
317Mutual Verifiable Provable Data Auditing in Public Cloud Storage

Mutual Verifiable Provable Data Auditing in Public Cloud Storage
Yongjun Ren1,2, Jian Shen1,2, Jin Wang1,2, Jin Han1,2, Sungyoung Lee3

1Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science & Technology, China
2School of Computer and Software, Nanjing University of Information Science & Technology, China

3Department of Computer Engineering, Kyung Hee University, Korea
{renyj100, s_shenjian}@126.com, {wangjin, 002254}@ nuist.edu.cn, sylee@oslab.khu.ac.kr

Abstract

Cloud storage is now a hot research topic in information
technology. In cloud storage, date security properties such
as data confidentiality, integrity and availability become
more and more important in many commercial applications.
Recently, many provable data possession (PDP) schemes
are proposed to protect data integrity. In some cases, it
has to delegate the remote data possession checking task
to some proxy. However, these PDP schemes are not
secure since the proxy stores some state information in
cloud storage servers. Hence, in this paper, we propose an
efficient mutual verifiable provable data possession scheme,
which utilizes Diffie-Hellman shared key to construct the
homomorphic authenticator. In particular, the verifier in our
scheme is stateless and independent of the cloud storage
service. It is worth noting that the presented scheme is very
efficient compared with the previous PDP schemes, since
the bilinear operation is not required.

Keywords: Cloud computing, Data storage auditing,
Provable data possession, Key agreement.

1 Introduction

Cloud storage is an important service of cloud
computing, which allows data owners to move data from
their local computing systems to the Cloud. In the cloud
paradigm, data owners move the large data files from their
local computing systems to the remote servers. Moreover
it is of critical importance for the data owners can avoid
the initial investment of expensive infrastructure setup,
large equipment, and daily maintenance cost, which is
particularly true for small and medium-sized businesses. In
addition the data owners can rely on the Cloud to provide
more reliable services, so that they can access data from
anywhere and at any time [1-3].

Storing the data in cloud environment becomes natural
and also essential. But, security becomes one of the major
concerns for all entities in cloud services [4-6]. Firstly, data
owners would worry that their data could be misused or
accessed by unauthorized users. Secondly, the data owners
would worry that their data could be lost in the Cloud. This
is because data loss could happen in any infrastructure.

Furthermore, the cloud storage service (CSS) may be
dishonest and they may discard the data which has not been
accessed or rarely accessed to save the storage space or
keep fewer replicas than promised. As a result, data owners
need to be convinced that their data are correctly stored
in the Cloud. It is desirable to have data storage auditing
service to assure data are correctly stored in the Cloud.

Ateniese et al. [7] defined the first Provable Data
Possession model to solve the storage auditing problem
of static files in cloud computing. They completed the
proof of the data integrity by sampling and verifying the
correspondence of the tags and blocks randomly. Juels et al.
[8] also proposed a provable data recovery (POR) model.
Instead of tagging file blocks, they inserted some sentinel
blocks, and verified the integrity of the file by checking
the correctness of sentinel blocks. For the sentinel blocks
are one-time labels, the number of times that the file can
do integrity verification is limited, related to the number
of sentinel blocks. Shacham and Waters [9] proposed an
improved POR model under the security model defined in
[8]. Erway et al. [10] were the first to explore constructions
for dynamic provable data possession. This scheme is
essentially a fully dynamic version of the PDP solution. It
maintained a skip-list for tags, and stored the root metadata
in Client’s hand to prevent replay attack. Wang et al. [11]
and Gu and Sheng [12] use the tags based on [9] to apply
the data integrity verification of dynamic files.

According to the role of the PDP verifier, the PDP
protocols are classified into two categories: private PDP
and public PDP. Private PDP is necessary in some cases.
For example, the data owners will be restricted to access
the Internet. Recently Shen and Tzeng presented delegable
provable data possession scheme [13], in which data owner
generates the delegation key for delegated verifier and
store the key in CSSs for verification. Huaqun Wang also
proposed a proxy provable data possession (PPDP) model
and provided a construction for it [14]. In PPDP, data owner
can delegate its remote data possession checking capability
to the proxy by sending it a warrant, which is stored in
both the proxy and CSS. However, it has shown that the
two private PDP schemes are insecure because the state
information of the proxy or delegated verifier is controlled
by a malicious CSS [15].

In this paper we propose an efficient mutual verifiable

*Corresponding author: Jin Wang; E-mail: wangjin@nuist.edu.cn
DOI: 10.6138/JIT.2015.16.2.20140918

Journal of Internet Technology Volume 16 (2015) No.2318

integrity, further processes them. And the data blocks
are re-tagged and sent to CSS by user V. Next the user U
continues to verify and deal with the data blocks. In this
case, it is required to switching the role between the client
and PV, which will complete data-block level processing.

2.2 Security Model and Definition
The MV-PDP scheme is composed of the following

algorithms.
 y KeyGen(1k) → (sk, pk)
It takes input a security parameter k and returns the
corresponding private/public key pair. By running it
twice, this algorithm can return the client’s private/public
key pair(x, X) and a PV’s private/public key pair (y, Y).
 y TagGen(x, Y, m) → (Tm)
This algorithm is run by the client. It takes as input its
private key x, the PV’s public key Y and a file block m,
and outputs the tag Tm.
 y GenChal(k) → chal
The PV generates a challenge to CSS for the stored data.
It takes as input the public parameter k, and outputs the
challenge chal.
 y Genproof(F, φ , chal) → DV
The CCSs generate the possession proof. It takes as
inputs the public parameter, an ordered collection F
of blocks and tags φ , and the challenge chal. It returns
a data possession proof pf for the blocks in F that are
determined by the challenge chal.
 y Verfyproof(X, y, pf, chal) → {true, false}
This algorithm can be run by the PV upon receipt of
the proof pf. It takes as input the client’s public key X,
the challenge chal, its own private key y and the proof
pf returned from the server, and outputs “true” if the
integrity of the file is verified as correct, or “false”
otherwise.

After executing the above algorithms, the PV can
further processes the checked data blocks and form new
data blocks. Then TagGen algorithm is performed by PV
to generate new tags. Finally the new data blocks is stored
in CSS and verified by the client.This means the private
verifier can mark data blocks, which belongs to the PV,
then store them in CSS. Similarly, the client can verify the
integrity of the data blocks.

Definition 1 (Unforgeability): A MV-PDP scheme is
secure if for any (probabilistic polynomial) adversary A
(i.e., malicious CCS) the probability that A wins the MV-
PDP game is negligible. The MV-PDP game between
the challenger C and the adversary A can be depicted as
follows:
(1) SetUp: Supposing the system parameter is params.

KeyGen is a private/public key pair generating
algorithm. By running KeyGen, C can get the client’s

provable data possession (MV-PDP) scheme. In the MV-
PDP, verifier is stateless and independent from CSS, which
solves the problem that the verifier can be optionally
specified by a malicious CSS. In our scheme, the roles of
data owner and verifier can be changed with each other,
which enable that both of data owner and verifier can
carry on certain data-centric interaction. Moreover in our
design, we use ECC-based homomorphic authenticator to
design PDP scheme, which does not compute expensive
bilinear and consume small amount of calculation and
Communications.

The rest of the paper is organized as follows. Section 2
introduces the preliminaries and Sections 3 and 4 describe
our MV-PDP scheme and its security proof. Section 5 gives
the performance analysis on our PPDP protocol. Finally,
Section 6 concludes this paper.

2 Preliminaries

MV-PDP system model and security model are given
in this section. At the same time, bilinear pairings and some
corresponding difficult problems are also depicted below.

2.1 System Model
MV-PDP system consists of three different network

entities: client, cloud storage server, verifier. They can be
identified below.
(1) Client: an entity, which has massive data, that will be

moved to cloud storage server for maintenance and
computation, can be either individual consumer or
organization;

(2) Cloud Storage Server: an entity, which is managed by
cloud service provider, has significant storage space
and computation resource to maintain the clients’ data;

(3) Private Verifier (PV): an entity, which is trusted and
designated to assess and expose risk of cloud storage
services upon request. After verification, PV also is able
to act as a client and modify the data blocks, and then
re-tag them.
By hosting their data in the Cloud, clients can avoid

the initial investment of expensive infrastructure setup,
large equipment, and daily maintenance cost. Since the
clients no longer possess their data locally, it is necessary
for the clients to ensure that their data are being correctly
stored and maintained. That is, clients should be equipped
with certain storage auditing services so that they can
periodically check the integrity of the remote data even
without the existence of local copies.

In practical scenarios clients may frequently perform
block-level operations on the data files. For example, in
business data process, some data blocks are processed
by the user U and stored in CSS. The user V verifies its

319Mutual Verifiable Provable Data Auditing in Public Cloud Storage

private/public key pair (x, X), the private auditor’s
private/public key pair (y, Y).C keeps (x, y) confidential
and sends (X, Y) to A.

(2) Queries: A adaptively makes a number of different
queries to C. Each query can be one of the following.

 y Hash query: A makes Hash function queries adaptively. C
responds the Hash values to A;
 y Proof query: A chooses challenge chal and obtains a valid
proof with the chal.

(3) Challenge: C generates a challenge chal which
defines a ordered collection. C is required to provide a
possession proof for the blocks.

(4) Answer: A computes a data possession proof pf for the
blocks indicated by chal and returns pf. In the MV-
PDP game, we say that the success probability of the
adversary A is negligible. i.e.,

AdvA(Pr[Verfyproof = true]) ≤ ε,

where ε is negligible.

2.3 Hardness Problem
Let G be a cyclic multiplicative group on ECC

generated by P, the related complexity assumptions are as
follows.

 y Computational Diffie-Hellman (CDH) Problem:
Given a randomly chosen P ∈ G, as well as aP, bP, for
unknown a, b ∈ Zp, compute abP.
 y Elliptic Curve Discrete Logarithm Problem (ECDLP):
Given points P and Q of the group in elliptic curve, find a
number k such that Pk = Q.

3 Mutual Verifiable Provable Data
Possession Scheme

Now we start to present the main idea behind our
scheme. We take use of a Diffie-Hellman key agreement
key as the foundation of the homomorphic authenticator
to generate the tag for every data block, which makes that
the client and the verifier can mutually check marked data
blocks. In addition, the verifier is designated by client. CSS
does not stores any information of the verifier, i.e., the CSS
is stateless to the verifiers. Our scheme is described below.

We assume that file F (potentially encoded using Reed-
Solomon codes [11]) is divided into n blocks {m1, ..., mn},
where mi ∈ Zp and q are a large prime. Let G be a cyclic
multiplicative group on ECC generated by g, two hash
functions H1, H2: {0,1}* → Zp, viewed as a random oracle.
The procedure of our basic scheme execution is as follows:

 y KeyGen(1k) → (sk, pk)
The client chooses a random x ∈ Zp and compute X =
gx.The secret key is x and the public key is X. The client

designates a trust verifier DV. DV runs the KeyGen and
randomly chooses y ∈ Zp as his private key and computes
Y = gy as his public key.
 y TagGen(x, Y, m) → (Tm)
Given F = {m1, ..., mn}, the client generates the tag Tm of
the block mi. Let ki1 and ki2 be random integer in Zp. The
client computes ki1 || ki2 = H1(Y

x, mi).
And client computes σi,1 = (YH2(mi)ki1+ki2)x, σi,2 = X ki1, σi,3 =

X ki2, then denotes the set by φ = {σi,1, σi,2, σi,3}, 1 ≤ i ≤ n as
the tag for block mi. The client sends Tm = {F, φ}to the CSS
and deletes them from its local storage.

 y GenChal(k) → chal
The client or the designated verifier (DV) can verify the

integrity of the outsourced data by challenging the server.
Verifier picks a random subset I of the set [1, n], for i ∈ I (1
≤ i ≤ c), the verifier chooses a random element vi ∈ Zp. The
verifier sends the message chal = {(i, vv)}i∈I to the CSS.

 y Genproof(F, φ , chal) → DV
Upon receiving the challenge, the CSS computes:

,

,

,

Moreover the CSS will also provide the verifier with a
small amount of metadata information. The CSS outputs
pf = {σ, δ, η} and sends pf to the verifier as the response.
 y Verfyproof (X, y, pf, chal) → {true, false}
Upon receiving the response pf from the CSS, the
designated verifier checks whether the following formula
holds.

σ = (δη)y

If so, outputs “true;”otherwise “false.”
In our construction, the Diffie-Hellman agreement key

gxy is the key. Only client and private verifier know its secret
key (x/y) and are able to generate the tag of data blocks, or
perform integrity verification. Moreover the private verifier
is directly designated by clients. Thus no state information
is stored in CSS.

After executing the above algorithms, the private
verifier DV can further process the checked data blocks and
form new data blocks. Then TagGen algorithm is performed
by DV to generate new tags. Finally the new data blocks is
stored in CSS and verified by the client.

Journal of Internet Technology Volume 16 (2015) No.2320

4 Security Analyses

The correctness analysis and security analysis of our
MV-PDP scheme can be given by the following theorems.
Theorem 1. If Client and CSS are honest and follow the
proposed procedures, then any challenge-response can pass
verifier’s checking, i.e., MV-PDP satisfies the correctness.
Proof. According to our scheme procedures, we know that

Theorem 2. It is computational infeasible to generate a
fake tag under our MV-PDP scheme.
We show that if a (t', ε')-algorithm A, operated by an
adversary, can generate a fake tag under our MV-PDP
scheme after making at most H1 hash queries, at most qT
tag queries and requesting qK setup, then there exists
a (t, ε)-algorithm B that can solve the CDH problem in
G with t ≤ t' + qH1

TG + qTTG and ε ≥ ε'/qKqH1
 ,where one

exponentiation on G takes time TG.
Proof. Let A be a probabilistic black-box adversary who
wins the tag unforgeability game with advantage ε' in time
t' On input (g, ga, gb) the CDH algorithm B simulates A as
follows:

 y Setup: Given an instance (g, ga, gb) of the CDH problem.
B sets the public parameter (G, g, q). As A requests the
creation of system users, B guesses which one A will
attempt a forgery against. Without loss of generality, we
assume the target public key as pkv and set it as pkv = ga.
For all other public keys, we set pki = gxi for a random xi
∈ Zp. Then B can invoke A to query. The total number
requested is qK.
 y Query: A can query oracles OH1

, OH2
, OTag during his

execution. B handles these oracles as follows:
 y OH1

: B maintains a table TH1
 to look up the OH1

 query
records. B takes mi as input, if record (*, mi) exists, then
it outputs (ki1, ki2). Otherwise guess if mi is the block m*

that A will attempt to use in a forgery. If mi = m*, output
YH2(mi)ki1+ki2 = gb; otherwise a random yi ∈ Zp is selected, let

YH2(mi)ki1+ki2 = gyi, and inserts (gyi, mi) into TH1
 for each mi ≠

m*.
 y OH2

: B maintains a table TH2
 to look up the OH2

 query
records. B takes u ∈ (0,1)* as input and outputs ρ if record
(u, ρ) exists in TH2

. Otherwise, B randomly selects I from
Zp and inserts (u, I) into TH2

.
 y OTag: B maintains a table TTag to look up the OTag query
records. B takes F = {m1, ..., mn} as input. For 1 ≤ i ≤ n, if
mi has been queried to oracle OH1

, B aborts. Otherwise, B
randomly chooses r1, r2 from Zp, and let ki1 = r1/a, ki2 = r2/
a. So σi,1 = (YH2(mi)ki1+ki2)a = gb(H2(mi)r1+r2), σi,2 = X ki1, σi,3 = X ki2.
Then B inserts (mi, σi,1, σi,2, σi,3) to TTag.
 y Forgery: Eventually A outputs a forgery (pkj, m', σi,1', σi,2',
σi,3'), B responses them as a challenge to A. If v ≠ j, B
guessed the wrong target user and abort. If VerfyProof =
false, or (m', σi,1', σi,2', σi,3') is the result of any OTag, B also
aborts. Otherwise B let σi,1' = (YH2(mi)ki1+ki2)a = (gb)a = gab be
the proposed CDH problem. So ki1' || ki2' = H1(g

ab, m'),
σi,2' = gaki1', σi,3' = gaki2'.

The probability that B will guess the target user
correctly is 1/qK and the probability that B will guess
the forged block m' is 1/qH1

. Therefore, if A generates
a fake tag with probability ε', then B solves the CDH
problem with probability ε'/qKqH1

. Algorithm B requires
one exponentiation on G for each H1 query, one extra
exponentiation on G for each tag query, so its running time
is A’s running time plus qH1

TG + qTTG.
Theorem 3. For the cloud, it is computational infeasible
to generate a forgery of an auditing proof under our
mechanism.
If the ECDLP is (t, ε)-secure, the MV-PDP scheme is (t -
q1t1 - q2t2 - q3t3, 2ε) proof indistinguishable in the random
oracle model, where (q1, q2, q3) are the numbers of times
that an adversary queries (OH1

, OH2
, Oproof)-oracles, and

(t1, t2, t3) are the responding time to an oracle query.
Proof. Following the security model and security game
defined in Subsection 2.2. Let A be probabilistic adversary
to break the MV-PDP scheme. We construct an algorithm B
that uses A to solve the DLP problem as follows:

 y Setup: Given an instance (g, ga) of the DLP problem. B
sets the public parameter (G, g, q), data owner’s key pair
is (β, X = gαβ) and the designated verifier’s key pair is
(γ, gb), where β, γ ∈ Zp. Then B can invoke A to query.
 y Query: A can query oracles OH1

, OH2
, Oproof during his

execution. B handles these oracles as follows:
 y OH1

: B maintains a table TH1
 to look up the OH1

 query
records. B takes mi as input, if record (*, mi) exists, then it
outputs (ki1, ki2). Otherwise, B randomly selects I from G
and inserts (I, mi) into TH1

.
 y OH2

: B maintains a table TH2
 to look up the OH2

 query
records. B takes u ∈ (0,1)* as input and outputs ρ if record
(u, ρ) exists in TH2

. Otherwise, B randomly selects I from
Zp and inserts (u, I) into TH2

.

321Mutual Verifiable Provable Data Auditing in Public Cloud Storage

 y Oproof : B maintains a table Tproof to look up the Oproof query
records. B takes chal = {(i, vi)}i∈I as input. For 1 ≤ i ≤ n, if
mi has been queried to oracle OH1

, B aborts. Otherwise, B
randomly chooses r1, r2 from Zp, and let ki1 = r1/β, ki2 = r2/β.
So σi,1 = (X H2(mi)ki1+ki2)γ = gaγ(H2(mi)r1+r2), σi,2 = X ki1 = gar1, σi,3 =
X ki2 = gar2. Then B outputs a valid proof as follows:

,

,

,

 y Challenge: After the query-1 phase, A generates a
challenge chal = {(i*, vi

)}i∈ I and requests the adversary A
to provide a proof.

 y Answer: A returns integrity proof pf = {σ, δ, η} with chal =
{(i*, vi

)}i ∈ I. Now we say if B can solve the ECDLP
problem with the instance (g, ga), i.e., get the private key
a the proof pf can pass the verification procedure.

When B can achieve the private key a, b from (g, ga)
and (g, gb), A can compute as below:

,

,

,

,

If B can solve the ECDLP problem, A has advantage
ε' to break the MV-PDP scheme. Therefore, the reduced
advantage of B is ε = ε'/2 and the reduced time is t = t' +
q1t1 + q2t2 + q3t3.

5 Performance Evaluation

5.1 Comparison of Computation Cost
In our MV-PDP protocol, suppose there exists n

message blocks. In the TagGen phase, the client needs to
compute 3integer exponentiation and 1 multiplication.
In the GenProof phase, the CCS needs to do 3c integer
exponentiations and 3c multiplications. In the VerifyProof
phase, the verifier needs to do 1 multiplication and 1
integer exponentiation. Other operations like hashing and
permutation are omitted since they just contribute negligible
computation cost. Our scheme does need to compute
expensive pairing, which improves its computational

efficiency considerably.

5.2 Comparison of Communication Cost
Compared to RSA, elliptic curves cryptography (ECC)

has shorter key length based on the same level of security.
It has been shown that 160-bit ECC provides comparable
security to 1024-bit RSA. At the same time, 224-bit
ECC provides comparable security to 2048-bitRSA. The
communication overhead incurred mostly comes from
the MV-PDP response. In MV-PDP response, the CCS
needs to send 3 elements in G. The total communication
is about 480 bits. This communication overhead is totally
tolerable for current communication techniques. More
importantly, our scheme saves the communication cost of
the required delegated checking ability for data possession
as in Delegable PDP and Proxy PDP. We do not consider
the communication overhead incurred by storing their data
on CCS. For the storing processes, the communication
overheads are less than the schemes in [13-14] because our
scheme does not store the delegation key or warrant. Thus,
the total communication overhead of MV-PDP is more
efficient.

6 Conclusion

To meet with some practiced cloud cloud storage
application scenarios, we propose the mutual verifiable
provable data possession scheme. First we define MV-PDP
system model and security model. And then we utilize of
Diffie-Hellman shared key to construct the homomorphic
authenticator. In MV-PDP system, the data blocks signed
by a client can be verified by a private verifier, while the
data blocks signed by a verifier can also be check by a
client. And the same data blocks are easy to be signed and
checked by a client and the verifier in turn. Furthermore, in
MV-PDP the verifier is stateless and independent of CSS.
We’d like to emphasize that ECC-based homomorphic
authenticator is used to design our scheme, which result in
low calculation and Communications due to the fact that
bilinear operation is not required.

Acknowledgements

This work is supported by the NSFC (No. 61232016,
61300236, 61300237, 61402234), Jiangsu Province Natural
Science Research Program (BK20130809, BK2012461),
the prospective research projects in the future Network
(BY2013095-4-04), the Project of six personnel in Jiangsu
Province (2013-WLW-012), the industrial Strategic
Technology Development Program (10041740) funded
by the Ministry of Trade, Industry and Energy (MOTIE)
Korea, the open fund project from Jiangsu Engineering

Journal of Internet Technology Volume 16 (2015) No.2322

Center of Network Monitoring (KJR1302, KJR1305), the
research fund from Jiangsu Technology & Engineering
Center of Meteorological Sensor Network in NUIST under
Grant (No. KDXG1301), the PAPD fund and the national
training programs of innovation and entrepreneurship for
undergraduates (No. N1885014041, N1885012119).

References

[1] Chia-Mu Yu, Chi-Yuan Chen and Han-Chieh Chao,
Proof of Ownership in Deduplicated Cloud Storage
with Mobile Device Efficiency, IEEE Network
Magazine, in press.

[2] Zhang-Jie Fu, Xing-Ming Sun, Qi Liu, Lu Zhou
and Jian-Gang Shu, Achieving Efficient Cloud
Search Services: Multi-keyword Ranked Search
over Encrypted Cloud Data Supporting Parallel
Computing, IEICE Transactions on Communications,
Vol.E98-B, No.1, 2015, pp.190-200.

[3] Jin Wang, Yue Yin, Jian-Wei Zhang, Sungyoung
Lee and R. Simon Sherratt, Mobility Based Energy
Efficient and Multi-sink Algorithms for Consumer
Home Networks, IEEE Transactions on Consumer
Electronics, Vol.59, No.1, 2013, pp.77-84.

[4] Jian Shen, Wen-Ying Zheng, Jin Wang, Yu-Hui
Zheng and Xing-Ming Sun, An Efficient Verifiably
Encrypted Signature from Weil Pairing, Journal of
Internet Technology, Vol.14, No.6, 2013, pp.947-952.

[5] Jin Wang, Zhong-Qi Zhang, Feng Xia, Wei-Wei
Yuan and Sungyoung Lee, An Energy Efficient Stable
Election-Based Routing Algorithm for Wireless
Sensor Networks, Sensors, Vol.13, No.11, 2013,
pp.14301-14320.

[6] Jian Li, Xiao-Long Li, Bin Yang and Xing-Ming
Sun, Segmentation-Based Image Copy-Move Forgery
Detection Scheme, IEEE Transactions on Information
Forensics and Security, Vol.10, No.3, 2015, pp.507-518.

[7] Giuseppe Ateniese, Randal Burns, Reza Curtmola,
Joseph Herring, Lea Kissner, Zachary Peterson and
Dawn Song, Provable Data Possession at Untrusted
Stores, Proc. ACM CCS, Alexandria, VA, November,
2007, pp.598-609.

[8] Ari Juels and Burton S. Kaliski, Jr., PORs: Proofs
of Retrievability for Large Files, Proc. ACM CCS,
Alexandria, VA, November, 2007, pp.584-597.

[9] Hovav Shacham and Brent Waters, Compact Proofs
of Retrievability, Journal of Cryptology, Vol.26,
No.3, 2013, pp.442-483.

[10] C. Chris Erway, Alptekin Kupcu, Charalampos
Papamanthou and Roberto Tamassia, Dynamic
Provable Data Possession, Proc. ACM CCS, Chicago,
IL, November, 2009, pp.213-222.

[11] Qian Wang, Cong Wang, Kui Ren, Wen-Jing Lou
and Jin Li, Enabling Public Verifiability and Data
Dynamics for Storage Security in Cloud Computing,
IEEE Transactions on Parallel and Distributed
Systems, Vol.22, No.5, 2011, pp.847-859.

[12] Bin Gu and Victor S. Sheng, Feasibility and Finite
Convergence Analysis for Accurate On-Line
ν-Support Vector Learning, IEEE Transactions on
Neural Networks and Learning Systems, Vol.24,
No.8, 2013, pp.1304-1315.

[13] Shiuan-Tzuo Shen and Wen-Guey Tzeng, Delegable
Provable Data Possession for Remote Data in the
Clouds, Proc. of ICICS, Beijing, China, November,
2011, pp.93-111.

[14] Huaqun Wang, Proxy Provable Data Possession
in Public Clouds, IEEE Transactions on Services
Computing, Vol.6, No.4, 2012, pp.551-559.

[15] Yong-Jun Ren, Jian Shen, Jin Wang and Li-Ming
Fang, Analysis of Delegable and Proxy Provable
Data Possession for Cloud Storage, Proc. IIH-MSP,
Kitakyushu, Japan, August, 2014, pp.779-782.

Biographies

Yongjun Ren obtained the PhD degree
in the computer and science department
at the Nanjing University of Aeronautics
and Astronautics, China, in 2008. Now
he is serving as a full time faculty in
the Nanjing University of Information
Science and Technology. His research

interests include network security and applied cryptography.

Jian Shen received the ME and PhD
degrees in Computer Science from
Chosun University, Korea, in 2009 and
2012, respectively. Since late 2012, he has
been a professor at Nanjing University
of Information Science and Technology,
Nanjing, China. His research interests

include computer networking, and information security
systems.

Jin Wang received the MS degree
from Nanjing University of Posts and
Telecommunications, China in 2005.
He received PhD degree from Kyung
Hee University Korea in 2010. Now, he
is a professor at Nanjing University of
Information Science & Technology. His

research interests mainly include wireless sensor network,
network performance analysis and security.

323Mutual Verifiable Provable Data Auditing in Public Cloud Storage

Jin Han received his PhD degrees
in Computer Science from Nanjing
University, China in 2010. His current
research focuses on Ubiquitous computing
and applications, wireless Ad-hoc and
sensor networks, network security
and privacy, applied cryptography and

security protocol analysis.

Sungyoung Lee received MS and PhD
degrees in Computer Science from Illinois
Institute of Technology (IIT), USA in
1987 and 1991. He has been a professor
at Kyung Hee University since 1993. His
current research focuses on Ubiquitous
computing and applications, wireless Ad-

hoc and sensor networks, and Embedded Systems.

