the primary node. Secondly, the
primary node sends the subset to the secondary node(s). By this method, matching
threads only load subsets from their local repositories, avoiding the internode
communication during matching.

File IO is also responsible for implementing ontology changes. To implement
a change, the ontology must be loaded inside nodes memory as an instance of
the ontology model. Ontology change request interface through matcher workflow
provides file IO with the UUID for ontology to be updated. Deserializer loads the
required ontology from the repository into an ontology model instance. This in-
stance is returned to file IO for change implementation. Matcher workflow receives
the instance of the ontology model to be updated from ontology change request
interface. A change can be of many types, from a triple update to an addition
of an entirely new hierarchy. Operations for change implementation are classified
into Create, Update, and Delete types. These operations are used by file IO over
ontology model instance for change implementation. ChangeManager is a com-
mand pattern [57] implementation. Apart from agility, this pattern provides undo
and redo operations for change implementation. After the change implementation,
updated subsets are serialized back in the repository and in case of multi-node
platform, these changes are replicated over repositories of secondary nodes. Com-
munication between primary and secondary node(s) for change implementation is
illustrated in the sequence diagram of Fig 8. Similar to subset replication, change
implementation request is also a two-step process. Firstly, primary node sends a
24 byte message to secondary nodes containing information regarding the ontology
that needs to be updated (16 bytes), the size of updates that needs to be imple-
mented (4 bytes), and ctrl key (3 bits). Secondary node(s) receive this message
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and deserialize the candidate ontology into an ontology model object; subsequently,
they create receiving buffers of size of the updates and send a prompt acknowledg-
ment to the primary node. Secondly, the primary node sends the actual changes to
the secondary nodes. After the change implementation, updated ontology model
instance is sent to file IO for persistence. File IO serializes the ontology model and
stores it back in the ontology repository.

4.2.3 Distributor

Distributor components (multicore and multi-node distributors) are collectively
responsible for the distribution of matching process over computational resources
for invoking parallelism on candidate ontologies (OS , OT ) in parallel matching
stage. To accomplish this responsibility, the matching process is layered into three
levels of abstraction, i.e., from macro-level matching request (MR) and grainer-
level matching jobs (MJ) to finer-level matching task (MT).

The distribution process for implementing data parallelism in a multi-node
environment is illustrated in Fig 9. A whole matching request (classified as a
matching process) received by the primary node is divided among participating
nodes depending upon their computational resources. A matching request received
by an individual node is further subdivided into matching jobs such that each job
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Algorithm 2 Distributor algorithm
Require: nodes > 0

if nodes=1 then
MulticoreDistributor(OS , OT )

else
Multi-nodeDistributor(OS , OT )

end if

Algorithm 3 Multicore distributor algorithm
Require: nodes > 0

cores←Runtime.getNumberOfCores()
if nodes=1 then

start=0
bigOnt← (sizeS ≥ sizeT )?OS : OT

smallOnt← (sizeS < sizeT )?OS : OT

Partitionslab = dbigOnt.size/corese
SPAWN MATCHER THREADS:
for i = 1 to cores do

end = start + Partitionslab

if end ≤ bigOnt.size then
end = bigOnt.size

end if
MatchingJob.create(MatchingTasks[start, end), big, small,matcher)
thread.run(matchingJob)
start = end

end for
else

RECEIVE MATCHING REQUEST:
controlMessage.receive(matchingRequest)
Partitionslab = (end− start)/cores
GOTO SPAWN MATCHER THREADS

end if

on a node contains an equal number of matching tasks. Subsequently, a match-
ing job is assigned to execute over a processing core available on a participating
node. This technique provides three major benefits to our system: (i) better scal-
ability, as chances of idle cores are minimal because each core is assigned with
equal number of matching tasks; (ii) implementing the most efficient scenario of
parallel execution, i.e., one job per core; and (iii) matching tasks are independent
among themselves, other matching jobs, and other matching requests running re-
motely, ensuring no communication required between nodes during parallel match-
ing. These three characteristics of the distribution are the foundation of achieving
data parallelism for parallel matching.

In the case of single-node, distribution process scales down to multiple cores on
one node. Multicore distributor divides a whole matching request into matching
jobs with an equal number of independent matching tasks. Each job is assigned to
run over a particular core; consequently, achieving data parallelism.

Algorithms 2, 3, and 4 describe the distribution of matching tasks in single- and
multi-node environments. In the case of single-node platform, multicore distributor
(Algorithm 3) is invoked. It identifies the number of participating cores from the
native runtime and calculates the partition slab by dividing the size of the bigger
ontology with the number of cores and taking its ceiling value in case of fraction.
A matching job per core is created and invoked by thread-level parallelism. For
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Algorithm 4 Multi-node distributor algorithm
Require: nodes > 1

nodes←initDaemon.getNoOfNodes()
participatingCores =

∑
node.#cores

start=0
end=0
bigOnt← (sizeS ≥ sizeT )?OS : OT

smallOnt← (sizeS < sizeT )?OS : OT

Distributionslab = dbigOnt.size/participatingCorese
for node← nodes do

end = start + Distributionslab × node.#cores
if end ≤ bigOnt.size then

end = bigOnt.size
end if
MatchingRequest.create([start, end), big, small,matcher)
if node.isLocal then

local.MulticoreDistributor(matchingRequest)
else

controlMessage.send(matchingRequest)
end if
start = end

end for

example, in case of matching conference ontology “iasted” having 140 concepts
with another conference ontology “cmt” with 29 concepts over a quad-core single-
node platform, Algorithm 3 first calculates the partition slab (140/4 = 35). First
35 concepts of iasted ontology are assigned to be matched with all the 29 concepts
of cmt ontology as first matching job with a total number of 35 × 29 = 1015
matching tasks. This matching job is invoked as first matching thread. In parallel,
next 35 concepts of iasted ontology are matched with all the 29 concepts of cmt
ontology as second matching job with the same number of 1015 matching tasks,
invoked as second matching thread. Similarly, third and fourth matching threads
are also assigned in parallel with their respective matching jobs of 1015 matching
tasks each, thus distributing the whole matching process of 4060 matching tasks
evenly among 4 cores for parallel matching.

In multi-node environments, distribution algorithm invokes the multi-node dis-
tributor (Algorithm 4) which receives the information regarding the available com-
putational resource of participating nodes from init daemon. Distribution slab is
calculated and control messages are created sent with matching requests to the
secondary nodes. The size of these control messages is 64 bytes containing infor-
mation regarding source and target ontologies (32 bytes), start index (4 bytes),
partition slab (4 bytes), matcher algorithm id (16 bytes), and ctrl key (3 bits). In
reply, a single byte acknowledge message is received by the primary node. This
process is illustrated in the sequence diagram of Fig 10. To elaborate the execution
of Algorithm 4, consider the example of matching process between two biomedical
ontologies, “adult mouse anatomy (2,744 concepts)” with “NCI human anatomy
(3,304 concepts)” over the tri-node environment illustrated in Fig 9. Algorithm 4
first calculates the distribution slab by dividing the size of the bigger ontology (NCI
human anatomy) with the total number of participating cores (3,304/8=413). Re-
quest for matching first 826 concepts of NCI human anatomy ontology with all the
concepts of adult mouse anatomy is created. This matching request is distributed
over the local node by calling multicore distributor (Algorithm 3) which calculates
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the partition slab for 2 available cores (826-0/2=413). Consequently, two match-
ing jobs are invoked by thread-level parallelism starting from concepts [0 to 413)
and [413 to 826) of NCI human anatomy ontology respectively. As first secondary
node is a quad-core resource, second matching request is generated for matching
next 1,652 concepts of NCI human anatomy ontology starting from [826 to 2,477)
with all the concepts of mouse anatomy. This matching request is sent via control
message using communication protocol illustrated in Fig 10. and received by the
multicore distributors (Algorithm 3) of first secondary node. Matching request is
extracted from the control message and four matching jobs are created each with
413 concepts of NCI human anatomy ontology ([826 to 1,239), [1,239 to 1,652),
[1,652 to 2,065), and [2,065 to 2,478)) to be matched with all the concepts of
mouse anatomy. Similar to second matching request, third matching request is
generated for the other secondary node which distributes it between two matching
jobs ([2,478 to 2,891), and [2,891 to 3304)), thus distributing the whole matching
process of over nine million matching tasks (9,066,176), evenly among 3 nodes for
parallel matching.

0 0 1 1 2 3 16 1 2 3 4
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Fig. 10 Ontology matching request sequence diagram

From the description of multi-node distributor algorithm, it is quite clear that
our distribution component assumes the multi-node environment to be homoge-
nous. Although distribution slab calculated by Algorithm 4 precisely considers
the parallelism ability of participating nodes, i.e., number of computing cores per
node; however, in case of heterogeneity among the computational ability (proces-
sor frequency, memory size, and IO performance) of participating nodes, idle core
can exist as one node might complete its matching request prior to the others.

Distributor components also provide an interface to matching library. Match-
ing algorithms can be plugged in and out of the system or can be executed as
suites based on software engineering design principles. This interface ensures the
effectiveness-independent performance-gain aspect of our system and decouples
the performance of the system from the effectiveness and accuracy of the system.
By default, system provides a library of element-level and structural-level match-
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ing algorithms. Furthermore, matching algorithms provided by various semantic
web experts have been incorporated for evaluation.

4.2.4 Aggregator

This component is responsible for aggregating matched results from participating
nodes and generating the required mappings in post-matching stage. Depending
upon the deployment environment (single- or multi-node), aggregator accumulates
matched results from two different interfaces (local and remote) and creates a for-
mal representation of mappings called Mediation Bridge Ontology (MBO). MBO
is a pattern-based bridge ontology that provides mediation between different can-
didate ontologies. Type and structure of the MBO can be changed depending upon
the needs by customization of bridge ontology definition.

In a single-node, aggregator receives the intermediate bridge ontologies from
each core as a result of a matching job via local interface. All the intermediate
bridge ontologies are aggregated to generate the formal and final mediation bridge
ontology.

In the case of multi-node environment, the primary node receives the interme-
diate bridge ontologies from local interface and remote interface where secondary
nodes send their intermediate bridge ontologies as matching response. Aggregator
at primary node aggregates all these intermediate bridge ontologies to generate
the formal and final mediation bridge ontology.

5 Evaluation and Discussion

In this section, we describe a comprehensive experimentation performed on our
proposed system. For the evaluation, we have used the OAEI 2013 dataset of real
world ontologies. Our system is evaluated over Anatomy, Library, Large Biomedi-
cal, and Conference tracks of OAEI 2013’s dataset. The candidate ontologies used
in these tracks are of various sizes, covering the different magnitudes of ontology
matching problem.

We have executed three different libraries of ontology matching algorithms
(computational complexity ≥ O(n2)) provided to us by different semantic web
experts. Our system is evaluated over two platforms: (i) a single-node quad-core
desktop PC, equipped with 3.4 GHz Intel(R) Core i7(R) Hyper-Threaded (Intel(R)
HT Technology) [58] CPU (2 threads/core) with 16 GB memory, Java 1.8 and
Windows 7 64 bit OS, and (ii) a public cloud Microsoft Azure instance with two
virtual machine (VM) configurations, i.e., standard A4 VM instances with 8 cores,
14 GB of memory, Java 1.8, and Windows 2012 R2 Guest OS running over an AMD
Opteron(TM) 2.1 GHz CPU and A2 VM instance with 2 cores, 3.5 GB memory,
Java 1.8, and Windows 2012 R2 Guest OS running over an Intel(R) Xeon(R) 2.1
GHz CPU.

5.1 Anatomy track

The anatomy track consists of mapping generation between the Adult Mouse
Anatomy (2,744 concepts) [59] and part of NCI Thesaurus describing human
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anatomy (3,304 concepts). Beside their larger size, these ontologies are carefully
harmonized by OAEI experts such that a rather high number of mappings can be
found by trivial string matching techniques and a good share of non-trivial map-
pings require complex analysis over ontology structures. To generate the bridge on-
tology we have used the default matching library with String-based, Label-based,
and Child-based Structural matching algorithms.

We have executed our system in both multicore desktop and cloud scenario as
a single-node execution (illustrated in Fig 11). Matching requests are generated
from the client; consequently, adult mouse anatomy (OS) and human anatomy
(OT ) ontologies are loaded in parallel by file IO and provided to multicore dis-
tributor component. With the knowledge of available computing resources and
ontology subsets (Os, Ot) required by matching algorithms, distributor creates 8
independent matching jobs. Each job is allocated with a set of equal numbers of
independent matching tasks (AdultMouseAnatomyclasses×HumanAnatomyclasses

8 ). As
String and Label-based matching algorithms execute on the same subsets of the re-
spective ontologies, distributor assigns these two algorithms to every matching job.
Subsequently, distributor allocates each matching job to a single-core for matching.
After completion of all jobs, an intermediate bridge ontology (Ob) is created by
aggregator. Thereafter, distributor loads the subsets of adult mouse anatomy and
human anatomy required for Child-based structural matching algorithm through
file IO and follows the same procedure as before. After the completion of Child-
based structural matching algorithm, aggregator accumulates its results with the
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intermediate bridge ontology (Ob) and generates the formal mediation bridge on-
tology (OB). This bridge ontology is finally delivered to the client as a response.

Results from both the scenarios (desktop and cloud) are illustrated in Fig 12.
For the desktop scenario, the matching request executes over quad-core desktop
and results are described in Fig 12(a). The sequential process (illustrated in Fig
13) takes 7.5 seconds to complete the matching request; however, with the use
of our data parallelism enabled system over multiple cores, total matching time
starts improving as more cores are introduced. Our system completes the matching
process in less than 2 seconds over 4 cores (= 8 threads) with the performance
speedup of 4 times. Same matching request is executed for the second scenario over
the Azure VM. The sequential process over the VM takes 17.5 seconds to complete;
however, our system completes the whole matching process over 8 threads within
3.1 seconds with an impressive speedup of 5.5 times. Overall performance of the
matching process is slightly slower over the Azure VM due to the virtualization
layer (Hyper-V).

Accuracy preservation throughout the performance speedup is illustrated in
Fig 12(b). As stated earlier, for effectiveness-independent performance-gain the
performance is extracted from parallel threads over multiple cores, no changes
in matching library have been made for performance reasons. Consequently, the
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(a) Performance-speedup (b) Speedup-matching effectiveness

Fig. 14 Results from library track

matching effectiveness (e.g., precision, recall, F-Measure) stays the same through-
out the performance speedup.

Same matching track was evaluated by [16] as a medium-scale problem by
its intra-matcher parallelization on a single node. Matchers are evaluated indi-
vidually and possibly generate individual alignments. These alignments are later
to be aggregated for a comprehensive bridge ontology. A performance speedup
of 3.6-4.2 times (depending upon the matching algorithm) have been achieved
by intra-matcher of [16]. In our system, matchers execute as a combined match-
ing process; consequently, it efficiently generates a single comprehensive bridge
ontology instead. Even with an inferior hardware platform, our system slightly
outperforms the performance speedup of [16] on the desktop scenario, i.e., 4 times
(vs. mean(3.6-4.2)) and largely outperforms it by 41% when executed in the cloud
scenario, i.e., 5.5 times (vs. mean(3.6-4.2 times)).

5.2 Library Track

The library track consists of mapping generation between the STW [60] and the
TheSoz thesaurus [61] ontologies. Both ontologies provide a vocabulary for eco-
nomics with respect to social science subjects. These ontologies are primarily used
by libraries for indexation and retrieval. Although lightweight, these ontologies are
large with STW containing 6,575 concepts and TheSoz containing 8,376 concepts.
To generate the bridge ontology we have used the same matching library used
earlier in anatomy track.

Similar to anatomy track, we have executed our system in both multicore desk-
top and cloud scenario as a single-node execution. Results from these scenarios are
illustrated in Fig 14. For the single-node desktop scenario, the sequential process
takes close to 47 seconds to complete the matching request; however, our system
completes the matching process around 11 seconds over 8 threads with an impres-
sive performance speedup of 4.15 times. Same matching request is executed for the
second scenario over the single-node Azure VM. The sequential process over the
VM takes close to two minutes to complete; however, our system completes the
whole matching process over 8 threads in 18 seconds with an impressive speedup of
6.38 times. Furthermore, similar to anatomy tasks, the accuracy of the matching
process stays preserved with the same effectiveness throughout the performance
speedup (illustrated in 14(b)).
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Fig. 15 Parallel flow for large biomedical track over single-node

5.3 Large Biomedical Ontologies Track

The large biomedical ontologies track consists upon finding mappings between
FMA, SNOMED-CT, and the NCI ontologies. These ontologies are semantically
rich, substantially complex, and significantly large containing thousands of con-
cepts. For this track we have used a matching library with String-based, Annotation-
based, and Child-based structural matching algorithms for bridge ontology gener-
ation. This track consists upon 6 tasks that are described in following subsections.

5.3.1 Task 1: FMA-NCI small fragments

This task consists upon matching relatively smaller fragments of FMA and NCI
ontologies. The FMA fragment consists upon 5% of whole FMA ontology (3,696
concepts) while the NCI fragment consists upon 10% of whole NCI ontology (6,488
concepts).

We have executed our system in both multicore desktop and cloud scenario
illustrated in Fig 15 as a single-node execution. Matching requests are generated
from the client; consequently, smaller fragments of FMA (OS) and NCI (OT ) on-
tologies are loaded in parallel by file IO and provided to multicore distributor com-
ponent. With the knowledge of available computing resources and ontology sub-
sets (Os, Ot) required by matching algorithms, distributor creates 8 independent
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(a) Performance-speedup (b) Speedup-matching effectiveness

Fig. 16 Results from large biomedical ontologies track, task 1

matching jobs. Each job is allocated with a set of equal numbers of independent
matching tasks (FMAclasses×NCIclasses

8 ). As String and Annotation-based match-
ing algorithms execute on the same subsets of the respective ontologies, distributor
assigns these two algorithms to every matching job. Subsequently, distributor allo-
cates each matching job to a single-core for matching. After completion of all jobs,
an intermediate bridge ontology (Ob) is created by aggregator. Thereafter, distrib-
utor loads the subsets of adult mouse anatomy and human anatomy required for
Child-based structural matching algorithm through file IO and follows the same
procedure as before. After the completion of Child-based structural matching al-
gorithm, aggregator accumulates its results with the intermediate bridge ontology
(Ob) and generates the formal mediation bridge ontology (OB). This bridge on-
tology is finally delivered to the client as a response.

Results for this track from both the scenarios (desktop and cloud) are illus-
trated in Fig 16. For the desktop scenario, the matching request executes over
quad-core desktop. The sequential process (similar to the illustration in Fig 13)
takes 48 seconds to complete the matching request; however, our system completes
the matching process in slightly over 11 seconds over 4 cores (= 8 threads) with
the performance speedup 4.2 times. Same matching request is executed for the
second scenario over the Azure VM. The sequential process over the VM takes
100 seconds to complete; however, our system completes the whole matching pro-
cess over 8 threads in slightly over 15 seconds with an impressive speedup of 6.5
times. Furthermore, similar to anatomy track the accuracy of the matching process
stays preserved with the same effectiveness throughout the performance speedup
(illustrated in 16(b)).

5.3.2 Task 2: FMA-NCI whole ontologies

This task consists upon matching the whole FMA and NCI ontologies. The FMA
ontology consists upon 78,989 concepts while the NCI ontology consists upon
66,724 concepts. Due to the very large size of the ontologies, the matching process
is scaled over multi-node environment, i.e., 3 desktops and Azure VMs with above-
stated specification for the first and seconds scenarios respectively.

As illustrated in Fig 17, primary node receives the matching request for can-
didate ontologies, whole FMA (OS) and NCI (OT ) from the client. Candidate
ontologies are loaded in parallel by file IO of the primary node which conse-
quently invokes the multi-node distributor for distributed matching. Socket ta-
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Fig. 17 Parallel flow for large biomedical track over multi-node

ble provides the multi-node distributor with socket objects for secondary nodes.
With the knowledge of available computing resources (3 nodes, 1 primary and
2 secondary, each with 8 cores available) and ontology subsets (Os, Ot) required
by matching algorithms, multi-node distributor of primary node creates 3 inde-
pendent matching requests of equal size. First matching request is forwarded to
the local multicore distributor where 8 independent matching jobs with an equal
number of independent matching tasks are created. Subsequently, multi-node dis-
tributor sends control messages to other secondary nodes with their respective
matching requests. At receiving nodes, these matching requests are forwarded to
their local multicore distributor. Assigned with their respective matching requests,
all 3 participating nodes load serialized subsets of whole FMA and NCI required by
matching algorithms from their respective ontology repositories. From this point
forward, every participating node executes independently, similar to the execution
of task 1 until an intermediate bridge ontology is generated by every node (Ob0,
Ob1, and Ob2). Aggregator at secondary nodes sends their respective intermedi-
ate ontologies to the primary node. These bridge ontologies are accumulated by
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(a) Performance-speedup (b) Speedup-matching effectiveness

Fig. 18 Results from large biomedical ontologies track, task 2

(a) Performance-speedup (b) Speedup-matching effectiveness

Fig. 19 Results from large biomedical ontologies track, task 3

aggregator at the primary node and finally delivered to the client as the formal
mediation bridge ontology (OB).

Results for this task from both the scenarios (desktop and cloud) are illus-
trated in Fig 18. For the multi-node desktop scenario, the sequential process takes
around 7 hours to complete the matching request; however, our system completes
the matching process within half-an hour over 24 threads with an impressive per-
formance speedup of 14.75 times. Same matching request is executed for the second
scenario over the multi-node Azure VM. The sequential process over the VM takes
15.5 hours to complete; however, our system completes the whole matching pro-
cess over 24 threads in slightly over 40 minutes with an impressive speedup of
21.8 times. Furthermore, similar to task 1 the accuracy of the matching process
stays preserved with the same effectiveness throughout the performance speedup
(illustrated in 18(b)).

5.3.3 Task 3: FMA-SNOMED small fragments

This task consists upon matching relatively smaller fragments of FMA and SNOMED
ontologies. The FMA fragment consists upon 13% of whole FMA ontology (10,157
concepts) while the SNOMED fragment consists upon 5% of whole NCI ontology
(13,412 concepts).

Similar to task 1, we have executed our system in both multicore desktop
and cloud scenario as a single-node execution. Results from these scenarios are
illustrated in Fig 19. For the single-node desktop scenario, the sequential process
takes around 8 minutes to complete the matching request; however, our system
completes the matching process in slightly over one and half minute over 8 threads
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(a) Performance-speedup (b) Speedup-matching effectiveness

Fig. 20 Results from large biomedical ontologies track, task 4

with an impressive performance speedup of 4.76 times. Same matching request is
executed for the second scenario over the single-node Azure VM. The sequential
process over the VM takes around 18 minutes to complete; however, our system
completes the whole matching process over 8 threads in slightly less than two
and half minutes with an impressive speedup of 7.56 times. Furthermore, similar
to previous tasks, the accuracy of the matching process stays preserved with the
same effectiveness throughout the performance speedup (illustrated in 19(b)).

5.3.4 Task 4: FMA whole ontology with SNOMED large fragment

This task consists upon matching the whole FMA ontology with a large fragment
of SNOMED ontology. The FMA ontology consists upon 78,989 concepts while the
SNOMED fragment consists upon 40% of SNOMED ontology (122,464 concepts).

Similar to task 2, we have executed our system in both multicore desktop and
cloud scenario as multi-node execution. Results from these scenarios are illustrated
in Fig 20. For the multi-node desktop scenario, the sequential process takes about
14 hours to complete the matching request; however, our system completes the
matching process in less than an hour over 24 threads with an impressive perfor-
mance speedup of 15.64 times. Same matching request is executed for the second
scenario over the multi-node Azure VM. The sequential process over the VM takes
over 26 hours to complete; however, our system completes the whole matching pro-
cess over 24 threads in slightly over an hour with an impressive speedup of 21 times.
Furthermore, similar to the previous tasks, the accuracy of the matching process
stays preserved with the same effectiveness throughout the performance speedup
(illustrated in 20(b)).

5.3.5 Task 5: SNOMED-NCI small fragments

This task consists upon matching relatively smaller fragments of SNOMED and
NCI ontologies. The SNOMED fragment consists upon 17% of SNOMED ontol-
ogy (51,128 concepts), while the NCI fragment consists upon 36% of whole NCI
ontology (23,958 concepts).

Similar to task 1 and 3, we have executed our system in both multicore desktop
and cloud scenario as a single-node execution. Results from these scenarios are
illustrated in Fig 21. For the single-node desktop scenario, the sequential process
takes around an hour to complete the matching request; however, our system
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(a) Performance-speedup (b) Speedup-matching effectiveness

Fig. 21 Results from large biomedical ontologies track, task 5

(a) Performance-speedup (b) Speedup-matching effectiveness

Fig. 22 Results from large biomedical ontologies track, task 6

completes the matching process in 11 minutes over 8 threads with an impressive
performance speedup of 5.31 times. Same matching request is executed for the
second scenario over the single-node Azure VM. The sequential process over the
VM takes around 116 minutes to complete; however, our system completes the
whole matching process over 8 threads in 16 minutes with an impressive speedup
of 7.25 times. Furthermore, similar to previous tasks, the accuracy of the matching
process stays preserved with the same effectiveness throughout the performance
speedup (illustrated in 21(b)).

5.3.6 Task 6: NCI whole ontology with SNOMED large fragment

This task consists upon matching the whole NCI ontology with a large fragment
of SNOMED ontology. The NCI ontology consists upon 66,724 concepts while the
SNOMED fragment consists upon 40% of SNOMED ontology (122,464 concepts).

Similar to task 2 and 4, we have executed our system in both multicore desktop
and cloud scenario as multi-node execution. Results from these scenarios are illus-
trated in Fig 22. For the multi-node desktop scenario, the sequential process takes
close to 8 hours to complete the matching request; however, our system completes
the matching process in half-an-hour over 24 threads with an impressive perfor-
mance speedup of 15.19 times. Same matching request is executed for the second
scenario over the multi-node Azure VM. The sequential process over the VM takes
over 17 hours to complete; however, our system completes the whole matching pro-
cess over 24 threads in less than an hour with an impressive speedup of 22 times.
Furthermore, similar to the previous tasks, the accuracy of the matching process
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Fig. 24 Results from conference track over dual core single-node Azure VM part-I

stays preserved with the same effectiveness throughout the performance speedup
(illustrated in 22(b)).

5.4 Conference Track

The conference track consists of mapping generation within a collection of on-
tologies describing the domain of organizing conferences. From trivial string-based
correspondence, bridging these ontologies also require semantic-based matching.
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Fig. 25 Results from conference track over dual core single-node Azure VM part-II

Therefore, to generate bridge ontology we have used a matching library with
String-based, Annotation-based, Child-based Structural matching, and Synonym-
based matching algorithm which utilizes a static dictionary file (illustrated in Fig
23). Due to the smaller size of these ontologies we have used the A2 (dual core)
Azure VM for evaluation. We have executed 12 different mapping tasks on cmt,
conference, confOf, edas, ekaw, iasted, and sigkdd ontologies. Results from these
tasks are illustrated in Fig 24 and 25.
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Table 1 Result Summary

Matching Domain Platform Speed Precision
Problem up

Small cmt-iasted Conference Single-node Cloud VM 1.22 0.57
conference-edas Single-node Cloud VM 1.25 0.81
conference-iasted Single-node Cloud VM 1.39 0.80
confof-edas Single-node Cloud VM 1.11 0.87
confof-iasted Single-node Cloud VM 1.38 0.82
confof-sigkdd Single-node Cloud VM 1.19 1.00
edas-sigkdd Single-node Cloud VM 1.28 0.92
ekaw-iasted Single-node Cloud VM 1.39 0.67
ekaw-sigkdd Single-node Cloud VM 1.23 0.79
iasted-sigkdd Single-node Cloud VM 1.33 0.87
edas-ekaw Single-node Cloud VM 1.11 0.79
edas-iasted Single-node Cloud VM 1.25 0.86

Medium human-mouse Anatomy Single-node Desktop 4.05 0.99
Single-node Cloud VM 5.56 0.99

STW-TheSoz Library Single-node Desktop 4.15 0.67
Single-node Cloud VM 6.38 0.67

FMAs-NCIs Biomedical Single-node Desktop 4.27 0.95
Single-node Cloud VM 6.53 0.95

Large FMAw-SNOMEDs Single-node Desktop 4.76 0.93
Single-node Cloud VM 7.56 0.93

NCIw-SNOMEDs Single-node Desktop 5.31 0.95
Single-node Cloud VM 7.25 0.95

Very FMAw-NCIw Multi-node Desktop 14.75 0.80
Large Multi-node Cloud VM 21.80 0.80

FMAw-SNOMEDl Multi-node Desktop 15.64 0.66
Multi-node Cloud VM 20.91 0.66

NCIw-SNOMEDl Multi-node Desktop 15.19 0.89
Multi-node Cloud VM 21.93 0.89

5.5 Results summary

In our evaluation, we have used the dataset of real-world ontologies provided by
OAEI’s 2013 campaign. The key strength of this dataset is its comprehensive-
ness that cannot be achieved in datasets comprised of synthetic and custom-built
ontologies. The results from the matching problems of OAEI’s dataset are sum-
marized in Table 1. These results provide evidence for four major characteristics
of our system, described in the following subsections.

5.5.1 Independent of ontology domain

As stated in the related work section, some of the matching systems are built spe-
cific for ontology domains, particularly systems for matching biomedical ontologies.
However, the longevity and applicability of an ontology matching system increases
with its support to a larger set of ontologies. Therefore, a state-of-the-art ontology
matching systems must be independent of ontology domain. The candidate ontolo-
gies used in the matching problems evaluated by our system are of diverse domains.
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Fig. 26 Results summary

No change has been inflicted in the structure of the candidate ontologies, yet our
system scores impressive performance speedup on all the matching problems. For
example, problem of matching library ontologies and small FMA with small NCI
ontologies are from different domains of knowledge; furthermore, different match-
ing libraries are used for their mediation. However, due to the ontology subsets
generated based on the type of matching algorithms and independent nature of the
matching tasks, both of the matching problems score similar performance speedup
on the same platform.

5.5.2 Performance-based ontology matching over various size of matching
problems

As described in Table 1, we can classify the matching problems in four categories:
(i) small, containing conference ontologies track; (ii) medium, containing anatomy,
library, and task 1 (FMA with NCI small fragments) from large biomedical ontolo-
gies track; (iii) large, containing task 3 (FMA-SNOMED small fragments) and 5
(SNOMED-NCI small fragments) from large biomedical ontologies track and (iv)
very large, containing task 2 (FMA-NCI whole ontologies), 4 (FMA whole ontol-
ogy with SNOMED large fragment), and 6 (NCI whole ontology with SNOMED
large fragment) from large biomedical track. The average speedup by a category is
illustrated in Fig 26. It is quite evident from the figure that our system is more ben-
eficial to the ontology matching problems with a medium to large and very large
sizes. Results for the small category containing conference track are obtained from
a dual core Azure VM. Although the sequential process does complete the match-
ing process quite efficiently due to the small nature of the matching problem, yet
our system was able to improve the performance by an average speedup of 1.25
times ( ≈ 20% more efficient than sequential matching process).

The medium category was evaluated on a quad-core Hyper-Threaded desktop
and an Azure VM with 8 cores. The average performance speedup is 4.1 and 5.9
on desktop and cloud respectively. Comparing these results to the average speedup
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of medium-scale problem of [16], even with an inferior hardware our system out-
performs the intra-matcher by 5% on the desktop and 51% over cloud platform.

The large category was also evaluated on a quad-core Hyper-Threaded desktop
and an Azure VM with 8 cores. The average performance speedup is 5.0 and 7.4 on
desktop and cloud respectively. Comparing these results to the average speedup
of the large-scale problem of [16] on a single node, our system outperforms the
intra-matcher by 5.2% on desktop and 55% over the cloud platform.

For the very large category, average speedup has been calculated over single-
node (8 cores), and multi-node (16 and 24 cores). On a single-node the results
are quite similar to single-node large category, i.e., 4.97 and 7.02 times on desk-
top and cloud respectively. Our system outperforms the intra-matcher of [16] by
4.6% on desktop and 47.78% over cloud platform. In case of multi-node platform
with dual nodes (8 cores each), our system completes the matching process with
average speedup of 9.42 and 14.1 on desktop and cloud respectively. Comparing
these results with Intra&Inter multi-node matcher of [16] over 16 cores, our sys-
tem running over Azure VMs outperforms Intra&Inter matcher by 12.8%. Scaling
the same matching problem to 3 nodes (8 cores each), our system completes the
matching process with average speedup of 15.16 times on a desktop and 21.51
times over cloud platform.

5.5.3 Effectiveness-Independent performance-gain

As described earlier, ontology matching systems developed over the years have
taken performance into consideration; however, it is tightly coupled with the effec-
tiveness of their matching algorithms. On the other hand, methodology proposed
by our system extracts performance-gain without inflicting any changes in the ac-
curacy of the matching algorithm. From the results, it is clear that the accuracy
of the matched results remains preserved even when scaling up to multiple cores
for parallel matching. In all the performed evaluations, the effectiveness measures
remain constant even with substantial gain in performance.

5.5.4 Matching library interface

To implement effectiveness-independent performance-gain, distributor components
of our system, decouples the matching library from the performance runtime with
the help of a matching library interface. This approach provides an additional ben-
efit of plug-n-play matching algorithms and libraries. In our evaluation, we have
used three different ontology matching libraries with different accuracy measures,
provided to us by different semantic web experts. For anatomy and library match-
ing problem, same matching library of String, Label, and Child-based algorithms is
used. For large-biomedical tracks, a matching library with String, Annotation, and
Child-based algorithms is used. For conference matching problems, another library
with four matching algorithms, i.e., String, Annotation, Child, and Synonym-based
matching algorithm is used. This characteristic of our system provides an exclusive
performance-based ontology matching runtime that can host and execute match-
ing algorithms and libraries, developed by semantic web experts without worries
of accuracy loss or platform-level maintenance.
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6 Conclusion

In this paper, we presented our performance-based ontology matching system
which implements effectiveness-independent data-parallel approach for matching.
Ontology matching is a widely used technique for heterogeneity resolution among
information and knowledge-based systems; however, size, complexity, and avail-
ability of these ontologies require solutions that are built from a performance
aspect. With the availability of affordable parallelism-enabled multicore platforms
like desktop and cloud, our system is built to exploit their performance benefits
by data parallelism for ontology matching.

Our system divides the whole matching process into three stages, i.e., pre-
matching, parallel matching, and post-matching, with each stage designed to con-
tribute in the overall performance aspect of ontology matching. By default, on-
tologies are not scalable structures; therefore, pre-matching stage converts the
candidate ontologies into smaller, simpler, and scalable resource-based ontology
subsets, based on the requirements of matching algorithms. This method provides
the resolution to the scalability challenge of ontology matching by providing on-
tology subsets that are distribution friendly. Furthermore, due to the smaller size,
independent and scalable nature of these subsets, accessing ontology resources is
significantly faster than loading directly from the ontology files. We have recorded
8 times faster ontology resource loading with 4 times smaller memory footprint
working with ontology subsets instead of whole ontologies. These subsets are also
serialized and persisted by our system for reuse. Moreover, pre-matching stage
also acts as an adapter for ontologies to be plugged into our system. No change is
inflicted in the original structure of candidate ontologies to make them compatible
with parallel matching.

In the parallel-matching stage, ontology subsets generated by the pre-matching
are further used by distributor components for implementing the three-layer dis-
tribution abstraction. This abstraction constitutes upon independent matching
requests generated for each participating node by multi-node distributor, and
matching jobs and matching tasks generated by multicore distributor for partici-
pating cores per node. These abstractions are independent in nature and provide
the foundation for data-parallel ontology matching. This method of distributing
matching process from grainer level matching request to finer level matching tasks
provides the resolution to the resource utilization challenge of the performance
aspect of ontology matching. Consequently, over parallelism-enabled platforms we
have recorded a performance speedup of 4.1 to 7.5 times on single-node multicore
platforms and up to 21.5 times on multi-node platforms. Furthermore, distribution
components provide the interface to matching libraries and algorithms. Matching
tasks are assigned with instances of matching algorithms to be executed at the run-
time with no change inflicted in the implementation of the algorithm. This method
decouples the performance aspects of ontology matching from accuracy, provid-
ing an effectiveness-independent approach. We have recorded no change in the
accuracy measures while scaling up the matching process for data-parallel match-
ing. Matched results from matched tasks distributed over computing resources are
aggregated to generate the required mappings as mediation bridge ontology by
post-matching stage.

To further contribute in overall performance of the ontology matching process,
our system also aligns the execution of matching algorithms such that the matching
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space of every following algorithm execution gets minimized. This method speeds
up the matching process by only matching the unmatched ontology resources;
consequently, avoiding the redundant matching operations.

For benchmarking of our system, we have used OAEI’s real-world ontology
dataset. The evaluation tracks and their tasks provided by OAEI’s semantic web
experts are specifically designed to evaluate the state-of-the-art ontology matching
systems. This dataset includes fourteen ontologies from diverse domains, different
sizes, and complexities. Evaluation on such a diverse dataset of ontologies have val-
idated the generic nature of our system, i.e., performance-based ontology matching
process executes regardless of the type and scope of candidate ontologies. Further-
more, matching problems for evaluation are classified into different sizes, varying
from small to very large-scale ontologies. Although our system provides a small
performance speedup (1.25 times) on smaller ontologies; however, it scores impres-
sive performance-gain where matters the most, i.e., in solving medium to large-
scale ontology matching problems. For medium scale ontology matching problems,
the average performance speedup is 4.1 and 5.9 over single-node desktop and Mi-
crosoft Azure VM respectively. For large-scale ontology matching problems, the
average performance speed is 5.0 and 7.4 over single-node desktop and Azure VM
respectively. For very-large-scale ontology matching problems, the average perfor-
mance speedup is 15.16 and 21.51 times over multi-node desktop and Azure cloud
platform. For further evaluation, our system is currently deployed over Microsoft
Azure public cloud environment and currently being used by a running instance
of a Clinical Decision Support System (CDSS). The interoperability engine of the
CDSS is using our systems performance-based ontology matching for finding map-
pings between biomedical ontologies.

From the recorded results drawn by our system working with real-world on-
tologies, it is apparent that our approach offers a comprehensive resolution to
the performance challenges of ontology matching problems. Moreover, our system
is generic, effectiveness-independent, and aligned with the use of new generation
computing platforms. Due to the extensive use of ontologies, the size and com-
plexity of ontology matching problems will increase. From the results, it is evident
that our system performs impressively well on medium to very large-scale ontol-
ogy matching problems. Thus, our proposed system has the required longevity for
the future ontology matching problems. We have on-going research in the area
of performance-based ontology matching, with the proposed system as a research
outcome. We have on-going research in the area of performance-based ontology
matching, with the proposed system as a research outcome. Although our sys-
tem scores impressively during evaluation, there are few limitations of the current
implementation. Apparently our system presumes the multi-node environment to
be homogenous, which might not stay true in the longer run as heterogeneous
computing environments are becoming available with the excessive use of cloud
computing. Furthermore, relationship needs to be identified between the size of
the matching problem and acquisition of computing resources, such that optimal
distribution slab for matching tasks can be identified automatically. These two
important aspects are among the scope of our future work.

From the application and usability perspective of our system, it can greatly
benefit semantic web experts, researchers, and dynamic systems, which rely on
ontology matching to provide heterogeneity resolution. Due to the computational
complexity and increasing size of these ontologies, a client has to wait for in-time
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results. Our system provides a resolution to these clients by performing matching
operations in parallel over affordable platforms for fast results. Our system is built
to scale from multicore desktops PCs to ubiquitous and affordable distributed
multi-node platforms like clouds for better performance. Furthermore, semantic-
web experts who are focused on building matching algorithms can integrate their
encapsulated algorithms and benefit from the parallel execution without writing
any parallelism code with-in or to complement the matching algorithms. Moreover,
due to the effectiveness-independent data-parallel approach of our system, these
experts do not have to worry about any accuracy loss with performance speedup.
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