
457Privacy-Preserving Smart Similarity Search Based on Simhash over Encrypted Data in Cloud Computing

Privacy-Preserving Smart Similarity Search Based on Simhash over
Encrypted Data in Cloud Computing

Zhangjie Fu1,2, Jiangang Shu1,2, Jin Wang1,2, Yuling Liu2,3, Sungyoung Lee4

1School of Computer & Software, Nanjing University of Information Science & Technology, China
2Jiangsu Engineering Centre of Network Monitoring, Nanjing University of Information Science and Technology, China

3College of Computer Science and Electronic Engineering, Hunan University, China
4Department of Computer Engineering, Kyung Hee University, Korea

{wwwfzj, kennethshu}@126.com, wangjin@nuist.edu.cn, yuling_liu@126.com, sylee@oslab.khu.ac.kr

Abstract

In recent years, due to the appealing features of
cloud computing, more and more sensitive or private
information has been outsourced onto the cloud. Although
cloud computing provides convenience, privacy and
security of data becomes a big concern. For protecting
data privacy, it is desirable for the data owner to outsource
sensitive data in encrypted form rather than in plain text.
However, encrypted storage will hinder our legal access,
e.g., searching function. To deal with this dilemma, a
considerable number of searchable encryption schemes
have been proposed in this field. However, almost all of
existing schemes focus on keyword-based query rather than
document-based query, which is a crucial requirement for
real world application. In this paper, we propose a similarity
search method for encrypted document based on simhash.
Through our scheme, data users can find similar encrypted
documents stored in cloud by submitting a query document.
In order to scale well for large data sources, we build a trie-
based index to improve search efficiency in our solution.
Through rigorous privacy analysis and experiment on real-
world dataset, our scheme is secure and efficient.

Keywords: S imi l a r i t y sea rch , Documen t sea rch ,
Searchable encryption, LSH, Cloud computing.

1 Introduction

In recent years, cloud computing has achieved great
development due to the fact that it relieves the burden of
data storage and data management. Hence, a large amount
of data, ranging from emails to personal health records, is
increasingly outsourced onto public clouds, such as Amazon
Web Services [1], Microsoft Azure [2], Apple iCloud [3],
Google AppEngine [4]. In the meantime, privacy and
security of outsourced data has increasingly aroused our
attention. For protecting data privacy, it is a recommended
practice for the data owner to outsource sensitive data in
encrypted form, which protects information privacy and
alerts unauthorized access. However, data encryption makes

data utilization (e.g., search operation) more difficult. The
trivial solution to download the whole encrypted data firstly
and then decrypt it locally is obviously impractical, due to
the huge bandwidth and computation burden.

In fact, a considerable number of schemes based on
searchable encryption [5] have been proposed to tackle
the problem. Typically, almost all such schemes follow the
model of keyword-based query, in which data users will
retrieve relevant data files from the cloud by submitting
several query words. In a real-world application, however,
there usually exists a need to use a query document for
searching similar ones. The alternative solution that users
conclude and extract keywords manually from the query
document firstly and then query these keywords is trivial.
Moreover, the performance of this approach will be
largely affected by extracted keywords, which depend on
users in different cultural backgrounds. Apparently, using
an entire document as query will be likely to get better
retrieval results compared with the method to use just a few
keywords as query, but the document-based approach is
more complex and computationally demanding.

A document-based similarity search problem consists
of a collection of documents that are characterized by
some features, a query document and a similarity metric to
measure the similarity between documents. This process
is similar with image processing [25-26]. Currently, in
document retrieval field, most of document representation
schemes are based on vector space model, latent semantic
indexing and other language models. Among them, vector
space model (VSM) [27] is most widely adopted, which
usually uses “TF × IDF” for term weighting and constructs
a bag of words for feature description. TF (term frequency)
is the occurrence of the term appearing in the document
and IDF (inverse document frequency) is a function of
the number of document where a term appears. A term
weighted vector is constructed for each document and
similarity between two documents can be measured by
cosine distance. It is apparent that such method will take
up much storage since each document is represented by a
high dimensional vector. In addition, the computation of
VSM when computing the similarity between documents
is time consuming. Therefore, we need to find an efficient

*Corresponding author: Sungyoung Lee; E-mail: sylee@oslab.khu.ac.kr
DOI: 10.6138/JIT.2015.16.3.20140918

Administrator
螢光標示

Administrator
螢光標示

Administrator
螢光標示

Journal of Internet Technology Volume 16 (2015) No.3458

symmetric encryption. But this scheme only supports
single keyword search. Then Cao et al. [10] propose a
privacy-preserving ranked search scheme supporting multi-
keyword, which uses secure KNN method [16] to calculate
the similarity based on VSM. Based on [10], in order to
solve the top- problem, Sun et al. [11] adopt a MDB-tree
to construct the searchable index, thereby improving search
efficiency.

Fuzzy Search and Similarity Search: Li et al. [12]
firstly propose a fuzzy keyword search scheme over
encrypted cloud data, which combines edit distance with
wildcard-based technique to construct fuzzy keyword sets.
Although this fuzzy search scheme addresses problems of
minor typos and format inconsistence to some extent, its
performance is dependent on parameter d of edit distance.
Kuzu et al. [13] propose a similarity search scheme which
uses minhash based on Jaccard distance to support fault
tolerant keyword search.

Semantic Search and Preferred Search: Fu et al.
[14] propose a semantic keyword search scheme based
on stemming algorithm, which helps users find relevant
documents containing semantically close keywords related
to the query word. Shen et al. [15] propose a preferred
keyword search scheme, in which the search result will
faithfully respect the user’s preference. But how to measure
keyword preference is ignored in that paper.

2.2 LSH
LSH is a special kind of hashing method, which uses a

set of hash functions to hash codes of similar objects collide
with high probability and while dissimilar ones not, such
that for objects A and B:

 Pr[h(A) = h(B)] = sim(A, B) (1)

Where sim(A, B) ∈ [0,1] is a specific similarity
metric. Manku et al. [20] represent a detailed algorithm for
simhash with Hamming distance. It maps high-dimensional
vectors to small-sized fingerprints. The input of simhash
algorithm is an -dimension vector, while the output is an
m-bit fingerprint (m < n). Simhash has two main features: (1)
The fingerprint of a data object is the simhash value of the
features of the data object; (2) Similar data objects usually
have similar fingerprints. Since the size of the fingerprint
is fixed and relatively small, it will not cost much storage.
These features enable simhash to be suitable for document
similarity search.

3 Design

3.1 System Architecture Overview
As depicted in Figure 1, a complete search system

dimensionality reduction method while supporting
similarity search over large data sources.

In this paper, the basic idea of our scheme is the state-
of-art approximate near neighbor search algorithm in high
dimension spaces called locality sensitive hashing (LSH)
[17]. LSH is widely used for fast similarity search on plain
data in information retrieval community (e.g., [18]). It
projects high-dimensional objects to compact binary codes
called fingerprints and makes similar fingerprints for similar
objects. In our scheme, we use the simhash algorithm
[19], a kind of LSH, to map the features of each document
into a fixed-length fingerprint and thereby the similarity
between documents can be measured by calculating the
hamming distance between fingerprints. Moreover, a trie-
based index covering fingerprints is constructed to improve
search efficiency. Rigorous privacy analysis shows that our
scheme is secure. Through experiment on real-world dataset
and performance analysis, our scheme is quite efficient and
infeasible.

The rest of paper is organized as follows. We discuss
the background and related work on searchable encryption
and LSH in Section 2. Section 3 shows the detailed design
of similarity search scheme. Sections 4 and 5 present
the efficiency improvement and performance analysis,
respectively. Finally, we conclude the paper in Section 6.

2 Problem Formulation

2.1 Searchable Encryption
Searchable encryption is a new developing information

security technique and it enables users to search over
encrypted data through keywords without having to decrypt
it at first. It is recommended to build a searchable index
in most of existing searchable encryption schemes. The
searchable index is encrypted in such a way that the cloud
server cannot deduce the plaintext from the index, while
allowing the search operation from authorized users. The
first practical searchable encryption scheme is proposed
by Song et al. [5], in which each word is encrypted
independently under a special construction. Later on, some
security definitions and improvement schemes based on
similar index have been proposed by Goh [6], Chang et al.
[7] and Curtmola et al. [8].

In recent years, a large number of searchable encryption
[9-15] schemes in cloud computing have been proposed.
Ownership in Deduplicated Cloud Storage is discussed [24].
In such schemes, many interesting and important issues
have been proposed and discussed.

Secure Ranked Search: Wang et al. [9] propose a
secure ranked search scheme based on “TF×IDF.” Without
knowledge of specific keyword weight, the cloud server
can also help rank relevant data files using order preserving

459Privacy-Preserving Smart Similarity Search Based on Simhash over Encrypted Data in Cloud Computing

consists of three different entities: the data owner, the
cloud server, the data user. Given a huge size of document
collection D, the data owner firstly extracts the features
Fi of each document and generates the fingerprint Ii based
on Fi. Then the owner integrates each Ii as the encrypted
searchable index Ii and outsources them, together with the
encrypted form C of document collection D, to the cloud
server. Authorized users delegated by the data owner can
make use of search service offered by the cloud server. To
retrieve similar documents of a query document, the data
user only needs to submit a search request T to the cloud.
Upon receiving a search request from the authorized user,
the cloud server will conduct designated search operation
over the index and send back relevant encrypted documents,
which have been well ranked according to some ranking
criteria (e.g., Hamming distance). At last, the data user can
decrypt the returned documents using the keys distributed
by the data owner. To reduce communication cost, the data
user can send the search request with an optional parameter
k so that he just needs to retrieve top-k documents that are
most relevant to the search request. The distribution of keys
is out scope of our paper.

3.2 Notations
For the sake of clarity, we introduce the main notations

used in this paper.
 y D -- the plaintext document collection, denoted as D =
{D1, ..., Dm}.
 y C -- the encrypted document collection, denoted as C =
{C1, ..., Cm}.
 y Fi = {fi1

, ..., fiz
} -- the set of features characterized Di.

 y I = {I1, ..., Im} -- the encrypted searchable index for
documents, Ii is the fingerprint of Fi.
 y T -- the trapdoor of the query document Dq.
 y π -- a hash function, {0,1}k × {0,1}* → {0,1}h.
 y sk -- a symmetric key, sk ←R {0,1}k.
 y Enc(sk, .) -- the symmetric encryption algorithm.
 y Dec(sk, .) -- the symmetric decryption algorithm.

 y RT,k -- the ranked documents according by the similarity
score with T.

3.3 Basic Search Scheme
The similarity search system involves the following

algorithms:
Key Generation: In this initialization phase, the data

owner produces a symmetric key sk ←R {0,1}k.
Index Construction: Given the document collection

D, the data owner extracts the features Fi of each document
Di in D. And then he generates the fingerprint Ii of Fi using
simhash algorithm. After that, the searchable index I = {I1,
..., Im} is generated.

Data Encryption: Given the document collection D,
the data owner encrypts each document Di using Enc(sk, .)
algorighm. After that, he sends encrypted document
collection C along with searchable index I to the cloud
server.

Trapdoor Construction: For a given query document
Dq, the data user needs to extract its features and generates
its fingerprint (trapdoor T) as same as index construction.
After that, the user sends the trapdoor T with an optional
parameter k to the cloud.

Search: With the trapdoor T, the cloud server conducts
designated search operation over the index I, and returns
top k encrypted documents RT,k sorted by the similarity
score with T.

Data Decryption: Once the encrypted documents
RT,k are retrieved, the user decrypts them with Dec(sk, .)
algorithm to obtain their plain version.

3.4. Details of Main Steps

3.4.1 Feature Extraction
Since keywords are practical tools to summarize the

content of document, we decide to extract the keywords
of the document as its features. In order to obtain accurate
keywords, we adopt the most widely measurement “TF ×

Figure 1 Architecture of Similarity Search System

Journal of Internet Technology Volume 16 (2015) No.3460

IDF,” where TF represents its significance within a
document and IDF indicates the degree of distinction within
a whole document collection. We can calculate TF × IDF of
each word within a document Di as formula 2, sort them in
descending order and pick up top z words as the features of
the corresponding document.

 (2)

Where fd,w is the TF of the word in document Di, fw is
the number of documents containing the word w and m is
the size of the whole document collection. Therefore, the
document Di is characterized by features Fi = {fi1

, ..., fiz
}

where fij
 is the word extracted.

3.4.2 Simhash
Given the features Fi (Fq) of a document Di (Dq), the

data owner or the data user will conduct simhash algorithm
to get the fingerprint of Fi (Fq). Figure 2 shows the process
of simhash, which can be also described as follows:
(1) Initialize a h-dimension vector V where each dimension

is set as 0;
(2) Each feature fij

 in Fi (Fq) is projected into a h-bit
signature using the traditional hash function π. If the i-th
bit of this signature is 1, the i-th dimension of V plus 1.
Otherwise, it will minus 1;

(3) At last, generate a h-bit simhash fingerprint Ii (T)
according to every dimension of vector V. If the i-th
dimension of V is positive number, and then the i-th bit
of Ii (T) is 1. Otherwise, it will be 0.

Figure 2 Process of Simhash

3.4.3 Search
After the searchable index I is built well, given the

query trapdoor T based on Dq, the cloud server can perform
similarity search over the index I. Since each sub-index
Ii and the trapdoor T are both the fingerprint of simhash
actually, the similarity of two documents can be calculated
with hamming distance as follows:

 sim(Di, Dq) = H(Ii, T) (3)

H(S1, S2) is hamming distance between two strings
(S1 and S2) of equal length. It is calculated by counting the
number of positions where the corresponding symbols are
different. For example, H(1011101, 1001001 = 2). The
smaller hamming distance means that two documents are
more similar. After calculating the similarity of each sub-
index Ii with T, the cloud server ranks all similarity scores
in ascending order and selects top k documents as RT,k.

3.5 Security Analysis
Document Privacy: All outsourced documents are

cipher under a symmetric encryption algorithm and their
privacy can be guaranteed. No information will be leaked
except their length and document IDs.

Index Confidentiality and Trapdoor Confidentiality:
During both index construction and trapdoor construction,
simhash algorithm is adopted in this paper. Each feature in
a document is firstly mapped into a h-bit signature, which
is protected by a traditional one-way hash function π. Each
sub-index Ii or the trapdoor T is a binary string of equal
length, which is produced by aggregating all signatures of
features in one document. Therefore, each sub-index Ii or
the trapdoor T is an irregular binary string and the cloud
server cannot deduce any useful information from them.

4 Efficiency Improvement

In the last section, we present a solution which requires
the trapdoor T to calculate the similarity score with each
document in cloud. In order to scale well for large data
sources, we adopt to build a trie-based index to improve
search efficiency, as shown in Figure 3. The key idea behind
the trie is that all the descendants of a node have a common
prefix associated with that node. In the trie-based index,
each path from the root node to a leaf node represents
a sub-index Ii. In the top-k search procedure, it adopts a
depth-first method to start from the root node. In the search
process downward, we should start from the root node
and read the characters in the query in sequence. For each

Figure 3 Example of Trie-Based Index

461Privacy-Preserving Smart Similarity Search Based on Simhash over Encrypted Data in Cloud Computing

read character, it always chooses the node with the unused
minimum hamming distance, predicting the minimum
possible final score to be obtained. If the predicted final
score is larger than the maximum score among the top-k
documents chosen, search process will return to its parent,
otherwise, it will go down to the child node at the next
level. The search process is performed recursively until
the top-k documents are produced. The details can be seen
Algorithm 1. Through this search method, search process
doesn’t need to go through the whole trie and only accesses
a part of nodes actually, which saves much time. Figure 3
shows an example: Given a trapdoor T = “1111,”, when k =
2, only the nodes, J and I, are returned to the user. The cross
sign means search process doesn’t need to go through the
path.

The following notations are used in the pseudo code for
our search algorithm:

 y x -- a document, it can be defined by a tree path (Ix,1, Ix,2, ...,
Ix,h).
 y Ti -- the -th symbol in the trapdoor T.
 y Si -- the hamming distance that is equal to H(Ix,i, Ti) =
Ix,ixorTi.
 y score(.) -- the current score of a path or document, e.g.,
score(.) =Σ i = 1

h Si.
 y Lk -- the list for select top-k documents that are stored in
ascending order according to score(x).
 y Mk -- the score of the k-th document in Lk.
 y I.Root -- the root node of the trie index I.
 y p -- the node in I.
 y p.child[Ti] -- the child node of p that is equal to Ti.
 y p.child[another] -- the child node of p not equaling Ti.

Algorithm 1 Search (trie I, trapdoor T, k)

begin
findTopK (I.Root,T, 0, 0, k);
return Lk;
end

procedure findTopK (node p, trapdoor T, int i, int score,
int k);
if (p is leafnode) then
 if (|Lk| < k) then
 insert document x into Lk according to score(x);
 else
 if (score < Mk) then
 delete k-th document from Lk;
 insert document x into Lk according to score(x);
 end if
 end if
else

 if (Ti is a child node in p) then
 if (|Lk| < k or score < Mk) then
 score = score + H(p.child[Ti], Ti);
 findTopK (p.child[Ti], T, i + 1, score, k);
 end if
end if
if (there is another child in p) then
 score = score + H(p.child[another], Ti);
 if (|Lk| < k or score < Mk) then
 findTopK (p.child[another], T, i + 1, score, k);
 end if
 end if
end if
end procedure

5 Performance Evaluation

To evaluate the performance of our proposed search
scheme, we conduct a thorough experiment on a 2.83
GHZ Intel Core (TM) processor, Windows 7 operating
system with a RAM of 4G. We use Newsgroup 20 [21]
for experiment in our scheme. Newsgroup 20 is a publicly
available real-world dataset, which contains approximately
20,000 newsgroup documents. It has been widely used in
text applications of machine learning techniques, such as
text classification and text clustering. In our experiment, we
randomly choose 6,000 documents as our final experiment
corpus.

5.1 Experimental Setup

5.1.1 Feature Extraction
In order to extract the accurate keywords as features,

we need to process the raw texts in each document through
the following steps: (1) word splitting; (2) filtering stop
words like “a,” “the,” “such,” “from,” etc.; (3) converting
each word into lowercase; (4) getting the root of each word
(stemming). Here we use Porter Stemming Algorithm [22]
as our stemming algorithm. After that, we compute the TF
× IDF of each word as formula 2 and only pick up top 10
words in one document as keywords.
5.1.2 Simhash

For the features extracted in each document, we need
to hash them to a fingerprint. In our experiment, we choose
SHA-1 as our hash function π. So each document will be
hashed to a 128-bit fingerprint.

5.2 Efficiency
To the best of our knowledge, parameters of precision

and recall are usually used to measure the performance in
information retrieval field. The precision and recall in our
search scheme are mainly decided upon the performance

Journal of Internet Technology Volume 16 (2015) No.3462

of simhash, which has been widely discussed [19][23].
Therefore, the performance in this section mainly focuses
on the efficiency of algorithms: index construction, trapdoor
construction and search.
5.2.1 Index Construction

In our experiment, since the adoption of trie-based
index, the index construction contains three steps: feature
extraction, simhash and trie-based index building. Figure
4 shows the time cost of index construction is nearly linear
with the number of documents. Given 6,000 documents, it
takes about 35 minutes to build up the whole index. In the
index construction, the step of feature extraction, as the
major computation, takes up most of the time. The other
two steps (simhash and trie-based index building) are quite
efficient. Figure 5 shows the time of the step of building
trie-based index is also nearly linear with the number of
documents. Compared with feature extraction, the time
of building trie-based index is quite efficient and has

little impact on the time of the whole index construction.
There is no denying that index construction is a burden for
the data owner but it is kept within the bearable limit. In
addition, it is just a one-time cost.
5.2.2 Trapdoor Construction

In the trapdoor construction, the data user needs to
extract the features of the query document at first and then
hashes them to a fingerprint using simhash. Figure 6 shows
the time cost to generate the trapdoor for different size
of document. We test a large number of documents with
size varying from 1 KB to 60 KB and the time of trapdoor
construction is not more than 1 second. Therefore, this
process will not impose a burden on the data user.

Figure 6 Time of Trapdoor Construction

5.2.3 Search
The search process conducted at the cloud server

consists of computing and ranking the similarity scores of
relevant documents. The search algorithm will terminate
at once if the top-k documents are selected. Figure 7
shows the time for trie-based search, compared with
baseline search with respect to the number of documents.
In the baseline search, the cloud server needs to calculate
the similarity score of each document stored in cloud.
Therefore, the time of baseline search rises with the number
of documents. Compared with baseline search, our trie-
based search algorithm is quite efficient and barely affected
by the number of documents.

6 Conclusion

In this paper, we propose a document-based similarity
search scheme over encrypted cloud document. In our
solution, each document is transformed into a fingerprint
with simhash and hamming distance is used as the
similarity score between documents. Moreover, trie-based
index is adopted to address the top-k problem and search Figure 5 Time of the Step of Building Trie-Based Index

Figure 4 Time of Index Construction

463Privacy-Preserving Smart Similarity Search Based on Simhash over Encrypted Data in Cloud Computing

efficiency is improved greatly. Experiment on real-world
dataset proves our scheme is quite efficient.

Acknowledgements

This work is supported by the NSFC (61373133,
61232016, 61173141, 61173142, 61173136, 61103215,
61373132, 61402234, 61272421), GYHY201206033,
201301030, 2013DFG12860, BC2013012, PAPD fund,
Jiangsu Collaborative Innovation Center on Atmospheric
Environment and Equipment Technology, Hunan province
science and technology plan project fund (2012GK3120),
the Scientific Research Fund of Hunan Provincial Education
Department (10C0944), the Prospective Research Project
on Future Networks of Jiangsu Future Networks Innovation
Institute (BY2013095-4-10), Jiangsu Province Natural
Science Research Program (BK2012461), and CSC fund.

References

[1] Amazon Web Services, 2015, http://aws.amazon.com
[2] Microsoft Azure, 2015, http://www.windowsazure.com.
[3] Apple iCloud, 2015, https://www.icloud.com/
[4] Google AppEngine, 2015, https://appengine.google.

com/
[5] Dawn Xiaodong Song, David Wagner and Adrian

Perrig, Practical Techniques for Searches on Encrypted
Data, Proc. of IEEE Symposium on Security and
Privacy, Berkeley, CA, May, 2000, pp.44-55.

[6] Eu-Jin Goh, Secure Indexes, 2004, https://eprint.iacr.
org/2003/216.pdf

[7] Yan-Cheng Chang and Michael Mitzenmacher,
Privacy Preserving Keyword Searches on Remote
Encrypted Data, Proc. of the 3th International
Conference on Applied Cryptography and Network
Security, New York, June, 2005, pp.442-455.

[8] Reza Curtmola, Juan Garay, Seny Kamara and
Rafail Ostrovsky, Searchable Symmetric Encryption:
Improved Definitions and Efficient Constructions,
Proc. of the 13th ACM Conference on Computer and
communications security, Alexandria, October, 2006,
pp.79-88.

[9] Wang Cong, Cao Ning, Li Jin, Ren Kui and Lou
Wenjing, Secure ranked keyword search over
encrypted cloud data, Proc. of the 30th IEEE
International Conference on Distributed Computing
System, Genoa, Italy, June, 2010, pp.253-262.

[10] Ning Cao, Cong Wang, Li Ming, Kui Ren and
Wenjing Lou, Privacy-Preserving Multi-keyword
Ranked Search over Encrypted Cloud Data, IEEE
Transactions on Parallel and Distributed Systems,
Vol.25, No.1, 2014, pp.222-233.

[11] Wenhai Sun, Bing Wang, Ning Cao, Ming Li,
Wenjing Lou, Y. Thomas Hou and Hui Li, Privacy-
Preserving Multi-keyword Text Search in the Cloud
Supporting Similarity-Based Ranking, Proc. of the 8th
ACM SIGSAC Symposium on Information, Computer
and Communications Security, Hangzhou, China,
May, 2013, pp.71-82.

[12] Jin Li, Qian Wang, Cong Wang, Ning Cao, Kui Ren and
Wenjing Lou, Fuzzy Keyword Search over Encrypted
Data in Cloud Computing, Proc. of IEEE INFOCOM
2010, San Diego, CA, March, 2010, pp.1-5.

[13] Mehmet Kuzu, Mohammad Saiful Islam and Murat
Kantarcioglu, Efficient Similarity Search over
Encrypted Data, Proc. of the 28th IEEE International
Conference on Data Engineering, Washington, DC,
April, 2012, pp.1156-1167.

[14] Zhangjie Fu, Jiangang Shu, Xingming Sun and
Daxing Zhang, Semantic Keyword Search Based
on Trie over Encrypted Cloud Data, Proc. of the
2nd International Workshop on Security in Cloud
Computing, Kyoto, Japan, June, 2014, pp.59-62.

[15] Zhirong Shen, Jiwu Shu and Wei Xue, Preferred
Keyword Search over Encrypted Data in Cloud
Computing, Proc. of the 21st IEEE/ACM International
Symposium on Quality of Service, Montreal, Canada,
June, 2013, pp.1-6.

[16] Wai Kit Wong, David Wai-Lok Cheung, Ben Kao
and Nikos Mamoulis, Secure kNN Computation
on Encrypted Databases, Proc. of the 2009 ACM
SIGMOD International Conference on Management
of Data, Providence, RI, June, 2009, pp.139-152.

[17] Piotr Indyk and Rajeev Motwani, Approximate
Nearest Neighbors: Towards Removing the Curse of
Dimensionality, Proc. of the Thirtieth Annual ACM
Symposium On Theory of Computing, Dallas, TX,
May, 1998, pp.604-613.

Figure 7 Time of Search

Administrator
螢光標示

Journal of Internet Technology Volume 16 (2015) No.3464

[18] Qin Lv, William Josephsona, Zhe Wang, Moses
Charikar and Kai Li, Multi-probe LSH: Efficient
Indexing for High-Dimensional Similarity Search,
Proc. of the 33rd International Conference on Very
Large Data Bases, Vienna, Austria, September, 2007,
pp.950-961.

[19] Moses S. Charikar, Similarity Estimation Techniques
from Rounding Algorithms, Proc. of the Thiry-Fourth
Annual ACM Symposium on Theory of Computing,
Montreal, Canada, May, 2002, pp.380-388.

[20] Gurmeet Singh Manku, Arvind Jain and Anish
Das Sarma, A Detecting Near-Duplicates for Web
Crawling, Proc. of the 16th International Conference
on World Wide Web, Banff, Canada, May, 2007,
pp.141-150.

[21] The 20 newsgroups data set, 2014, http://qwone.
com/~jason/20Newsgroups/

[22] Martin F. Porter, An Algorithm for Suffix Stripping,
Program, Vol.14, No.3, 1980, pp.130-137.

[23] Jiaming Xu, Pengcheng Liu, Gaowei Wu, Zhengya
Sun, Bo Xu and Hongwei Hao, A Fast Matching
Method Based on Semantic Similarity for Short Texts,
Proc. of NLPCC 2013, Chongqing, China, November,
2013, pp.299-309.

[24] Chia-Mu Yu, Chi-Yuan Chen and Han-Chieh Chao,
Proof of Ownership in Deduplicated Cloud Storage
with Mobile Device Efficiency, IEEE Network, Vol.29,
No.2, 2015, pp.51-55.

[25] Jian Li, Xiaolong Li, Bin Yang and Xingming Sun,
Segmentation-Based Image Copy-Move Forgery
Detection Scheme, IEEE Transactions on Information
Forensics and Security, Vol.10, No.3, 2015, pp.507-
518.

[26] Hui Zhang, Q. M. Jonathan Wu, Thanh Minh Nguyen
and Xingmin Sun, Synthetic Aperture Radar Image
Segmentation by Modified Student’s t-Mixture Model,
IEEE Transaction on Geoscience and Remote
Sensing, Vol.52, No.7, 2014, pp.4391-4403.

[27] Bin Gu and Victor S. Sheng, Feasibility and Finite
Convergence Analysis for Accurate On-Line
ν-Support Vector Learning, IEEE Transactions on
Neural Networks and Learning Systems, Vol.24,
No.8, 2013, pp.1304-1315.

Biographies

Zhangjie Fu obtained his PhD in
computer science from the College of
Computer, Hunan University, China, in
2012. Currently, he works as an Assistant
Professor in College of Computer
and Software, Nanjing University of
Information Science and Technology,

China. His research interests include network and
information security, copyright protection technology.

Jiangang Shu received his BE in
Network Technology and Engineering
from Nanjing University of Information
Science & Technology (NUIST), China,
in 2012. He is currently pursuing his MS
in computer science and technology in
the same university. His research interests

include cloud security, steganography, and network and
information security.

Jin Wang received PhD degree from
Kyung Hee University Korea in 2010.
Now, he is a Professor in the Nanjing
University of Information Science and
technology. His research interests mainly
include routing protocol and algorithm
design, performance evaluation for

wireless sensor networks.

Yuling Liu obtained her PhD in computer
science from the College of Computer,
Hunan University, China, in 2008.
Currently, she works as an Assistant
Professor in College of Computer Science
and Electronic Engineering, Hunan
University, China. Her research interests

include network and information security, steganography.

Sungyoung Lee is a Professor in the
Department of Computer Engineering,
Kyung Hee University, Korea since
1993. His current research focuses on
Ubiquitous Computing and Applications,
Wireless Ad-hoc and Sensor Networks,
Context-Aware Middleware, Sensor

Operating Systems, Real-Time Systems and Embedded
Systems.

