
1 23

Applied Intelligence
The International Journal of Artificial
Intelligence, Neural Networks, and
Complex Problem-Solving Technologies

ISSN 0924-669X

Appl Intell
DOI 10.1007/s10489-015-0688-4

Gaussian process for predicting CPU
utilization and its application to energy
efficiency

Dinh-Mao Bui, Huu-Quoc Nguyen,
YongIk Yoon, SungIk Jun, Muhammad
Bilal Amin & Sungyoung Lee

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Appl Intell
DOI 10.1007/s10489-015-0688-4

Gaussian process for predicting CPU utilization
and its application to energy efficiency

Dinh-Mao Bui1 ·Huu-Quoc Nguyen1 ·YongIk Yoon2 · SungIk Jun3 ·
Muhammad Bilal Amin1 · Sungyoung Lee1

© Springer Science+Business Media New York 2015

Abstract For the past ten years, Gaussian process has
become increasingly popular for modeling numerous
inferences and reasoning solutions due to the robustness and
dynamic features. Particularly concerning regression and
classification data, the combination of Gaussian process and
Bayesian learning is considered to be one of the most appro-
priate supervised learning approaches in terms of accuracy
and tractability. However, due to the high complexity in
computation and data storage, Gaussian process performs
poorly when processing large input dataset. Because of
the limitation, this method is ill-equipped to deal with the
large-scale system that requires reasonable precision and

� Sungyoung Lee
sylee@oslab.khu.ac.kr

Dinh-Mao Bui
mao.bui@khu.ac.kr

Huu-Quoc Nguyen
quoc@khu.ac.kr

YongIk Yoon
yiyoon@sm.ac.kr

SungIk Jun
sijun@etri.re.kr

Muhammad Bilal Amin
mbilalamin@oslab.khu.ac.kr

1 Department of Computer Engineering, Kyung Hee University,
Suwon, Republic of Korea

2 Department of Multimedia Science, SookMyung Women’s
University, Seoul, Republic of Korea

3 HPC System Research Section/Cloud Computing
Department, ETRI, Daejeon, Republic of Korea

fast reaction rate. To improve the drawback, our research
focuses on a comprehensive analysis of Gaussian process
performance issues, highlighting ways to drastically reduce
the complexity of hyper-parameter learning and training
phases, which could be applicable in predicting the CPU uti-
lization in the demonstrated application. In fact, the purpose
of this application is to save the energy by distributively
engaging the Gaussian process regression to monitor and
predict the status of each computing node. Subsequently,
a migration mechanism is applied to migrate the system-
level processes between multi-core and turn off the idle
one in order to reduce the power consumption while still
maintaining the overall performance.

Keywords Proactive prediction · Bayesian learning ·
Gaussian process · Parallel computing · Energy
efficiency · CPU utilization

1 Introduction

Gaussian process is a stochastic process that exists in many
research fields such as data communication, networking and
computer science. It is widely used as a non-parametric
and probabilistic approach to model the characteristics of
the target system. Rather than determining the parame-
ters of the model from scratch, Gaussian process helps
adapt these parameters to represent the actual underlying
function. As such, Gaussian process is a suitable choice
for noisy, corrupted or erroneous data. In fact, there are
numerous applications that adopt Gaussian process com-
prising various machine learning solutions such as image
classification, dimensional reduction, unsupervised learn-
ing problems [1] and time series prediction. Compared to
other famous methods including linear regression, k-nearest

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10489-015-0688-4-x&domain=pdf
mailto:sylee@oslab.khu.ac.kr
mailto:mao.bui@khu.ac.kr
mailto:quoc@khu.ac.kr
mailto:yiyoon@sm.ac.kr
mailto:sijun@etri.re.kr
mailto:mbilalamin@oslab.khu.ac.kr

D.-M. Bui et al.

neighbor, multivariate regression splines, multi-layer per-
ceptron and support vector regression, the Gaussian process
regression (GPR) outperforms them in terms of both accu-
racy and flexibility [2]. Furthermore, the output of GPR is
also simple. It comprises a set of mean and variance from the
Gaussian distribution, which represents the predictive value
and the confidence of the prediction, respectively.

Because of these properties, GPR should be a major solu-
tion for inference and interpolation purposes. However, this
technique does have one significant drawback. In a standard
implementation, GPR costs O(n3) for computational com-
plexity and O(n2) for storage complexity when calculating
n training points of dataset [3]. Theoretically, these results
come from the matrix inversion and the log determinant cal-
culation. Furthermore, for a large-scale system, the problem
is even worse in terms of reaction rate.

There has been a lot of research aiming at overcoming
these limitations. Some of these research focus on utiliz-
ing the well-known mathematical methods (like Cholesky
decomposition and reduced rank covariance matrix) to
reduce the complexity to O(cn2) and O(cn) for computa-
tion and storage, respectively c is a constant being equal to
1/6 and n is the number of training point of dataset. These
parameters together express the cost of Newton iterations
which is described in detail in [4]). Nevertheless, it is still
not fast enough to satisfy the strict requirement of large-
scale system, which prefers the solution to be as simple
as possible. Others research is related to the optimization
techniques, which seem to be effective. Nevertheless, these
techniques also encounter the reliability issues and will still
be slow in comparison with the mathematical methods. Fur-
ther detail about these approaches is included in the Related
Works section.

In this paper, we propose a solution for the complex-
ity problem in Gaussian process regression which is par-
ticularly related to time series prediction in the periodic
spatial-temporal dimension. Theoretically, this approach
constructs a combination of mathematical modeling, convex
optimization and parallel computing to drive the complex-
ity to O(nlogn) for the hyper-parameter learning, O(n/np)

for the training phase and O(n) for the storage, where n

is the number of training point calculating on np com-
puting nodes. These improvements are applicable to the
large dataset and can be suitably integrated into the large-
scale system. In order to verify the proposed idea, an
application aiming at proving the effectiveness of the pro-
posed method is devised. Basically, this application pre-
dicts the multi-core CPU utilization and issues the pro-
cess migration between the cores in order to achieve the
overall energy efficiency while still maintaining the high
performance.

This paper is organized as follows. In Section 2, we
provide the related works that are relevant to the topic.

In Section 3, we present the motivation behind the
proposed idea and the energy saving application. We detail
the regression framework in Section 4. In Section 5, we
conduct the performance evaluation of the demonstrative
application. Our conclusion and direction for future work
are summarized in Section 6.

2 Related works

Gaussian process has been in use for a long time with a mul-
titude of successful applications. As previously mentioned,
the related research and applications mainly focus on classi-
fication and regression, particularly for time series modeling
[5]. In more specific, most of the research examines the
theory and conducts the experiments to clarify the role of
covariance matrix, mean function and hyper-parameters in
Gaussian process. In addition, various kernel functions such
as Radial Basis Function (RBF), Matérn Kernel Function,
Rational Quadratic Kernel, Multi inputs & outputs, and
Periodic & Quasi-periodic kernels [6] are also studied to
show the flexibility of Gaussian process in modeling many
kinds of dataset.

In the research concerning the usability of Gaussian pro-
cess for predicting chaotic time series [7, 8], the evolving
Gaussian process method has been proposed to identify
chaotic time series events in the system as an on-line method
for modeling. In this method, the information is received
in the streaming mode and the hyper-parameters are then
adjusted to adapt the prediction model to the data. In other
words, an on-line sparse method for Gaussian process mod-
eling has been introduced to sequentially process the con-
tinuous bulk of the information (which is contained in the
streaming data) and accommodate the hyper-parameter val-
ues with the incoming data. Studying the hyper-parameters
on-line is interesting; however, in the optimization phase,
this method only engages the Conjugate Gradient (CG)
iterative technique for minimizing the negative log likeli-
hood function and Cholesky decomposition for updating the
covariance matrix . For more information, CG is the famous
optimization method to solve sparse systems of linear equa-
tion, especially the sparse matrices [9]. Similarly, Cholesky
decomposition is popularly used to avoid directly inverting
the matrix in solving linear systems because of the stability
and convenience in calculation. However, as shown above,
these techniques only reduce the computational complex-
ity to O(cn2) and obviously not much improve the overall
performance of the system.

Another approach for on-line hyper-parameter learn-
ing is introduced in [10], where an adaptive controller is
constructed. In this research, the optimization method is
proposed to enhance the on-line hyper-parameters estima-
tion. The optimization technique engaged in the estimation

Author's personal copy

Gaussian process for predicting CPU utilization

is the Stochastic Gradient Ascent which is empirically
suitable for on-line learning. Furthermore, an uncorre-
lated point removal scheme is also included to reduce the
dataset size. In this scheme, only sufficient data points are
kept when recalculating the hyper-parameters and the ker-
nel function values. The computational complexity of this
approach is O(n2) for n training points, which is still high
when dealing with the large dataset.

To better handle big volume of dataset, the research in
[11] proposes the use of the random projection method
to reduce the dimension of the data point. This technique
is applied to matrix approximation to reduce the rank of
covariance matrix and consequently reduce the computa-
tional complexity from O(n3) to O(n2m), where n is the
number of data point and m is the best rank approxima-
tion for the covariance matrix. This method improves the
matrix inversion and also generalizes the random projec-
tion algorithm. Comparing to other optimization methods,
this approach is not much impressive in terms of the results;
however, it still shows the potential for clustering and
classifying the general data matrix.

Other research on Gaussian process for Big Data [12]
focuses on the Stochastic Variational Inference (SVI)
method for constructing Gaussian process model. One inter-
esting advantage of this approach is the independent com-
plexity with regard to the dataset. This method allows
variational inference performing on a very large dataset and
shows impressive performance in terms of the speed of
inference. Nonetheless, the SVI only works properly in the
special system in which the observational and latent vari-
ables are globally factorized. Unfortunately, Gaussian pro-
cess does not have that kind of global variable. In addition,
because of the input-independent property, the SVI-oriented
methods are affected by large variance which results in less
precise solution.

Another approach utilizes the KD-Tree on fast Gaussian
process regression [13] which enhances the speed of the
hyper-parameter learning phase. Theoretically, the compu-
tational complexity of this particular phase decreases from
O(n3) to O(n) for n training points which is a significant
improvement. In this method, the dataset is recursively par-
titioned into many subsets and assigned to corresponding
nodes of a binary tree. In addition, the cached informa-
tion of the weighted sum for each node is also included in
order to accelerate the summation procedure. Although the
KD-Tree technique expedites the hyper-parameters estima-
tion, the training phase still tolerates low performance by
using the Conjugate Gradient iterative method when pro-
cessing large dataset. Furthermore, the computational cost
of O(nlogn) is also added, since the algorithm must invest
in advance to build build the KD-Tree. Because of the extra
computation, this approach is less than ideal for the problem
of numerous data points.

In contrast with the aforementioned KD-Tree technique,
the Improved Fast Gauss Transform (IFGT)[14], which is
a Matrix-Vector Multiplication (MVM) method, performs
better in both the hyper-parameter learning and the train-
ing phase. This approach improves upon the Fast Gauss
Transform (FGT) (which is originally derived from the well-
known Fast Multipole Method [15]) by adaptively choosing
the precision parameter during the approximation process.
In addition, the IFGT shares the divide-and-conquer mech-
anism that is similar to the one used in the KD-Tree
technique. In essence, the IFGT also partitions the domain
by k-centers clustering, then caches the sum of contribution
in each level for accelerating purpose. Despite this notable
improvement, the IFGT still has a critical drawback because
this method mostly relies on the FGT which is only effective
if the objective function can be expanded to the Gaussian-
type potential (the definition of potential or layer potential,
which is originally derived from the potential theory [16],
firstly used to solve linear constant-coefficient parabolic
partial differential equations by transforming the original
kernel formula to many layers for computational conve-
nience. Each layer is named as a potential. In that sense, the
Gaussian-type potential is actually the Gauss transform of
the kernel in both physical and Fourier domains to layers).
Unfortunately, this requirement has not always been satis-
fied in the hyper-parameter learning phase. This problem
results in unreliable calculation for the hyper-parameters
estimation. Further elaboration of this issue and potential
solution will be addressed later in this research.

Although there has been a significant amount of research
focusing on Gaussian process regression, not much progress
has been made in terms of performance improvement, espe-
cially the optimization. Furthermore, due to the fact that
large dataset is popular in the current distributed system,
it is necessary to develop a low-complexity and reliable
method to process the data and give the reliable predictive
information in acceptable processing speed.

3 Motivation

3.1 Domain analysis

Rather than discussing the theory of Gaussian process
regression (GPR), it is more productive to develop a solu-
tion based on a popular problem in order to showcase the
methodology. In this research, we attempt to predict the
workload of each core in the CPU. In the first step, we would
like to discuss the domain of the problem of interest. Intu-
itively, the computation is mostly based on the monitoring
statistic of CPU multi-core. This statistic is periodic, noise-
free, and consists of two quantities: the arrival rate of the
incoming processes and the service rate of each core with

Author's personal copy

D.-M. Bui et al.

regard to the time epoch. In light of the queuing theory, we
model these quantities via M/M/s Markov Chain (Fig. 1).
For more information, M/M/s Markov Chain is a stochas-
tic process in which the first M stands for the Poisson arrival
rate of customer, the second M is the exponential service
rate of the server and the s generally represents the number
of server providing service in the system. In this model, the
CPU comprises s - the number of core with identical pro-
cessing capability. Each core is represented by the service
rate μ. The system processes, which follow the arrival rate
λ, continuously come to the processor to be served. Sub-
sequently, the departure of completed task begins and the
complementary resources are cleaned. Depending on these
parameters, the CPU utilization denoted by ρ is formulated
as follows:

ρ = λ

sμ
(1)

Typically, the nature of inter-arrival time of incoming
processes and the service time of the CPU core is expo-
nential, which is similar to the other arrival rates in com-
munication and service providing. Therefore, the counting
procedure in this case is truly a Poisson process with regard
to the time. Due to these aforementioned reasons, the super-
vised machine learning technique (or regression technique
in detail) is the most suitable for handling the problem of
uncertainty and time series forecasting [6].

3.2 Approaches

According to the predefined domain, our goal is to predict
the desired information from the input value. This means
that the predictive utilization of the CPU core in the future
time is expected after investigating the input data. Like-
wise, the relationship between the input data and the output
interpolation should be re-constructed. In other words, the
underlying function producing an output from the input
is needed to analyze. To do that, there are two common
approaches: restriction bias and preference bias. While the
former approach restricts the class of function to consider,
the latter approach takes into account the probability of
every possible function. The higher probability the function
achieves, the more likely it is chosen for implementation.

For each of these methods, there are some drawbacks that
should be investigated.

The first approach generates the poor prediction if
the chosen function and the underlying function are mis-
matched. Moreover, increasing the number of chosen func-
tion to adapt to the training data might lead to an issue of
over-fitting. Although the trained algorithm would be able
to work properly with the training data, the accuracy would
be dramatically decreased when coping with the real-world
data.

In contrast to the restriction bias, the preference bias
provides the flexibility in terms of choosing the function.
However, this approach still encounters some critical obsta-
cles leading to the poor performance. As there are numerous
sets of possible function to examine, evaluating all of them
in a finite amount of time is almost impossible. There-
fore, it is necessary to determine a method which is capable
of achieving the necessary flexibility and obtaining the
targeted output at a faster rate.

The anticipation on arrival rate of incoming process over
time shapes a time series function [17]. For instance, a
time series y(t) with regard to the time t is actually a
non-deterministic function y of the independent variable t .
Modeling this kind of variable by applying the regression
technique reveals the relationship between the aforemen-
tioned arrival rate in the present and the future:

y(t) = f (t) + ε (2)

in which, f (t) is the underlying function and ε is a zero
mean additive noise process. Due to the domain of interest,
it is known that both the input and output are noise-free. As
a result, the parameter ε must be equal to zero.

With an input-output pair being considered as an obser-
vation, the problem of interest is the probability of Y at
given time t . Fortunately, the expression of this problem also
implies the solution, or at least the proper method to deter-
mine the solution. Theoretically, this is similar to the Bayes’
rule, which is used in probability inference [18]. Therefore,
a suitable inference technique should engage the Bayesian
approach [5, 19] as follows:

P(Y |X) = P(X|Y)P (Y)

P (X)
(3)

Fig. 1 Markov chain representation for processing activity in CPU cores

Author's personal copy

Gaussian process for predicting CPU utilization

At this point, it is beneficial to understand the charac-
teristics of the arrival process. As briefly mentioned in the
Domain analysis section of this paper, the probability den-
sity of the counting process for the arrival is the Poisson
probability density, which is represented by the following
function:

f (k, λ) = P(Y = k) = λk exp(−λ)

k! (4)

According to the Central Limit Theorem [18], when the
arrival rate is large (as the arrival rate of incoming process in
large-scale system would be), the Poisson distribution con-
verges to the Gaussian distribution [12]. As a result, it makes
sense to integrate the Gaussian process framework into the
Bayesian learning approach [5, 20]. Comparing to the other
regression methods [10], Gaussian process framework is
one of the most suitable method for dealing with regression
problem, since it is powerful, non-parametric, and flexi-
ble [2, 21]. In addition, this framework is also capable of
uncertainty estimation using the training data, without the
requirement for an explicit declaration from the prediction
function.

4 Proposed method

4.1 Target process

To optimize the Gaussian process regression in the spatial-
temporal dimension, we choose to use an energy saving
application for demonstration. The energy efficiency archi-
tecture for the multi-core CPU is proposed in this section
and described in Fig. 2. Basically, the purpose of this archi-
tecture is to pro-actively reduce the energy consumption of
the CPU. Thus, the main functionality of this application is
to empty the workload of the CPU cores and then deacti-
vate or stand-by the idle cores to save the energy. To do this
effectively, the migration procedure on the Migrator com-
ponent requires the predictive information of the CPU core
utilization to determine the source and the destination in

Fig. 2 The architecture of energy saving application

order to migrate the target process (from this point, the sys-
tem process considered for migrating is known as the target
process). Primarily based on the current value of the CPU
core’s utilization, which is known as the heartbeat, the pre-
dictive utilization is calculated in the Utilization Predictor
and plays a critical role in decision making. For dealing with
the rapid change in the utilization of the CPU cores, the
energy saving application is implemented as a background
daemon in each computing node. This background daemon
is responsible for migrating the system processes between
the local CPU cores.

4.2 Source and destination

Based on the predictive information coming from the Uti-
lization Predictor, the Migrator reaches halfway to the final
goal. In fact, the predictive utilization of the CPU cores can
be employed to decide which core would be the best suited
as a source core to extract the target process. Typically, the
core with the lowest utilization is chosen to be the source
core. Then, it is necessary to choose the destination core for
placing the extracted target process. Depending on the basic
knowledge of the operating system, as well as the queu-
ing theory, various critical conditions must be considered
in order to judge the destination. First, the destination core
should not be the same as the source core. Moreover, the
destination core should not be blocked (the core should not
be too busy, as it would fail to accept the target process).
Finally, when the first two conditions are matched, the core
with the highest estimation of utilization is selected as the
next destination core.

Assuming that an arriving process comes to a specified
CPU core, that process might ’see’ an average number of
system process which are being held in progress. Because
the arrival counting follows the Poisson process, the Poisson
Arrival See Time Averages (PASTA) theory [22] is applica-
ble when estimating the desired average number of system
process. Following the PASTA theory, the average arrival
time is considered to be equal to the time average or the
expectation of waiting time in the CPU core. By apply-
ing the Pollaczek-Khintchine formula [22], the expectation
waiting time Ej of CPU core j can be calculated as follows:

Ej (W) = λτ 1/μ2

2(1 − λτ 1/μ)
(5)

in which, λτ is the arrival rate of the incoming process at
time τ , μ is the service rate of the CPU core and W is the
expected queuing delay in CPU core [22]. After estimating
the arrival average, the blocking rate of the CPU core can
be obtained by dividing this value by the service rate of the
core:

BRj = Ej (W)

μ
(6)

Author's personal copy

D.-M. Bui et al.

By evaluating the blocking rate BRj of each CPU core
j , it is easy for the Migrator to determine the destination
for migrating the target process. If there is no available core
for destination promotion, the migration procedure is can-
celed until there is at least one unblocked core. Finally, in
the worst case scenario in which all of the on-line cores
(including the CPU core being considered) are blocked, a
re-activation procedure is issued in order to re-activate the
stand-by cores one by one. This strategy helps the CPU
maintain an acceptable performance when dealing with the
incoming processes.

4.3 Prediction model

In our application, the object of prediction is to antici-
pate the utilization of CPU cores. Bayesian learning and
Gaussian process regression are employed as the inference
technique and probability framework, respectively. Because
the input data for this model is the time series utiliza-
tion, curve-fitting is preferred over function mapping for the
mapping approach. It is important to note that the curve-
fitting is more flexible with regard to the time series data
and non-stationary model.

Assuming that the input data is a limited collection of
time location x = [x1, x2, x3, · · · xn], a finite set of random
variable y = [y1, y2, y3, · · · yn] represents the correspond-
ing joint Gaussian distribution of incoming processes with
regard to the time order. This set over the time constraint
actually forms up the Gaussian process:

f (y|x) ∼ GP
(
m(x), k(x, x′)

)
(7)

with

m(x) = E (f (x)) (8)

k(x, x′) = E
(
(f (x) − m(x))

(
f (x′) − m(x′))) (9)

in which, m(x) is the mean function, evaluated at the time
location variable x, and k(x, x′) is the covariance function,
also known as the kernel function [23]. By definition, the
kernel function is a positive-definite function which is used
to define the prior knowledge of the underlying relationship.
Basically, the kernel function is only a mandatory require-
ment when there is lack of finite dimensional form of the
feature space. Otherwise, it can be dropped by directly cal-
culating the sample. However, this feature space dimension
is frequently infinite, which means that the kernel function
cannot be directly calculated. For this reason, the kernel
function technique is often chosen to tackle the Gaussian
process regression. In addition, the kernel function com-
prises some special parameters that specify its own shape.
These parameters are referred to as the hyper-parameters.
Because the input data comes to the Predictor as a set of n

time locations, the kernel should be engaged in the matrix
form.

K =

⎛

⎜⎜
⎜
⎝

k(x1, x1) k(x1, x2) · · · k(x1, xn)

k(x2, x1) k(x2, x2) · · · k(x2, xn)
...

...
. . .

...

k(xn, x1) k(xn, x2) · · · k(xn, xn)

⎞

⎟⎟
⎟
⎠

(10)

Generally, the Square-Exponential (SE) kernel, also
known as the Radial Basis Function (RBF) kernel, is cho-
sen as the basic kernel function. In reality, the SE kernel
is favored in most of the Gaussian process applications,
because it requires the calculation for only few parame-
ters. Moreover, there is a theoretical reason to choose this
method, as it is an appropriately universal kernel for any
continuous function whenever enough data is given. The
formula for SE kernel is described as follows:

kSE(x, x′) = σ 2
f exp

(
− (x − x′)2

2l2

)
(11)

in which, σf is the output-scale amplitude and l is the
time-scale of the variable x from one moment to the next. l

also stands for the bandwidth of the kernel and the smooth-
ness of the function. In addition, l also plays the role of
judgment for Automatic Relevance Detection (ARD) to dis-
card the irrelevant input dimension. Although the SE kernel
has many computational benefits, its drawbacks include
unreasonable smoothness assumption and underestimating
the variance of prediction. Due to this reason, the Matérn
kernel may be considered as a good alternative. The formula
for Matérn kernel is described as follows:

kM(x, x′) = σ 2
f

1

Γ (ν)2ν−1

(√
2ν

|x − x′|
l

)ν

×Bν

(√
2ν

|x − x′|
l

)
(12)

where σf is the output scale, l is the time-scale between the
moment of variable x and x′, Γ () is the standard Gamma
function and Bν is the modified second order Bessel func-
tion. An extra hyper-parameter ν specifies the roughness,
also known as the degree of differentiation. For machine
learning purposes, ν regularly equals to 3/2 or 5/2 [4].
Since ν should not be too high or it will distort the shape of
the prediction function at the edges. One disadvantage of the
Matérn kernel is computationally intensive due to the com-
plexity of solving the Bessel and Gamma functions. Among
these kernels, it is necessary to rely on the learning strat-
egy to decide the suitable kernel as the covariance function.
In this research, the SE kernel is chosen to characterize the
input training data in order to balance between the accuracy
and the reaction rate.

Author's personal copy

Gaussian process for predicting CPU utilization

In the next step, we evaluate the posterior distribution of
the Gaussian process. Assuming that the incoming value of
the input data is (x∗, y∗), the joint distribution of the training
output is y, and the test output is y∗ as shown below:

p

([
y

y∗

])
= GP

([
m(x)

m(x∗)

]
,

[
K(x, x′)K(x, x∗)
K(x∗, x)K(x∗, x∗)

])

(13)

here, K(x∗, x∗) = k(x∗, x∗), K(x, x∗) is the column vector
made from k(x1, x∗), k(x2, x∗) · · · , k(xn, x∗). In addition,
K(x∗, x) = K(x, x∗)T is the transposition of K(x, x∗). Sub-
sequently, the posterior distribution over y∗ can be evaluated
with the below mean m∗ and covariance C∗.

m∗ = m(x∗) + K(x∗, x)K(x, x′)−1(y − m(x)) (14)

C∗ = K(x∗, x∗) − K(x∗, x)K(x, x′)−1K(x, x∗) (15)

Then

p(y∗) ∼ GP(m∗, C∗) (16)

The best estimation for y∗ is the mean of this distribution:

y∗ = K(x∗, x)K(x, x′)−1y (17)

In addition, the uncertainty of the estimation is captured
in the variance of the distribution as follows:

var(y∗) = K(x∗, x∗) − K(x∗, x)K(x, x′)−1K(x, x∗) (18)

4.4 Hyper-parameter learning phase

The proposed model invokes a set of hyper-parameter θ =
[σf , l] which exists in covariance and mean function. In def-
inition, these hyper-parameters are supposed to be evaluated
through the marginalization process. By using the Bayes’
rule, the (16) can be rewritten as:

p(y∗|y) =
∫

p(y∗|y, θ)p(y|θ)p(θ)dθ
∫

p(y|θ)p(θ)dθ
(19)

In this equation, the marginal likelihood p(y) =∫
p(y|θ)p(θ)dθ is the main point of interest. Theoretically,

the Maximum A Posteriori (MAP) estimation of θ can be
obtained when p(θ |y) reaches its maximum [24]. From
the first moment of inference process, the prior p(θ) must
be assigned for the hyper-parameters to reflect the domain
knowledge. Based on the input data, this task is not an obsta-
cle. In addition, according to the Bayes’ rule, the probability

p(θ |y) is known to be proportional to p(y|θ). Therefore, the
optimization step only involves maximizing the log p(y|θ)

or minimizing the negative log p(y|θ) [25].

− log p(y|θ) = 1

2
yT K−1y + 1

2
log |K| + n

2
log(2π) (20)

The partial derivative of this negative log marginal like-
lihood with regard to each hyper-parameter is known as:

− ∂

∂θi

log p(y|θ) = −1

2
yT K−1 ∂K

∂θi

K−1y + 1

2
tr(K−1 ∂K

∂θi

)

(21)

As previously stated, estimating the hyper-parameter set
θ can be achieved by minimizing the negative log marginal
likelihood. In other words, the hyper-parameter set θ is
evaluated by taking the first order partial derivatives of the
negative log marginal likelihood and setting them to zero.
This is the classic, trivial method to construct the learn-
ing scheme for the hyper-parameters. Nonetheless, solving
these derivative equations drives the whole computation into
the state of Worst Case Execution Time (WCET). The rea-
son is the high complexity in re-calculating the matrix inver-
sion and partial derivative matrix for every hyper-parameter.
Therefore, it is necessary to determine another approach
for hyper-parameter learning phase. Instead of putting effort
into minimizing the negative log marginal likelihood, this
heavy-load-job can be done faster by minimizing the upper
bound of this term approximately [26]. In the (20), the
dominant computation focuses on two terms: the data-fit
term [4] which is denoted by yT K−1y, and the complexity
penalty term or the log determinant log |K|. Before going
further, the (20) should be simplified to decrease the com-
plexity. To do that, the asymptotic estimation for the log
determinant and the corresponding error term is considered
in [27]. To find these terms, the law of log determinant,
which is originated in [28], is engaged on the sample covari-
ance matrix. Each element Xi, i = 1...n of the training
dataset can be seen as a random sample of the Gaussian
distribution. Because the interval time for collecting sam-
ples is non-overlapped, periodic and identical, these random
samples are independent and identically distributed (i.i.d.).
This means the dimension can be reduced from the spatial-
temporal to the spatial only [29]. Therefore, the sample
covariance matrix can be constructed as:

K̂ = 1

n

n+1∑

i=1

(Xi − X̄)(Xi − X̄)T (22)

One more constant, namely Bias Correction, should be
calculated in advance.

τn := ∂ log Γ (x)|x=n/2

∂x
− log

(n

2

)
(23)

Author's personal copy

D.-M. Bui et al.

After determining these two important values, the log
determinant L = log |K| calculating on the covariance
matrix K can be estimated as:

L̂ = log |K̂| − τn (24)

In addition, the Mean Squared Error (MSE) of this log
determinant estimation is also evaluated as follows:

E

(
L̂ − L

)2 ≤ −2 log

(
1 − 1

n

)
+ 10

3n(n − 1)
(25)

The log determinant estimation in the (24) is proven
in [28] to achieve both the optimal convergence rate as
well as the asymptotically optimal constant in low dimen-
sional space. Therefore, this estimation can be adopted as a
replacement for the original log determinant. Consequently,
the (20) is simplified to:

− log p(y|θ) = 1

2
yT K−1y + 1

2
L̂ + n

2
log(2π) (26)

in which, in addition to the constant n
2 log(2π), when the

process runs for a long time, the term L̂ also converges to a
constant. This means that the partial derivative of negative
log marginal likelihood in the (21) is mutually simplified by
dropping these constants:

− ∂

∂θi

log p(y|θ) = −1

2
yT K−1 ∂K

∂θi

K−1y (27)

This derivative indicates that the negative marginal log
likelihood should only involve minimizing the follow-
ing reduced negative log marginal likelihood estimation
(rMLE):

− log p(y|θ)rMLE = 1

2
yT K−1y (28)

Traditionally, dealing with this task concerns inversing
the covariance matrix K. This matrix operation normally
costs O(n3), which is very computationally expensive.
Nonetheless, this effect can be mitigated by applying an
appropriate solution. Motivated by the application in the
stochastic frontier model [24] and Kriging problem [30], the
Fast Fourier Transform (FFT) is a promising tool for miti-
gating this complexity. As previously mentioned, the kernel
function is a positive-definite function. Thus, the FFT makes
it possible to transform this kernel in order to bring the com-
putation from the spatial-temporal domain (or previously
reduced spatial domain) into the frequency domain. After
that, the most expensive task is not the matrix inversion, but
rather calculating the power spectrum (the quantity shows
how much of the signal is at the frequency ω) which only
costs O(nlogn). This cost is much less and can be computed
faster than the aforementioned traditional approach.

To achieve this advantage, first the Squared Exponential
kernel kSE(x, x′) (or kSE(x) in general) in the (11) needs
to be rewritten in Fourier Transform representation [31] as
shown below:

FSE(ω) = lσ 2
f

√
2πexp(−2π2ω2l2) (29)

in which, ω is the frequency representation of the time loca-
tion x in the periodic domain. To accelerate the optimiza-
tion procedure, the non-uniform Fast Fourier Transform
(NUFFT) is applied. According to the reduced negative
log marginal likelihood minimization, assuming that is
the function that generates K̃ = K−1. Under the periodic
assumption, the Parseval theorem [30] can be applied to
derive the Fourier Transform for the (28)

FrMLE(θ) = F
(− log p(y|θ)rMLE

) = 1

2n
ŷT

̂ ∗ y◦ (30)

in which, the hat sign from ŷ denotes a Fourier transform
of y and y◦ denotes the data vector in the periodic domain.
In the next step, by continuing to apply the convolution the-
orem with regard to the constraint FSE ≡ 1, the final form
of the Fourier Transform for the rMLE can be represented,
as shown below.

FrMLE(θ) = 1

2n

∑

i

̂i ∗ ŷ2
i = 1

2n

∑

i

ŷ2
i

FSE(ωi)
(31)

With this form of the (31), it is no longer expensive
to determine the set of hyper-parameter by using gradient-
based optimizing techniques. In this research, we choose
the Stochastic Gradient Descent (SGD), because this tech-
nique is suitable for the large dataset, faster than other
gradient techniques, and critically less sensitive to the local
minima [32]. To integrate the SGD into hyper-parameter
learning phase, the partial derivatives of the (31) with regard
to each hyper-parameter are required for calculating. These
equations are given by:

∂

∂l
FrMLE = ŷ2

i exp (2π2l2ω2)

(
2
√

2π3/2ω2

σ 2
f

− 1√
2πl2σ 2

f

)

(32)

And

∂

∂σf

FrMLE = −
√

2
π
ŷ2
i exp (2π2l2ω2)

lσ 3
f

(33)

After getting the partial derivatives, an updating scheme
is issued to update the hyper-parameters. This scheme is as
follows.

l(k) ← l(k−1) + α(k)
∂

∂l(k−1)
FrMLE (34)

Author's personal copy

Gaussian process for predicting CPU utilization

σ
(k)
f ← σ

(k−1)
f + α(k)

∂

∂σ
(k−1)
f

FrMLE (35)

in which, α(k) is the decay function with regard to the kth

iteration. We opt to use the decay function instead of the
exact line search or backtracking line search. It is mainly
due to the performance issue. For the ease of calculation,
a Robbins-Monroe sequence [33] is employed to construct
the decay function α(k) = 1/(k + 1). In fact, the Robbins-
Monroe sequence is popularly used, since it is sufficient to
ensure the convergence of the optimization algorithm [34],
especially in the SGD method.

To govern the number of iteration for the optimiza-
tion algorithm (in this case, the SGD), an error function
is defined based on the Root Mean Square Error (RMSE)
method to measure the convergence. It is important to note
that the RMSE method is stricter than the frequently-used
Mean Square Error (MSE) method. By using this error

function, the error gap between the current iteration value
and the previous one can be evaluated as follows:

RMSE =
√∑n

i=1F
(k)
i − F (k−1)

i

n
(36)

in which, F (k)
i and F (k−1)

i respectively stand for the kth

and k − 1th iteration values of the rMLE at the target
location i. Theoretically, the RSME threshold is limited
to 10−11 which produces a solution very close to the real
one. The purpose of this optimization procedure is to con-
duct all the steps in the periodic domain. It means that the
optimization can be done with no matrix inversion. Addi-
tionally, the vector of dual weight y0 ≈ ∗ y◦ can also be
easily estimated in the spectral domain. In the end of this
hyper-parameter learning phase, the set of hyper-parameter
is ready for the training phase. The hyper-parameter learn-
ing algorithm is also described in Algorithm 1 and Fig. 3.

4.5 Training phase

In the training phase, most of the computation involves
determining the mean value in the (17). In this equa-
tion, once the kernel matrix is known, the matrix inversion
becomes the main problem. In fact, dealing with the matrix
inversion is one of the most intensive computing tasks in
optimization. Although the Cholesky decomposition is usu-
ally employed to avoid doing the matrix inversion directly,
the computational complexity is still O(n3), where n is the
number of training point of dataset. In addition, O(n2) is

also taken into account for matrix storage. This issue is
a significant bottleneck for the system. Although the FFT
is still effective in this case, because of the change in the
objective target, a more suitable technique is used to calcu-
late the prediction.

Firstly, the (17) can be rewritten as:

y∗ = K(x∗, x)ξ (37)

in which

ξ = K(x, x′)−1y (38)

Author's personal copy

D.-M. Bui et al.

Fig. 3 Hyper-parameter learning algorithm

Multiplying both sides with K(x, x′)

y = K(x, x′)ξ (39)

Since the matrix K(x, x′) is symmetric and positive defi-
nite, the Conjugate Gradient [9] iterative method is engaged
to solve the linear problem in the (39). In this method, a
starting point is chosen and a series of steps are created to
converge upon the approximate solution ξi which is adja-
cent to the real one ξ . The best solution to this process can
be given by the inequality below:

‖ξ − ξi‖K
‖ξ − ξ0‖K ≤ 2

(√
κ − 1√
κ + 1

)2i

(40)

in which, the constant κ = λmax/λmin is the ratio of the
largest to the smallest eigenvalue of matrix K, and the K −
norm is calculated as ‖z‖K = zT Kz with z is any arbitrary
vector. The tolerance parameter ζ is also given such that
0 < ζ < 1. This parameter is a bound for the practical
Conjugate-Gradient scheme.

‖y − Kξi‖2

‖y − Kξ0‖2
≤ ζ (41)

in which, at the end of the ith iteration, ‖y − Kξi‖2 is
obtained as the residual in the Euclidean norm. Regularly,
the starting point of the iteration process is ξ0. Then, the
relative error is also obtained as shown below:

‖y − Kξi‖2

‖y − Kξ0‖2
≤ √

κ
‖ξ − ξi‖K
‖ξ − ξ0‖K ≤ 2

√
κ

(√
κ − 1√
κ + 1

)2i

(42)

In fact, a number of iteration is done to achieve the given
tolerance parameter ζ . This number can be evaluated as
shown below.

i ≥
ln

(
2
√

κ

ζ

)

2 ln
(√

κ+1√
κ−1

) (43)

The complexity of the Conjugate Gradient method is
O(in2), in which i is the number of iteration, n is the
number of training point of dataset. The storage cost is
O(n), due to the fact that the matrix-vector product is able
to do the calculation without retaining the whole matrix.
The cost of computation and storage in this method is less
than the aforementioned direct matrix operation. However,
it still does not satisfy the computational intensity of the
large-scale system. In fact, the system usually works on
an enormous number of dataset. In this case, the quadratic
complexity algorithm could deteriorate the overall perfor-
mance rapidly. Therefore, the Conjugate Gradient needs to
be coupled with the Improved Fast Gauss Transform (IFGT)
method [35] to achieve even faster calculation. The IFGT
technique is derived from the Fast Gauss Transform (FGT)
[36–38], which is an ε−exact approximate algorithm. The-
oretically, in the j th step of the Conjugate Gradient, with
m is the number of target point and n is the number of
source point, the FGT firstly expands the j th conjugacy
(the A-orthogonal multiplication [9]) G(xj) into a plane-
wave expansion of the previous Square-Exponential kernel
(the Matérn kernel might be expanded similarly) as shown
below:

G(xj) =
N∑

i=1

qi exp

(

−‖xj − xi‖2

2l2

)

(44)

in which, xj is the target point with {xj ∈ R
2}j=1,...,m, qi

is the source weight with {qi ∈ R}i=1,...,n, xi is the source
point with {xi ∈ R

2}i=1,...,n, and l is the bandwidth with
{l ∈ R+}. This Gaussian-type expansion can be calculated
approximately by using the discrete Fourier Transform [37,
39]:

G(xj) ≈
∑

|α|≤p

F(α)wα exp

(
iαL(xj − xi)√

2pl

)
(45)

Author's personal copy

Gaussian process for predicting CPU utilization

with F(α) and wα are given by

F(α) = 1

23
√

π
exp

(
−L2|α|2

4p2

)
(46)

wα =
(

L

p

)2 ∑

y∈U
f (y) exp

(
iαL(cU − y)√

2pl

)
(47)

in which, α = (α1, ...αd) is the multi-dimensional index
which stands for a d-tuple of non-negative integers (in this
context, d = 2), p is the number of plan-wave coefficient
required per dimension to obtain the desired precision ε and
L is the truncation error term (the detail configurations of
p and L can be found in [39]). Assuming that the domain
� of interest is a unit square [0, 1]2 because of the spatial-
temporal dimension of the domain (if a value stays out of
the range, shifting and rescaling have to be performed),
by partitioning � into uniform squares U of size

√
2l, the

FGT might compute the desired result in three steps: S2W,
W2L and L2T. Before explaining these terms, the defini-
tion of ’interaction list’ should be firstly addressed. This list
is denoted by I[U] which describes a specific set of neigh-
bor for U. Basically, this set supports the kernel at the center
of U. In the beginning, the FGT algorithm starts with the
S2W step. This step sequentially calculates the (45) for each
square U. Subsequently, the plane-wave expansion, which
is created in S2W, propagates to all of the elements V of
I[U] as a local expansion. The step W2L plays its role by
modifying the specified expansion as shown below:

w∗
α = wα exp(

iαL(cV − cU)√
2pl

) (48)

In the last step L2T, the conjugacy G(xj) is computed at
xj using the ’local’ expansion from the box containing it:

G(xj) =
∑

|α|≤p

F(α)w∗
α exp

(
iαL(x − cV)√

2pl

)
(49)

For acceleration purposes, the sweeping algorithm in
[40] is implemented with the FGT method. As previously
mentioned, the FGT helps reduce the computational costs
to O(mn) with m is the number of target point and n is
the number of source point. However, this result suffers a
decreasing in accuracy due to the ε parameter which also
critically influences the p and L parameters. To overcome
this drawback, the IFGT proposes a strategy to adaptively
select the ε parameter without the loss of accuracy. This
strategy is based on an improvement to the Krylov subspace

method [41] for the symmetric positive definite matrix. In
this research, ε is chosen using the following inequality:

εi ≤ δ

n

‖y − Kξ0‖
‖ři−1‖ (50)

in which, δ is the bound determined by the subtraction of
the ith iteration’s residual to the corresponding residual of
the approximate matrix-vector product: ‖ři − ri‖ ≤ δ, and n

is the number of training data point. With this enhancement,
the complexity in training phase now drops to O(n) which
satisfies the reaction rate.

There has been an issue related to whether it is possible to
apply the IFGT coupling with the Conjugate Gradient (here-
inafter, IFGT-CG) in hyper-parameter learning phase. As
shown above, when doing the Conjugate Gradient iteration
to solve the linear system in the (39), it requires the Matrix-
Vector Multiplication (MVM) which costs O(in2) where i

is the number of iteration and n is the number of training
point of dataset. Together, the IFGT-CG reduces this com-
plexity to only O(n) by applying IFGT to the MVM part.
Due to this reason, it sounds suitable to engage this com-
bination to the hyper-parameter learning phase to achieve
better reaction rate. Unfortunately, the answer is ’yes’ for
the Conjugate Gradient and ’no’ for the IFGT. First, the
IFGT, which is derived from the FGT technique, works
properly only if the objective function can be represented
in the potential form [42] (far field or near field [15]). This
strict requirement is impossible for the rMLE in the (28)
as well as the partial derivative in the (27). To make this
point more clear, assume that F(x) is a scalar or vector
field. For a fixed target point y, depending on the location
of source point with a predefined range r , the field F(x −y)

for x inside the range r is called near field. For x out of
the range r , this field is defined as far field. The problem
is that there is no way to transform the objective functions
in (27) and (28) to the Gaussian-type potentials. Secondly,
the randomized method proposed in the original equation of
IFGT [43] requires significant additional computation [3]. It
means that minimizing the rMLE is problematic when using
the IFGT. In this case, the standalone Conjugate Gradient
solves the hyper-parameter learning at the computational
complexity of O(n2) with n is the number of training point
of dataset. This complexity is worse than the O(nlogn)

of the FFT technique introduced in the previous section.
However, the IFGT-CG is still effective when dealing with
the optimization step in training phase, especially with the
matrix inversion.

4.6 Parallel training phase

Although the optimization procedure benefits immensely
from the IFGT and the Conjugate Gradient, the train-
ing phase can be further improved by implementing the

Author's personal copy

D.-M. Bui et al.

Fig. 4 MapReduce Implementation of Parallel Fast Gauss Transform

parallelism. While maintaining the notion of dynamically
choosing the precision parameter ε, the FGT operation can
be adjusted to enable the parallel computing. As a conse-
quence, the IFGT, which engages the FGT, also shows the
improved performance. When examining the structure of
the FGT method, it seems natural to combine these three
steps of conjugacy (S2W, W2L and L2T) to improve theef-
ficiency of the concurrent calculation. Since S2W and W2L
are closely related to each other, these steps can be merged
into one S2L step. After merging, there are only two steps
for calculation.

In the main part, unlike the parallel method introduced in
[40], the idea of parallelism here is to invoke the MapRe-
duce method to take advantage of a robust and flexible
parallel implementation. This method can be implemented
straightforwardly resulting in the Parallel IFGT which
accelerates the training phase (Fig. 4). Because there are
two calculation steps, S2L can be considered to be the Map

phase and L2T is mapped onto the Reduce phase. Prior to
this, in the Map phase, a grid of separated U squares is
partitioned. Then, these squares are distributed to the com-
puting node as the regular input. Depending on the data, the

tasks for the Fourier Transform of each square U are cre-
ated. These tasks follow the (45) and can be controlled by
the Task Tracker of the MapReduce framework. After Map

phase completion, the outcome of each task is propagated to
all the members in the interaction list of each square U as a
’local’ expansion. Subsequently, the Reduce phase receives
the updated data from the Map phase and creates the task
for the L2T step. By executing these L2T tasks during the
Reduce phase, the results can be achieved at a much faster
rate in comparison with the original FGT method.

Although it is hard to analyze the complexity of the
MapReduce operation, the overall complexity of the Parallel
FGT performing on n source points and m target points can
be estimated as O(mn/1np). The reason for this estimation
is that the computing tasks with the same complexity are
now divided and simultaneously processed at np comput-
ing nodes of the MapReduce framework. Consequently, this
improvement can help reduce the computational complexity
of the whole training process to O(n/np). The comparison
of complexity between the proposed method and the others
can be found in Table 1. Finally, the algorithm of parallel
FGT is described in Algorithm 2.

Author's personal copy

Gaussian process for predicting CPU utilization

Table 1 Computation cost of proposed method

Direct method CG Proposed method

Hyper-parameter O(n3) O(n2) O(nlogn)

learning phase

Training phase O(n3) O(n2) O(n/np)

5 Performance evaluation

5.1 Experiments

For the performance evaluation, our experiments focus on
investigating the performance of the proposed application
in terms of energy efficiency and execution time. In the
initial experiment, the workload is generated via the CPU
intensive benchmark for one hour to determine the energy
saving. In this test, in order to easily control the num-
ber and the intensiveness of the workload, the stress-1.0.4
benchmark software is used to simulate the incoming pro-
cesses. Otherwise, in the second experiment, ten bunches of
ten concurrent gzip jobs (totally one hundred instances of
gzip command issuing on 256KB of test data) are pushed
into the system to test the execution time. To aggregate
the results, the powerstat and the sysstat software are used
to log the power consumption and the workload statistics,
respectively. All of the information of the benchmarking
system is described in Table 2.

5.2 Implementation

The predictive utilization of each core is anticipated using
a combination of Python script and C++ library. Python is
chosen because of the light-weight feature in comparison
with Matlab [44]. In fact, Python possesses a small core of
command which is equipped with all the functionality that

the researcher would require. Besides, Python interpreter
is free and available for all of the operating systems. In
this combination, in addition to the hyper-parameters esti-
mation source code implemented directly in Python for the
ease of environmental parameters tuning, the core of Paral-
lel IFGT is implemented in C++ and wrapped by ctypes

as a library for compatibly running with the Python. The
main reason for this particular implementation is related to
the performance. In addition to the aforementioned imple-
mentation of the proposed method, three other algorithms,
namely the original IFGT coupling with the Conjugate Gra-
dient (IFGT-CG), the pure Conjugate Gradient (in short,
CG) and the Direct method (the Gauss-Jordan elimina-
tion), are also applied for matrix inversion in the hyper-
parameter learning phase and training phase for purposes of
comparison.

5.3 Metrics

The proposed architecture is measured on two levels: the
algorithm level and the application level. In the algorithm
level, the metric of interest is the completion time of pre-
diction. In the application level, as previously mentioned,
the energy efficiency and the execution time are the met-
rics of interest. If the daemon application is able to save the
energy consumption as well as maintaining an acceptable
execution time, the energy efficiency of the CPU would be
significantly improved.

5.4 Results

Application level - energy efficiency evaluation as seen
in the Fig. 6, both systems begin with the stand-by mode
which costs 91.49 watts to maintain. Each system runs
the simultaneous stress tests for the duration of 60 min-
utes. Subsequently, the system with energy saving enabled
ends the benchmark test with the power consumption of
154.93 watts, in comparison with 177.96 watts of the regular

Table 2 System configuration
Configuration

Platform 64bit

CPU Intel�CoreTM i7-3770, 3.40GHz, Quad core

Storage 800GB

Memory 16GB

OS CentOS 6.5 (final)

Kernel:2.6.32-431.el6.x86 64

Benchmark stress-1.0.4

Power stat powerstat-0.01.30-1

System stat sysstat-9.0.4-27.el6

Gzip-test-data text file (256KB)

Author's personal copy

D.-M. Bui et al.

Fig. 5 Execution time comparison between the system with and
without energy saving application (lower is better)

Fig. 6 Power consumption over one hour running time (lower is better)

Fig. 7 Power saving over one hour running time

Fig. 8 Hyper-parameter learning speed evaluation (lower is better)

Fig. 9 Training speed evaluation on stress test (lower is better)

Fig. 10 Overall prediction speed evaluation (lower is better)

Author's personal copy

Gaussian process for predicting CPU utilization

Fig. 11 Mean prediction and error bar of proposed method given 20
training points on stress test

system. Therefore, 23.03 watts are saved (which is equiva-
lent to an energy saving of 12.94 % in Fig. 7). In processor
architecture, an energy saving of 12,94 % is significant.

Application level - Execution time evaluation: in the
gzip experiment, the system engaging the energy sav-
ing application is slightly slower. In comparison with the
regular system, the energy saving enabled system takes
longer running time to finish the equivalent number of
task. This extra amount of completion time is measured
so as from 2 % to 14 %. In essence, this delay time
mostly comes from both predicting the utilization as well
as migrating the processes and be considered as the context
switching cost [45]. In the worst case, despite increas-
ing by 14 %, the time gap between two systems is just
6.43*10−3 seconds which is infinitesimal and acceptable
(Fig. 5).

Algorithm level - prediction performance as seen in
Fig. 8, within the same error bound (ε = 10−11) and
the same training dataset (around 103 points), the pro-
posed method takes 17 seconds to finish estimating the
hyper-parameters on the stress test, whereas the CG and
Gauss-Jordan elimination cost 160 seconds and 960 sec-
onds, respectively. For a different training dataset (100
target points in gzip test), the proposed method spends
approximately 1.7 seconds to finish estimating the hyper-
parameters, while the CG and Gauss-Jordan elimination
cost 20 seconds and 66 seconds, respectively. Particularly
for this small test, the original IFGT algorithm tolerates
more failure during the computation. This is predominant
due to the difficulty in applying the Gaussian-type potential
for maximum likelihood estimation which has been dis-
cussed in detail in [3]. For this reason, the IFGT-CG is

excluded from the hyper-parameter learning estimation pro-
cedure. Meanwhile, the proposed method still copes well
with the same learning data. Thus, the hyper-parameters
estimated by the proposed method are shared to the IFGT-
CG algorithm to continue conducting the performance eval-
uation in the training phase. Moreover, for the evaluation in
the training phase as well as the overall prediction, which
is described in Figs. 9 and 10, when the number of training
point increases, the proposed method continues to signif-
icantly outperform the other methods in terms of reaction
rate. Finally, for the reliability measurement, because the
proposed method also partially relies on the IFGT, which
defines the precision of ε = 10−11 in advance, the accuracy
requirements is always satisfied. In Fig. 11, when doing the
accuracy benchmark on 20 consecutive testing points in the
stress experiment, the mean prediction is able to adapt well
to the testing data, with 95 % confidence maintained by the
variance.

6 Conclusion

The proposed method proves the capability in improving the
power consumption of the computing node. To do that, the
strategy is to predict the utilization of CPU cores, migrate
the target processes and stand-by the idle cores to save the
energy. To sum up, this method has two major contribu-
tions to the research field. First, based on the knowledge
of queuing theory, stochastic process, and optimization, the
approach reduces the complexity of the hyper-parameter
learning phase of Gaussian process regression from O(n3)

to O(nlogn). As a result, the prediction on periodic time
series event performs faster, more stably, and more reli-
ably. Second, by applying MapReduce parallelism to the
Fast Gauss Transform, we are able to reduce the complex-
ity of the training phase from O(n3) to O(n/np). This
improvement continuously increases the reaction rate of
the prediction method, makes it possible to deal with the
large-scale system. For further development, as previously
mentioned, some parts of the source code that are devel-
oped to test this method would be made available under
the terms of the GNU general public license (GPL). In the
near future, we would like to apply the proposed method
in Big Data system to improve the performance in terms
of processing time and fault tolerance. Besides, implement-
ing the parallelism to the hyper-parameter learning phase
of the proposed method is also considered and hopefully
would be reflected soon to achieve even faster speed of
prediction.

Acknowledgments This work was supported by the National
Research Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) NRF-2014R1A2A2A01003914.

Author's personal copy

D.-M. Bui et al.

This work was supported by the IT R&D program of MSIP/IITP.
[14-000-09-001, Development of General-Purpose OS and Virtualiza-
tion Technology to Reduce 30 % of Energy for High-density Servers
based on Low-power Processors].

Conflict of interests The authors declare that they have no conflict
of interests.

Compliance with Ethical Standards
Research involving Human Participants and/or Animals. The
authors declare that this research does not involve any Human Partici-
pants and/or Animals.

References

1. Lawrence ND (2004) Gaussian process latent variable models
for visualisation of high dimensional data. Advances in neural
information processing systems 16:329–336

2. Rasmussen CE (1997) Evaluation of gaussian processes and other
methods for non-linear regression, Ph.D. dissertation, Toronto,
Ont., Canada, Canada, aAINQ28300

3. Chalupka K, Williams CKI, Murray I (2012) A framework for
evaluating approximation methods for gaussian process regres-
sion, CoRR. arXiv:1205.6326

4. Rasmussen C, Williams C (2005) Gaussian processes for machine
learning, ser. adaptive computation and machine learning, MIT
Press. http://www.gaussianprocess.org/gpml/chapters/

5. Brahim-Belhouari S, Vesin J (2001) Bayesian learning using
gaussian process for time series prediction. In: Statistical Signal
Processing, 2001. Proceedings of the 11th IEEE Signal Processing
Workshop on, pp 433–436

6. Roberts S, Osborne M, Ebden M, Reece S, Gibson N, Aigrain S
(2012) Gaussian processes for time-series modeling. Philosophi-
cal Transactions of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences 371(1984)

7. Petelin D, Filipič B, Kocijan J Optimization of gaussian process
models with evolutionary algorithms. In: Proceedings of the 10th
International Conference on Adaptive and Natural Computing
Algorithms - Volume Part I, ser. ICANNGA’11. Berlin, Heidel-
berg: Springer-Verlag, 2011, pp. 420–429. [Online]. Available:,
http://dl.acm.org/citation.cfm?id=1997052.1997098

8. Petelin D, Kocijan J. (2014) Evolving gaussian process mod-
els for predicting chaotic time-series. In: Evolving and Adaptive
Intelligent Systems (EAIS), 2014 IEEE Conference on. IEEE,
pp. 1–8.

9. Shewchuk JR (1994) An introduction to the conjugate gradient
method without the agonizing pain, Pittsburgh, PA, USA, Tech.
Rep

10. Grande R, Chowdhary G, How J (2013) Nonparametric adaptive
control using gaussian processes with online hyperparameter esti-
mation. In: 2013 IEEE 52nd annual conference on decision and
control (CDC), , pp. 861867

11. Banerjee A, Dunson D, Tokdar S (2011) Efficient gaussian process
regression for large data sets. arXiv:e-prints

12. Hensman J, Fusi N, Lawrence ND (2013) Gaussian processes for
big data CoRR. arXiv:1309.6835

13. Shen Y, Ng AY, Seeger M (2005) Fast gaussian process regression
using kd-trees. In: NIPS

14. Yang C, Duraiswami R, Davis LS (2004) Efficient kernel
machines using the improved fast gauss transform. In: NIPS

15. Beatson R, Greengard L (1997) A short course on fast multipole
methods. Wavelets, multilevel methods and elliptic PDEs 1:1–37

16. Kress R, Maz’ya V, Kozlov V (1989) Linear integral equations,
vol 82. Springer

17. Cunningham J, Ghahramani Z, Rasmussen CE (2012) Gaussian
processes for time-marked time-series data. In: Lawrence ND,
Girolami M (eds) AISTATS, ser. JMLR Proceedings, vol 22,
pp 255–263. JMLR.org

18. Hastie T, Tibshirani R, Friedman J (2001) The Elements of Sta-
tistical Learning, ser. Springer Series in Statistics. New York, NY,
USA: Springer New York Inc

19. Tipping ME (2003) Bayesian inference: An introduction to prin-
ciples and practice in machine learning. In: Bousquet O, von
Luxburg U, Rtsch G (eds) Advanced lectures on machine learn-
ing, ser. lecture notes in computer science, vol 3176. Springer,
pp 41–62. http://dblp.uni-trier.de/db/conf/ac/ml2003.html

20. Chowdhary G, Kingravi H, How J, Vela P (2014) Bayesian
nonparametric adaptive control using gaussian processes. IEEE
Transactions on Neural Networks and Learning Systems
PP(99):1–1

21. Álvarez MA, Lawrence ND (2011) Computationally efficient
convolved multiple output gaussian processes. J Mach Learn
Res 12:1459–1500. http://dl.acm.org/citation.cfm?id=1953048.
2021048

22. Gallager R (2013) Stochastic Processes: Theory for Appli-
cations. Cambridge University Press. http://books.google.co.kr/
books?id=CGFbAgAAQBAJ

23. Muller K, Mika S, Ratsch G, Tsuda K, Scholkopf B (2001) An
introduction to kernel-based learning algorithms. IEEE Transac-
tions on Neural Networks 12(2):181–201

24. Tsionas EG (2012) Maximum likelihood estimation of stochas-
tic frontier models by the fourier transform. J Econ 170
(1):234–248

25. Bergstra J, Bardenet R, Bengio Y, Kgl B (2011) Algorithms
for hyper-parameter optimization. In: Shawe-Taylor J, Zemel RS,
Bartlett PL, Pereira FCN, Weinberger KQ (eds) NIPS, pp 2546–
2554

26. Rodner E, Freytag A, Bodesheim P, Denzler J (2012) Large-scale
gaussian process classification with flexible adaptive histogram
kernels. In: Fitzgibbon AW, Lazebnik S, Perona P, Sato Y, Schmid
C (eds) ECCV (4), ser. Lecture Notes in Computer Science,
vol 7575. Springer, pp 85–98

27. Pace R, LeSage JP (2004) Chebyshev approximation of log-
determinants of spatial weight matrices. Comput Stat Data Anal
45(2):179–196

28. Cai TT, Liang T, Zhou HH (2013) Law of log determinant of
sample covariance matrix and optimal estimation of differen-
tial entropy for high-dimensional gaussian distributions. CoRR.
arXiv:1309.0482

29. Quinonero-Candela J, Rasmussen CE (2005) A unifying view of
sparse approximate gaussian process regression. J Mach Learn
Res 6:1939–1959

30. de Baar J, Dwight R, Bijl H (2013) Speeding up kriging through
fast estimation of the hyperparameters in the frequency-domain.
Comput Geosci 54(0):99–106

31. Sollich P, Williams CKI (2004). In: Winkler J, Niranjan M, N. D.
Lawrence (eds) Understanding gaussian process regression using
the equivalent kernel. in Deterministic and Statistical Methods
in Machine Learning, ser. Lecture Notes in Computer Science,
vol 3635. Springer, pp 211–228. http://dblp.uni-trier.de/db/conf/
dsmml/dsmml2004.html

32. Boyd S, Vandenberghe L (2004) Convex optimization. Cam-
bridge University Press. http://books.google.co.kr/books?
id=mYm0bLd3fcoC

33. Robbins H, Monro S (1951) A stochastic approximation method,
The annals of mathematical statistics:400–407

34. Robbins H, Siegmund D (1985) A convergence theorem for
non negative almost supermartingales and some applications, in
Herbert Robbins Selected Papers. Springer, pp 111–135

Author's personal copy

http://arxiv.org/abs/1205.6326
http://www.gaussianprocess.org/gpml/chapters/
http://dl.acm.org/citation.cfm?id=1997052.1997098
http://arxiv.org/abs/e-prints
http://arxiv.org/abs/1309.6835
http://dblp.uni-trier.de/db/conf/ac/ml2003.html
http://dl.acm.org/citation.cfm?id=1953048.2021048
http://dl.acm.org/citation.cfm?id=1953048.2021048
http://books.google.co.kr/books?id=CGFbAgAAQBAJ
http://books.google.co.kr/books?id=CGFbAgAAQBAJ
http://arxiv.org/abs/1309.0482
http://dblp.uni-trier.de/db/conf/dsmml/dsmml2004.html
http://dblp.uni-trier.de/db/conf/dsmml/dsmml2004.html
http://books.google.co.kr/books?id=mYm0bLd3fcoC
http://books.google.co.kr/books?id=mYm0bLd3fcoC

Gaussian process for predicting CPU utilization

35. Yang C, Duraiswami R, Gumerov N, Davis L (2003) Improved
fast gauss transform and efficient kernel density estimation. In:
Computer Vision, 2003. Proceedings. Ninth IEEE International
Conference on, pp.664–671 vol.1

36. Alecu TI, Voloshynovskiy S, Pun T (2005) The gaussian trans-
form. In: EUSIPCO2005, 13th European Signal Processing Con-
ference, pp.4–8

37. Greengard L, Strain J (1991) The fast gauss transform. SIAM J
Sci Stat Comput 12(1):79–94

38. Yamamoto Y (2006) Efficient parallel implementation of a
weather derivatives pricing algorithm based on the fast gauss
transform. In: Parallel and Distributed Processing Symposium,
2006. IPDPS 2006. 20th International, pp. 8

39. Spivak M, Veerapaneni SK, Greengard L (2010) The fast gen-
eralized gauss transform. SIAM J Sci Comput 32(5):3092–3107.
doi:10.1137/100790744

40. Sampath RS, Sundar H, Veerapaneni SK (2010) Parallel fast gauss
transform. In: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Stor-
age and Analysis, ser. SC ’10. Washington, DC, USA: IEEE
Computer Society, pp. 1–10. doi:10.1109/SC.2010.39

41. Simoncini V, Szyld DB (2003) Theory of inexact krylov subspace
methods and applications to scientific computing. SIAM J Sci
Comput 25(2):454–477

42. Greengard L, Rokhlin V (1987) A fast algorithm for particle
simulations. J Comp Physiol 73(2):325–348

43. Morariu VI, Srinivasan BV, Raykar VC, Duraiswami R, Davis LS
(2008) Automatic online tuning for fast gaussian summation. In:
Koller D, Schuurmans D, Bengio Y, Bottou L (eds) NIPS. Curran
Associates, Inc, pp 1113–1120

44. Fangohr H (2004) A comparison of c, matlab, and python as teach-
ing languages in engineering. In: Computational Science-ICCS
2004. Springer, pp 1210–1217

45. Wu X (1999) Performance Evaluation, Prediction and Visualiza-
tion of Parallel Systems, ser. The International Series on Asian
Studies in Computer and Information Science. Springer, US.
http://books.google.co.kr/books?id=IJZt5H6R8OIC

Dinh-Mao Bui received the
B.S. degree in Computer Sci-
ence from the Computer Engi-
neering Department at Ton
Duc Thang University, Viet-
nam, in 2009 and the M.S.
degree in Data Communica-
tion and Networking from
the Posts and Telecommuni-
cations Institute of Technol-
ogy, Vietnam, in 2012. He
is now working toward the
PhD degree in the Depart-
ment of Computer Engineer-
ing at Kyung Hee Univer-
sity, Korea. His research inter-
ests include Engineering Opti-

mization, Stochastic Process, Parallel computing and Big Data.

Huu-Quoc Nguyen received
the B.S. degree in Com-
puter Software from the Com-
puter Engineering Department
at Posts and Telecommuni-
cations Institute of Technol-
ogy, Vietnam, in 2014. He
is now working toward the
Master degree in the Depart-
ment of Computer Engineer-
ing at Kyung Hee Univer-
sity, Korea. His research inter-
ests include Cloud Comput-
ing, Thin Client, Authentica-
tion and Network.

YongIk Yoon is a Professor
for Dept. of Multimedia Sci-
ence in SookMyung Women’s
University, South Korea. He
received M.S and Ph.d. degree
from Computer Science of
KAIST, in 1985 and 1994. He
had researched for 15 years
(1983–1997) like a member of
senior Researcher of ETRI, in
Korea. Also he had worked a
visiting professor in Univer-
sity of Colorado at Denver, in
USA, for three years (2004–
2007). His Research Interests
are smart services for future

life, middleware for smart/future life, collaboration service model in
mobile cloud environment, and intelligent mobile customer applica-
tion platform. He is now a Member of ACM, IEEE, KIISE (Korean
Institute of Information Scientists and Engineers), KIPS (Korean Infor-
mation Processing Society), and OSIA (Open Standard and Internet
Association).

SungIk Jun is a principal
member of engineering staff
for High-Performance Sys-
tem Research team in ETRI
(Electronics Telecommuni-
cation Research Institute),
South Korea. He received M.S
degree from Computer Sci-
ence of Chung-ang University,
in 1987. He had researched
for Real-time OS team during
15 years (1987–2001) like a
member of senior Researcher
of ETRI, in Korea. Also he
had worked a team leader
Wireless Security Application

Research team for eight years (2001.3–2009.4). His research interests
are Operating System, Wireless Security, and M2M for future life.

Author's personal copy

http://dx.doi.org/10.1137/100790744
http://dx.doi.org/10.1109/SC.2010.39
http://books.google.co.kr/books?id=IJZt5H6R8OIC

D.-M. Bui et al.

Muhammad Bilal Amin
received his MS from DePaul
University, Chicago, USA in
2006. He got his PhD. from
Kyung Hee University, Korea
in 2015. He is currently a
Researcher and Team Lead
of Cloud Computing Group
at Ubiquitous Computing
Lab, Department of Computer
Engineering, Kyung Hee Uni-
versity, South Korea. He has
a working experience of more
than 10 years in software
industry, working for For-
tune 500 companies in USA.

His research interests include, cloud computing, parallel program-
ming, distributed systems, software architecture, semantic web, and
performance-based ontology matching.

Sungyoung Lee received his
Ph.D. degree in Computer Sci-
ence from Illinois Institute
of Technology (IIT), Chicago,
Illinois, USA in 1991. He has
been a professor in the Depart-
ment of Computer Engineer-
ing, Kyung Hee University,
Korea since 1993. Before join-
ing Kyung Hee University, he
was an assistant professor in
the Department of Computer
Science, Governors State Uni-
versity, Illinois, USA from
1992 to 1993. His current
research focuses on Ubiqui-

tous Computing, Cloud Computing, Intelligent Computing and
eHealth.

Author's personal copy

	Gaussian process for predicting CPU utilization
	Abstract
	Introduction
	Related works
	Motivation
	Domain analysis
	Approaches

	Proposed method
	Target process
	Source and destination
	Prediction model
	Hyper-parameter learning phase
	Training phase
	Parallel training phase

	Performance evaluation
	Experiments
	Implementation
	Metrics
	Results
	Application level - energy efficiency evaluation
	Algorithm level - prediction performance

	Conclusion
	Acknowledgments
	Conflict of interests
	Compliance with Ethical Standards
	References

