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Abstract

Cloud storage is now a hot research topic in information 
technology. In cloud storage, date security properties such 
as data confidentiality, integrity and availability become 
more and more important in many commercial applications. 
Recently, many provable data possession (PDP) schemes 
are proposed to protect data integrity. In some cases, it 
has to delegate the remote data possession checking task 
to some proxy. However, these PDP schemes are not 
secure since the proxy stores some state information in 
cloud storage servers. Hence, in this paper, we propose an 
efficient mutual verifiable provable data possession scheme, 
which utilizes Diffie-Hellman shared key to construct the 
homomorphic authenticator. In particular, the verifier in our 
scheme is stateless and independent of the cloud storage 
service. It is worth noting that the presented scheme is very 
efficient compared with the previous PDP schemes, since 
the bilinear operation is not required.

Keywords: Cloud computing, Data storage auditing, 
Provable data possession, Key agreement.

1 Introduction

Cloud storage is an important service of cloud 
computing, which allows data owners to move data from 
their local computing systems to the Cloud. In the cloud 
paradigm, data owners move the large data files from their 
local computing systems to the remote servers. Moreover 
it is of critical importance for the data owners can avoid 
the initial investment of expensive infrastructure setup, 
large equipment, and daily maintenance cost, which is 
particularly true for small and medium-sized businesses. In 
addition the data owners can rely on the Cloud to provide 
more reliable services, so that they can access data from 
anywhere and at any time [1-3].

Storing the data in cloud environment becomes natural 
and also essential. But, security becomes one of the major 
concerns for all entities in cloud services [4-6]. Firstly, data 
owners would worry that their data could be misused or 
accessed by unauthorized users. Secondly, the data owners 
would worry that their data could be lost in the Cloud. This 
is because data loss could happen in any infrastructure. 

Furthermore, the cloud storage service (CSS) may be 
dishonest and they may discard the data which has not been 
accessed or rarely accessed to save the storage space or 
keep fewer replicas than promised. As a result, data owners 
need to be convinced that their data are correctly stored 
in the Cloud. It is desirable to have data storage auditing 
service to assure data are correctly stored in the Cloud.

Ateniese et al. [7] defined the first Provable Data 
Possession model to solve the storage auditing problem 
of static files in cloud computing. They completed the 
proof of the data integrity by sampling and verifying the 
correspondence of the tags and blocks randomly. Juels et al. 
[8] also proposed a provable data recovery (POR) model. 
Instead of tagging file blocks, they inserted some sentinel 
blocks, and verified the integrity of the file by checking 
the correctness of sentinel blocks. For the sentinel blocks 
are one-time labels, the number of times that the file can 
do integrity verification is limited, related to the number 
of sentinel blocks. Shacham and Waters [9] proposed an 
improved POR model under the security model defined in 
[8]. Erway et al. [10] were the first to explore constructions 
for dynamic provable data possession. This scheme is 
essentially a fully dynamic version of the PDP solution. It 
maintained a skip-list for tags, and stored the root metadata 
in Client’s hand to prevent replay attack. Wang et al. [11] 
and Gu and Sheng [12] use the tags based on [9] to apply 
the data integrity verification of dynamic files. 

According to the role of the PDP verifier, the PDP 
protocols are classified into two categories: private PDP 
and public PDP. Private PDP is necessary in some cases. 
For example, the data owners will be restricted to access 
the Internet. Recently Shen and Tzeng presented delegable 
provable data possession scheme [13], in which data owner 
generates the delegation key for delegated verifier and 
store the key in CSSs for verification. Huaqun Wang also 
proposed a proxy provable data possession (PPDP) model 
and provided a construction for it [14]. In PPDP, data owner 
can delegate its remote data possession checking capability 
to the proxy by sending it a warrant, which is stored in 
both the proxy and CSS. However, it has shown that the 
two private PDP schemes are insecure because the state 
information of the proxy or delegated verifier is controlled 
by a malicious CSS [15].

In this paper we propose an efficient mutual verifiable 
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integrity, further processes them. And the data blocks 
are re-tagged and sent to CSS by user V. Next the user U 
continues to verify and deal with the data blocks. In this 
case, it is required to switching the role between the client 
and PV, which will complete data-block level processing.

2.2 Security Model and Definition
The MV-PDP scheme is composed of the following 

algorithms.
 y KeyGen(1k) → (sk, pk)
It takes input a security parameter k and returns the 
corresponding private/public key pair. By running it 
twice, this algorithm can return the client’s private/public 
key pair(x, X) and a PV’s private/public key pair (y, Y). 
 y TagGen(x, Y, m) → (Tm)
This algorithm is run by the client. It takes as input its 
private key x, the PV’s public key Y and a file block m, 
and outputs the tag Tm.
 y GenChal(k) → chal
The PV generates a challenge to CSS for the stored data. 
It takes as input the public parameter k, and outputs the 
challenge chal.
 y Genproof(F, φ , chal) → DV
The CCSs generate the possession proof. It takes as 
inputs the public parameter, an ordered collection F 
of blocks and tags φ , and the challenge chal. It returns 
a data possession proof pf for the blocks in F that are 
determined by the challenge chal.
 y Verfyproof(X, y, pf, chal) → {true, false}
This algorithm can be run by the PV upon receipt of 
the proof pf. It takes as input the client’s public key X, 
the challenge chal, its own private key y and the proof 
pf returned from the server, and outputs “true” if the 
integrity of the file is verified as correct, or “false” 
otherwise.

After executing the above algorithms, the PV can 
further processes the checked data blocks and form new 
data blocks. Then TagGen algorithm is performed by PV 
to generate new tags. Finally the new data blocks is stored 
in CSS and verified by the client.This means the private 
verifier can mark data blocks, which belongs to the PV, 
then store them in CSS. Similarly, the client can verify the 
integrity of the data blocks. 

Definition 1 (Unforgeability): A MV-PDP scheme is 
secure if for any (probabilistic polynomial) adversary A 
(i.e., malicious CCS) the probability that A wins the MV-
PDP game is negligible. The MV-PDP game between 
the challenger C and the adversary A can be depicted as 
follows:
(1) SetUp: Supposing the system parameter is params. 

KeyGen is a private/public key pair generating 
algorithm. By running KeyGen, C can get the client’s 

provable data possession (MV-PDP) scheme. In the MV-
PDP, verifier is stateless and independent from CSS, which 
solves the problem that the verifier can be optionally 
specified by a malicious CSS. In our scheme, the roles of 
data owner and verifier can be changed with each other, 
which enable that both of data owner and verifier can 
carry on certain data-centric interaction. Moreover in our 
design, we use ECC-based homomorphic authenticator to 
design PDP scheme, which does not compute expensive 
bilinear and consume small amount of calculation and 
Communications.

The rest of the paper is organized as follows. Section 2 
introduces the preliminaries and Sections 3 and 4 describe 
our MV-PDP scheme and its security proof. Section 5 gives 
the performance analysis on our PPDP protocol. Finally, 
Section 6 concludes this paper.

2 Preliminaries

MV-PDP system model and security model are given 
in this section. At the same time, bilinear pairings and some 
corresponding difficult problems are also depicted below.

2.1 System Model
MV-PDP system consists of three different network 

entities: client, cloud storage server, verifier. They can be 
identified below. 
(1) Client: an entity, which has massive data, that will be 

moved to cloud storage server for maintenance and 
computation, can be either individual consumer or 
organization;

(2) Cloud Storage Server: an entity, which is managed by 
cloud service provider, has significant storage space 
and computation resource to maintain the clients’ data;

(3) Private Verifier (PV): an entity, which is trusted and 
designated to assess and expose risk of cloud storage 
services upon request. After verification, PV also is able 
to act as a client and modify the data blocks, and then 
re-tag them.
By hosting their data in the Cloud, clients can avoid 

the initial investment of expensive infrastructure setup, 
large equipment, and daily maintenance cost. Since the 
clients no longer possess their data locally, it is necessary 
for the clients to ensure that their data are being correctly 
stored and maintained. That is, clients should be equipped 
with certain storage auditing services so that they can 
periodically check the integrity of the remote data even 
without the existence of local copies.

In practical scenarios clients may frequently perform 
block-level operations on the data files. For example, in 
business data process, some data blocks are processed 
by the user U and stored in CSS. The user V verifies its 
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private/public key pair (x, X), the private auditor’s 
private/public key pair (y, Y).C keeps (x, y) confidential 
and sends (X, Y) to A.

(2) Queries: A adaptively makes a number of different 
queries to C. Each query can be one of the following.

 y Hash query: A makes Hash function queries adaptively. C 
responds the Hash values to A;
 y Proof query: A chooses challenge chal and obtains a valid 
proof with the chal.

(3) Challenge: C generates a challenge chal which 
defines a ordered collection. C is required to provide a 
possession proof for the blocks.

(4) Answer: A computes a data possession proof pf for the 
blocks indicated by chal and returns pf. In the MV-
PDP game, we say that the success probability of the 
adversary A is negligible. i.e.,

AdvA(Pr[Verfyproof = true]) ≤ ε,

where ε is negligible.

2.3 Hardness Problem
Let G be a cyclic multiplicative group on ECC 

generated by P, the related complexity assumptions are as 
follows.

 y Computational Diffie-Hellman (CDH) Problem: 
Given a randomly chosen P ∈ G, as well as aP, bP, for 
unknown a, b ∈ Zp, compute abP.
 y Elliptic Curve Discrete Logarithm Problem (ECDLP): 
Given points P and Q of the group in elliptic curve, find a 
number k such that Pk = Q.

3 Mutual Verifiable Provable Data 
Possession Scheme

Now we start to present the main idea behind our 
scheme. We take use of a Diffie-Hellman key agreement 
key as the foundation of the homomorphic authenticator 
to generate the tag for every data block, which makes that 
the client and the verifier can mutually check marked data 
blocks. In addition, the verifier is designated by client. CSS 
does not stores any information of the verifier, i.e., the CSS 
is stateless to the verifiers. Our scheme is described below.

We assume that file F (potentially encoded using Reed-
Solomon codes [11]) is divided into n blocks {m1, ..., mn}, 
where mi ∈ Zp and q are a large prime. Let G be a cyclic 
multiplicative group on ECC generated by g, two hash 
functions H1, H2: {0,1}* → Zp, viewed as a random oracle. 
The procedure of our basic scheme execution is as follows:

 y KeyGen(1k) → (sk, pk)
The client chooses a random x ∈ Zp and compute X = 
gx.The secret key is x and the public key is X. The client 

designates a trust verifier DV. DV runs the KeyGen and 
randomly chooses y ∈ Zp as his private key and computes 
Y = gy as his public key.
 y TagGen(x, Y, m) → (Tm)
Given F = {m1, ..., mn}, the client generates the tag Tm of 
the block mi. Let ki1 and ki2 be random integer in Zp. The 
client computes ki1 || ki2 = H1(Y

x, mi).
And client computes σi,1 = (YH2(mi)ki1+ki2)x, σi,2 = X ki1, σi,3 = 

X ki2, then denotes the set by φ  = {σi,1, σi,2, σi,3}, 1 ≤ i ≤ n as 
the tag for block mi. The client sends Tm = {F, φ}to the CSS 
and deletes them from its local storage.

 y GenChal(k) → chal
The client or the designated verifier (DV) can verify the 

integrity of the outsourced data by challenging the server. 
Verifier picks a random subset I of the set [1, n], for i ∈ I (1 
≤ i ≤ c), the verifier chooses a random element vi ∈ Zp. The 
verifier sends the message chal = {(i, vv)}i∈I to the CSS.

 y Genproof(F, φ , chal) → DV
Upon receiving the challenge, the CSS computes:

,

,

, 

Moreover the CSS will also provide the verifier with a 
small amount of metadata information. The CSS outputs 
pf = {σ, δ, η} and sends pf to the verifier as the response.
 y Verfyproof (X, y, pf, chal) → {true, false}
Upon receiving the response pf from the CSS, the 
designated verifier checks whether the following formula 
holds. 

σ = (δη)y

If so, outputs “true;”otherwise “false.”
In our construction, the Diffie-Hellman agreement key 

gxy is the key. Only client and private verifier know its secret 
key (x/y) and are able to generate the tag of data blocks, or 
perform integrity verification. Moreover the private verifier 
is directly designated by clients. Thus no state information 
is stored in CSS.

After executing the above algorithms, the private 
verifier DV can further process the checked data blocks and 
form new data blocks. Then TagGen algorithm is performed 
by DV to generate new tags. Finally the new data blocks is 
stored in CSS and verified by the client.
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4 Security Analyses

The correctness analysis and security analysis of our 
MV-PDP scheme can be given by the following theorems.
Theorem 1. If Client and CSS are honest and follow the 
proposed procedures, then any challenge-response can pass 
verifier’s checking, i.e., MV-PDP satisfies the correctness.
Proof. According to our scheme procedures, we know that

Theorem 2. It is computational infeasible to generate a 
fake tag under our MV-PDP scheme.
We show that if a (t', ε')-algorithm A, operated by an 
adversary, can generate a fake tag under our MV-PDP 
scheme after making at most H1 hash queries, at most qT 
tag queries and requesting qK setup, then there exists 
a (t, ε)-algorithm B that can solve the CDH problem in 
G with t ≤ t' + qH1

TG + qTTG and ε ≥ ε'/qKqH1
 ,where one 

exponentiation on G takes time TG.
Proof. Let A be a probabilistic black-box adversary who 
wins the tag unforgeability game with advantage ε' in time 
t' On input (g, ga, gb) the CDH algorithm B simulates A as 
follows:

 y Setup: Given an instance (g, ga, gb) of the CDH problem. 
B sets the public parameter (G, g, q). As A requests the 
creation of system users, B guesses which one A will 
attempt a forgery against. Without loss of generality, we 
assume the target public key as pkv and set it as pkv = ga. 
For all other public keys, we set pki = gxi for a random xi 
∈ Zp. Then B can invoke A to query. The total number 
requested is qK.
 y Query: A can query oracles OH1

, OH2
, OTag during his 

execution. B handles these oracles as follows:
 y OH1

: B maintains a table TH1
 to look up the OH1

 query 
records. B takes mi as input, if record (*, mi) exists, then 
it outputs (ki1, ki2). Otherwise guess if mi is the block m* 

that A will attempt to use in a forgery. If mi = m*, output 
YH2(mi)ki1+ki2 = gb; otherwise a random yi ∈ Zp is selected, let 

YH2(mi)ki1+ki2 = gyi, and inserts (gyi, mi) into TH1
 for each mi ≠ 

m*.
 y OH2

: B maintains a table TH2
 to look up the OH2

 query 
records. B takes u ∈ (0,1)* as input and outputs ρ if record 
(u, ρ) exists in TH2

. Otherwise, B randomly selects I from 
Zp and inserts (u, I) into TH2

.
 y OTag: B maintains a table TTag to look up the OTag query 
records. B takes F = {m1, ..., mn} as input. For 1 ≤ i ≤ n, if 
mi has been queried to oracle OH1

, B aborts. Otherwise, B 
randomly chooses r1, r2 from Zp, and let ki1 = r1/a, ki2 = r2/
a. So σi,1 = (YH2(mi)ki1+ki2)a = gb(H2(mi)r1+r2), σi,2 = X ki1, σi,3 = X ki2. 
Then B inserts (mi, σi,1, σi,2, σi,3) to TTag.
 y Forgery: Eventually A outputs a forgery (pkj, m', σi,1', σi,2', 
σi,3'), B responses them as a challenge to A. If v ≠ j, B 
guessed the wrong target user and abort. If VerfyProof = 
false, or (m', σi,1', σi,2', σi,3') is the result of any OTag, B also 
aborts. Otherwise B let σi,1' = (YH2(mi)ki1+ki2)a = (gb)a = gab be 
the proposed CDH problem. So ki1' || ki2' = H1(g

ab, m'), 
σi,2' = gaki1', σi,3' = gaki2'.

The probability that B will guess the target user 
correctly is 1/qK and the probability that B will guess 
the forged block m' is 1/qH1

. Therefore, if A generates 
a fake tag with probability ε', then B solves the CDH 
problem with probability ε'/qKqH1

. Algorithm B requires 
one exponentiation on G for each H1 query, one extra 
exponentiation on G for each tag query, so its running time 
is A’s running time plus qH1

TG + qTTG.
Theorem 3. For the cloud, it is computational infeasible 
to generate a forgery of an auditing proof under our 
mechanism.
If the ECDLP is (t, ε)-secure, the MV-PDP scheme is (t - 
q1t1 - q2t2 - q3t3, 2ε) proof indistinguishable in the random 
oracle model, where (q1, q2, q3) are the numbers of times 
that an adversary queries (OH1

, OH2
, Oproof)-oracles, and 

(t1, t2, t3) are the responding time to an oracle query.
Proof. Following the security model and security game 
defined in Subsection 2.2. Let A be probabilistic adversary 
to break the MV-PDP scheme. We construct an algorithm B 
that uses A to solve the DLP problem as follows:

 y Setup: Given an instance (g, ga) of the DLP problem. B 
sets the public parameter (G, g, q), data owner’s key pair 
is (β, X = gαβ) and the designated verifier’s key pair is 
(γ, gb), where β, γ ∈ Zp. Then B can invoke A to query.
 y Query: A can query oracles OH1

, OH2
, Oproof during his 

execution. B handles these oracles as follows:
 y OH1

: B maintains a table TH1
 to look up the OH1

 query 
records. B takes mi as input, if record (*, mi) exists, then it 
outputs (ki1, ki2). Otherwise, B randomly selects I from G 
and inserts (I, mi) into TH1

.
 y OH2

: B maintains a table TH2
 to look up the OH2

 query 
records. B takes u ∈ (0,1)* as input and outputs ρ if record 
(u, ρ) exists in TH2

. Otherwise, B randomly selects I from 
Zp and inserts (u, I) into TH2

.
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 y Oproof : B maintains a table Tproof to look up the Oproof query 
records. B takes chal = {(i, vi)}i∈I as input. For 1 ≤ i ≤ n, if 
mi has been queried to oracle OH1

, B aborts. Otherwise, B 
randomly chooses r1, r2 from Zp, and let ki1 = r1/β, ki2 = r2/β. 
So σi,1 = (X H2(mi)ki1+ki2)γ = gaγ(H2(mi)r1+r2), σi,2 = X ki1 = gar1, σi,3 = 
X ki2 = gar2. Then B outputs a valid proof as follows: 

,

,

,

 y Challenge: After the query-1 phase, A generates a 
challenge chal = {(i*, vi

*)}i*∈ I and requests the adversary A 
to provide a proof.

 y Answer: A returns integrity proof pf = {σ, δ, η} with chal = 
{(i*, vi

*)}i* ∈ I. Now we say if B can solve the ECDLP 
problem with the instance (g, ga), i.e., get the private key 
a the proof pf can pass the verification procedure.

When B can achieve the private key a, b from (g, ga) 
and (g, gb), A can compute as below:

,

,

,

,

If B can solve the ECDLP problem, A has advantage 
ε' to break the MV-PDP scheme. Therefore, the reduced 
advantage of B is ε = ε'/2 and the reduced time is t = t' + 
q1t1 + q2t2 + q3t3.

5 Performance Evaluation

5.1 Comparison of Computation Cost
In our MV-PDP protocol, suppose there exists n 

message blocks. In the TagGen phase, the client needs to 
compute 3integer exponentiation and 1 multiplication. 
In the GenProof phase, the CCS needs to do 3c integer 
exponentiations and 3c multiplications. In the VerifyProof 
phase, the verifier needs to do 1 multiplication and 1 
integer exponentiation. Other operations like hashing and 
permutation are omitted since they just contribute negligible 
computation cost. Our scheme does need to compute 
expensive pairing, which improves its computational 

efficiency considerably.

5.2 Comparison of Communication Cost
Compared to RSA, elliptic curves cryptography (ECC) 

has shorter key length based on the same level of security. 
It has been shown that 160-bit ECC provides comparable 
security to 1024-bit RSA. At the same time, 224-bit 
ECC provides comparable security to 2048-bitRSA. The 
communication overhead incurred mostly comes from 
the MV-PDP response. In MV-PDP response, the CCS 
needs to send 3 elements in G. The total communication 
is about 480 bits. This communication overhead is totally 
tolerable for current communication techniques. More 
importantly, our scheme saves the communication cost of 
the required delegated checking ability for data possession 
as in Delegable PDP and Proxy PDP. We do not consider 
the communication overhead incurred by storing their data 
on CCS. For the storing processes, the communication 
overheads are less than the schemes in [13-14] because our 
scheme does not store the delegation key or warrant. Thus, 
the total communication overhead of MV-PDP is more 
efficient.

6 Conclusion

To meet with some practiced cloud cloud storage 
application scenarios, we propose the mutual verifiable 
provable data possession scheme. First we define MV-PDP 
system model and security model. And then we utilize of 
Diffie-Hellman shared key to construct the homomorphic 
authenticator. In MV-PDP system, the data blocks signed 
by a client can be verified by a private verifier, while the 
data blocks signed by a verifier can also be check by a 
client. And the same data blocks are easy to be signed and 
checked by a client and the verifier in turn. Furthermore, in 
MV-PDP the verifier is stateless and independent of CSS. 
We’d like to emphasize that ECC-based homomorphic 
authenticator is used to design our scheme, which result in 
low calculation and Communications due to the fact that 
bilinear operation is not required. 
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