
457Privacy-Preserving Smart Similarity Search Based on Simhash over Encrypted Data in Cloud Computing

Privacy-Preserving Smart Similarity Search Based on Simhash over 
Encrypted Data in Cloud Computing

Zhangjie Fu1,2, Jiangang Shu1,2, Jin Wang1,2, Yuling Liu2,3, Sungyoung Lee4

1School of Computer & Software, Nanjing University of Information Science & Technology, China
2Jiangsu Engineering Centre of Network Monitoring, Nanjing University of Information Science and Technology, China

3College of Computer Science and Electronic Engineering, Hunan University, China
4Department of Computer Engineering, Kyung Hee University, Korea

{wwwfzj, kennethshu}@126.com, wangjin@nuist.edu.cn, yuling_liu@126.com, sylee@oslab.khu.ac.kr

Abstract

In recent years, due to the appealing features of 
cloud computing, more and more sensitive or private 
information has been outsourced onto the cloud. Although 
cloud computing provides convenience, privacy and 
security of data becomes a big concern. For protecting 
data privacy, it is desirable for the data owner to outsource 
sensitive data in encrypted form rather than in plain text. 
However, encrypted storage will hinder our legal access, 
e.g., searching function. To deal with this dilemma, a 
considerable number of searchable encryption schemes 
have been proposed in this field. However, almost all of 
existing schemes focus on keyword-based query rather than 
document-based query, which is a crucial requirement for 
real world application. In this paper, we propose a similarity 
search method for encrypted document based on simhash. 
Through our scheme, data users can find similar encrypted 
documents stored in cloud by submitting a query document. 
In order to scale well for large data sources, we build a trie-
based index to improve search efficiency in our solution. 
Through rigorous privacy analysis and experiment on real-
world dataset, our scheme is secure and efficient.

Keywords: S imi l a r i t y  sea rch ,  Documen t  sea rch , 
Searchable encryption, LSH, Cloud computing.

1 Introduction

In recent years, cloud computing has achieved great 
development due to the fact that it relieves the burden of 
data storage and data management. Hence, a large amount 
of data, ranging from emails to personal health records, is 
increasingly outsourced onto public clouds, such as Amazon 
Web Services [1], Microsoft Azure [2], Apple iCloud [3], 
Google AppEngine [4]. In the meantime, privacy and 
security of outsourced data has increasingly aroused our 
attention. For protecting data privacy, it is a recommended 
practice for the data owner to outsource sensitive data in 
encrypted form, which protects information privacy and 
alerts unauthorized access. However, data encryption makes 

data utilization (e.g., search operation) more difficult. The 
trivial solution to download the whole encrypted data firstly 
and then decrypt it locally is obviously impractical, due to 
the huge bandwidth and computation burden.

In fact, a considerable number of schemes based on 
searchable encryption [5] have been proposed to tackle 
the problem. Typically, almost all such schemes follow the 
model of keyword-based query, in which data users will 
retrieve relevant data files from the cloud by submitting 
several query words. In a real-world application, however, 
there usually exists a need to use a query document for 
searching similar ones. The alternative solution that users 
conclude and extract keywords manually from the query 
document firstly and then query these keywords is trivial. 
Moreover, the performance of this approach will be 
largely affected by extracted keywords, which depend on 
users in different cultural backgrounds. Apparently, using 
an entire document as query will be likely to get better 
retrieval results compared with the method to use just a few 
keywords as query, but the document-based approach is 
more complex and computationally demanding.

A document-based similarity search problem consists 
of a collection of documents that are characterized by 
some features, a query document and a similarity metric to 
measure the similarity between documents. This process 
is similar with image processing [25-26]. Currently, in 
document retrieval field, most of document representation 
schemes are based on vector space model, latent semantic 
indexing and other language models. Among them, vector 
space model (VSM) [27] is most widely adopted, which 
usually uses “TF × IDF” for term weighting and constructs 
a bag of words for feature description. TF (term frequency) 
is the occurrence of the term appearing in the document 
and IDF (inverse document frequency) is a function of 
the number of document where a term appears. A term 
weighted vector is constructed for each document and 
similarity between two documents can be measured by 
cosine distance. It is apparent that such method will take 
up much storage since each document is represented by a 
high dimensional vector. In addition, the computation of 
VSM when computing the similarity between documents 
is time consuming. Therefore, we need to find an efficient 
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symmetric encryption. But this scheme only supports 
single keyword search. Then Cao et al. [10] propose a 
privacy-preserving ranked search scheme supporting multi-
keyword, which uses secure KNN method [16] to calculate 
the similarity based on VSM. Based on [10], in order to 
solve the top-  problem, Sun et al. [11] adopt a MDB-tree 
to construct the searchable index, thereby improving search 
efficiency.

Fuzzy Search and Similarity Search: Li et al. [12] 
firstly propose a fuzzy keyword search scheme over 
encrypted cloud data, which combines edit distance with 
wildcard-based technique to construct fuzzy keyword sets. 
Although this fuzzy search scheme addresses problems of 
minor typos and format inconsistence to some extent, its 
performance is dependent on parameter d of edit distance. 
Kuzu et al. [13] propose a similarity search scheme which 
uses minhash based on Jaccard distance to support fault 
tolerant keyword search. 

Semantic Search and Preferred Search: Fu et al. 
[14] propose a semantic keyword search scheme based 
on stemming algorithm, which helps users find relevant 
documents containing semantically close keywords related 
to the query word. Shen et al. [15] propose a preferred 
keyword search scheme, in which the search result will 
faithfully respect the user’s preference. But how to measure 
keyword preference is ignored in that paper.

2.2 LSH
LSH is a special kind of hashing method, which uses a 

set of hash functions to hash codes of similar objects collide 
with high probability and while dissimilar ones not, such 
that for objects A and B:

 Pr[h(A) = h(B)] = sim(A, B) (1)

Where sim(A, B) ∈ [0,1]  is a specific similarity 
metric. Manku et al. [20] represent a detailed algorithm for 
simhash with Hamming distance. It maps high-dimensional 
vectors to small-sized fingerprints. The input of simhash 
algorithm is an  -dimension vector, while the output is an 
m-bit fingerprint (m < n). Simhash has two main features: (1) 
The fingerprint of a data object is the simhash value of the 
features of the data object; (2) Similar data objects usually 
have similar fingerprints. Since the size of the fingerprint 
is fixed and relatively small, it will not cost much storage. 
These features enable simhash to be suitable for document 
similarity search.

3 Design

3.1 System Architecture Overview
As depicted in Figure 1, a complete search system 

dimensionality reduction method while supporting 
similarity search over large data sources.

In this paper, the basic idea of our scheme is the state-
of-art approximate near neighbor search algorithm in high 
dimension spaces called locality sensitive hashing (LSH) 
[17]. LSH is widely used for fast similarity search on plain 
data in information retrieval community (e.g., [18]). It 
projects high-dimensional objects to compact binary codes 
called fingerprints and makes similar fingerprints for similar 
objects. In our scheme, we use the simhash algorithm 
[19], a kind of LSH, to map the features of each document 
into a fixed-length fingerprint and thereby the similarity 
between documents can be measured by calculating the 
hamming distance between fingerprints. Moreover, a trie-
based index covering fingerprints is constructed to improve 
search efficiency. Rigorous privacy analysis shows that our 
scheme is secure. Through experiment on real-world dataset 
and performance analysis, our scheme is quite efficient and 
infeasible.

The rest of paper is organized as follows. We discuss 
the background and related work on searchable encryption 
and LSH in Section 2. Section 3 shows the detailed design 
of similarity search scheme. Sections 4 and 5 present 
the efficiency improvement and performance analysis, 
respectively. Finally, we conclude the paper in Section 6.

2 Problem Formulation

2.1 Searchable Encryption
Searchable encryption is a new developing information 

security technique and it enables users to search over 
encrypted data through keywords without having to decrypt 
it at first. It is recommended to build a searchable index 
in most of existing searchable encryption schemes. The 
searchable index is encrypted in such a way that the cloud 
server cannot deduce the plaintext from the index, while 
allowing the search operation from authorized users. The 
first practical searchable encryption scheme is proposed 
by Song et al. [5], in which each word is encrypted 
independently under a special construction. Later on, some 
security definitions and improvement schemes based on 
similar index have been proposed by Goh [6], Chang et al. 
[7] and Curtmola et al. [8].

In recent years, a large number of searchable encryption 
[9-15] schemes in cloud computing have been proposed. 
Ownership in Deduplicated Cloud Storage is discussed [24]. 
In such schemes, many interesting and important issues 
have been proposed and discussed.

Secure Ranked Search: Wang et al. [9] propose a 
secure ranked search scheme based on “TF×IDF.” Without 
knowledge of specific keyword weight, the cloud server 
can also help rank relevant data files using order preserving 
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consists of three different entities: the data owner, the 
cloud server, the data user. Given a huge size of document 
collection D, the data owner firstly extracts the features 
Fi of each document and generates the fingerprint Ii based 
on Fi. Then the owner integrates each Ii as the encrypted 
searchable index Ii and outsources them, together with the 
encrypted form C of document collection D, to the cloud 
server. Authorized users delegated by the data owner can 
make use of search service offered by the cloud server. To 
retrieve similar documents of a query document, the data 
user only needs to submit a search request T to the cloud. 
Upon receiving a search request from the authorized user, 
the cloud server will conduct designated search operation 
over the index and send back relevant encrypted documents, 
which have been well ranked according to some ranking 
criteria (e.g., Hamming distance). At last, the data user can 
decrypt the returned documents using the keys distributed 
by the data owner. To reduce communication cost, the data 
user can send the search request with an optional parameter 
k so that he just needs to retrieve top-k documents that are 
most relevant to the search request. The distribution of keys 
is out scope of our paper.

3.2 Notations
For the sake of clarity, we introduce the main notations 

used in this paper.
 y D -- the plaintext document collection, denoted as D = 
{D1, ..., Dm}.
 y C -- the encrypted document collection, denoted as C = 
{C1, ..., Cm}.
 y Fi = {fi1

, ..., fiz
} -- the set of features characterized Di.

 y I = {I1, ..., Im} -- the encrypted searchable index for 
documents, Ii is the fingerprint of Fi.
 y T -- the trapdoor of the query document Dq.
 y π -- a hash function, {0,1}k × {0,1}* → {0,1}h.
 y sk -- a symmetric key, sk ←R  {0,1}k.
 y Enc(sk, . ) -- the symmetric encryption algorithm.
 y Dec(sk, . ) -- the symmetric decryption algorithm.

 y RT,k -- the ranked documents according by the similarity 
score with T.

3.3 Basic Search Scheme
The similarity search system involves the following 

algorithms:
Key Generation: In this initialization phase, the data 

owner produces a symmetric key sk ←R  {0,1}k.
Index Construction: Given the document collection 

D, the data owner extracts the features Fi of each document 
Di in D. And then he generates the fingerprint Ii of Fi using 
simhash algorithm. After that, the searchable index I = {I1, 
..., Im} is generated.

Data Encryption: Given the document collection D, 
the data owner encrypts each document Di using Enc(sk, . ) 
algorighm. After that, he sends encrypted document 
collection C along with searchable index I to the cloud 
server.

Trapdoor Construction: For a given query document 
Dq, the data user needs to extract its features and generates 
its fingerprint (trapdoor T) as same as index construction. 
After that, the user sends the trapdoor T with an optional 
parameter k to the cloud.

Search: With the trapdoor T, the cloud server conducts 
designated search operation over the index I, and returns 
top k encrypted documents RT,k sorted by the similarity 
score with T.

Data Decryption: Once the encrypted documents 
RT,k are retrieved, the user decrypts them with Dec(sk, . ) 
algorithm to obtain their plain version.

3.4. Details of Main Steps 

3.4.1 Feature Extraction
Since keywords are practical tools to summarize the 

content of document, we decide to extract the keywords 
of the document as its features. In order to obtain accurate 
keywords, we adopt the most widely measurement “TF × 

Figure 1 Architecture of Similarity Search System
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IDF,” where TF represents its significance within a 
document and IDF indicates the degree of distinction within 
a whole document collection. We can calculate TF × IDF of 
each word within a document Di as formula 2, sort them in 
descending order and pick up top z words as the features of 
the corresponding document.

  (2)

Where fd,w is the TF of the word   in document Di, fw is 
the number of documents containing the word w and m is 
the size of the whole document collection. Therefore, the 
document Di is characterized by features Fi = {fi1

, ..., fiz
} 

where fij
 is the word extracted.

3.4.2 Simhash
Given the features Fi (Fq) of a document Di (Dq), the 

data owner or the data user will conduct simhash algorithm 
to get the fingerprint of Fi (Fq). Figure 2 shows the process 
of simhash, which can be also described as follows:
(1) Initialize a h-dimension vector V where each dimension 

is set as 0;
(2) Each feature fij

 in Fi (Fq) is projected into a h-bit 
signature using the traditional hash function π. If the i-th 
bit of this signature is 1, the i-th dimension of V plus 1. 
Otherwise, it will minus 1;

(3) At last, generate a h-bit simhash fingerprint Ii (T) 
according to every dimension of vector V. If the i-th 
dimension of V is positive number, and then the i-th bit 
of Ii (T) is 1. Otherwise, it will be 0.

Figure 2 Process of Simhash

3.4.3 Search
After the searchable index I is built well, given the 

query trapdoor T based on Dq, the cloud server can perform 
similarity search over the index I. Since each sub-index 
Ii and the trapdoor T are both the fingerprint of simhash 
actually, the similarity of two documents can be calculated 
with hamming distance as follows:

 sim(Di, Dq) = H(Ii, T) (3)

H(S1, S2) is hamming distance between two strings 
(S1 and S2) of equal length. It is calculated by counting the 
number of positions where the corresponding symbols are 
different. For example, H(1011101, 1001001 = 2). The 
smaller hamming distance means that two documents are 
more similar. After calculating the similarity of each sub-
index Ii with T, the cloud server ranks all similarity scores 
in ascending order and selects top k documents as RT,k.

3.5 Security Analysis
Document Privacy: All outsourced documents are 

cipher under a symmetric encryption algorithm and their 
privacy can be guaranteed. No information will be leaked 
except their length and document IDs. 

Index Confidentiality and Trapdoor Confidentiality: 
During both index construction and trapdoor construction, 
simhash algorithm is adopted in this paper. Each feature in 
a document is firstly mapped into a h-bit signature, which 
is protected by a traditional one-way hash function π. Each 
sub-index Ii or the trapdoor T is a binary string of equal 
length, which is produced by aggregating all signatures of 
features in one document. Therefore, each sub-index Ii or 
the trapdoor T is an irregular binary string and the cloud 
server cannot deduce any useful information from them.

4 Efficiency Improvement

In the last section, we present a solution which requires 
the trapdoor T to calculate the similarity score with each 
document in cloud. In order to scale well for large data 
sources, we adopt to build a trie-based index to improve 
search efficiency, as shown in Figure 3. The key idea behind 
the trie is that all the descendants of a node have a common 
prefix associated with that node. In the trie-based index, 
each path from the root node to a leaf node represents 
a sub-index Ii. In the top-k search procedure, it adopts a 
depth-first method to start from the root node. In the search 
process downward, we should start from the root node 
and read the characters in the query in sequence. For each 

Figure 3 Example of Trie-Based Index
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read character, it always chooses the node with the unused 
minimum hamming distance, predicting the minimum 
possible final score to be obtained. If the predicted final 
score is larger than the maximum score among the top-k 
documents chosen, search process will return to its parent, 
otherwise, it will go down to the child node at the next 
level. The search process is performed recursively until 
the top-k documents are produced. The details can be seen 
Algorithm 1. Through this search method, search process 
doesn’t need to go through the whole trie and only accesses 
a part of nodes actually, which saves much time. Figure 3 
shows an example: Given a trapdoor T = “1111,”, when k = 
2, only the nodes, J and I, are returned to the user. The cross 
sign means search process doesn’t need to go through the 
path.

The following notations are used in the pseudo code for 
our search algorithm:

 y x -- a document, it can be defined by a tree path (Ix,1, Ix,2, ..., 
Ix,h). 
 y Ti -- the  -th symbol in the trapdoor T.
 y Si -- the hamming distance that is equal to H(Ix,i, Ti) = 
Ix,ixorTi.
 y score(.) -- the current score of a path or document, e.g., 
score(.) =Σ i = 1

h  Si.
 y Lk -- the list for select top-k documents that are stored in 
ascending order according to score(x).
 y Mk -- the score of the k-th document in Lk.
 y I.Root -- the root node of the trie index I.
 y p -- the node in I.
 y p.child[Ti] -- the child node of p that is equal to Ti.
 y p.child[another] -- the child node of p not equaling Ti.

Algorithm 1 Search (trie I, trapdoor T, k)

begin
findTopK ( I.Root,T, 0, 0, k);
return Lk;
end

procedure findTopK (node p, trapdoor T, int i, int score, 
int k);
if (p is leafnode) then
    if (|Lk| < k) then
        insert document x into Lk according to score(x);
     else
        if (score < Mk) then
            delete k-th document from Lk;
            insert document x into Lk according to score(x);
        end if
    end if
else

    if (Ti is a child node in p) then 
        if (|Lk| < k or score < Mk) then
        score = score + H(p.child[Ti], Ti);
        findTopK (p.child[Ti], T, i + 1, score, k);
    end if
end if
if (there is another child in p) then
        score = score + H(p.child[another], Ti);
        if (|Lk| < k or score < Mk) then
            findTopK (p.child[another], T, i + 1, score, k);
        end if
    end if
end if
end procedure

5 Performance Evaluation

To evaluate the performance of our proposed search 
scheme, we conduct a thorough experiment on a 2.83 
GHZ Intel Core (TM) processor, Windows 7 operating 
system with a RAM of 4G. We use Newsgroup 20 [21] 
for experiment in our scheme. Newsgroup 20 is a publicly 
available real-world dataset, which contains approximately 
20,000 newsgroup documents. It has been widely used in 
text applications of machine learning techniques, such as 
text classification and text clustering. In our experiment, we 
randomly choose 6,000 documents as our final experiment 
corpus.

5.1 Experimental Setup

5.1.1 Feature Extraction
In order to extract the accurate keywords as features, 

we need to process the raw texts in each document through 
the following steps: (1) word splitting; (2) filtering stop 
words like “a,” “the,” “such,” “from,” etc.; (3) converting 
each word into lowercase; (4) getting the root of each word 
(stemming). Here we use Porter Stemming Algorithm [22] 
as our stemming algorithm. After that, we compute the TF 
× IDF of each word as formula 2 and only pick up top 10 
words in one document as keywords.
5.1.2 Simhash

For the features extracted in each document, we need 
to hash them to a fingerprint. In our experiment, we choose 
SHA-1 as our hash function π. So each document will be 
hashed to a 128-bit fingerprint.

5.2 Efficiency
To the best of our knowledge, parameters of precision 

and recall are usually used to measure the performance in 
information retrieval field. The precision and recall in our 
search scheme are mainly decided upon the performance 
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of simhash, which has been widely discussed [19][23]. 
Therefore, the performance in this section mainly focuses 
on the efficiency of algorithms: index construction, trapdoor 
construction and search. 
5.2.1 Index Construction

In our experiment, since the adoption of trie-based 
index, the index construction contains three steps: feature 
extraction, simhash and trie-based index building. Figure 
4 shows the time cost of index construction is nearly linear 
with the number of documents. Given 6,000 documents, it 
takes about 35 minutes to build up the whole index. In the 
index construction, the step of feature extraction, as the 
major computation, takes up most of the time. The other 
two steps (simhash and trie-based index building) are quite 
efficient. Figure 5 shows the time of the step of building 
trie-based index is also nearly linear with the number of 
documents. Compared with feature extraction, the time 
of building trie-based index is quite efficient and has 

little impact on the time of the whole index construction. 
There is no denying that index construction is a burden for 
the data owner but it is kept within the bearable limit. In 
addition, it is just a one-time cost.
5.2.2 Trapdoor Construction

In the trapdoor construction, the data user needs to 
extract the features of the query document at first and then 
hashes them to a fingerprint using simhash. Figure 6 shows 
the time cost to generate the trapdoor for different size 
of document. We test a large number of documents with 
size varying from 1 KB to 60 KB and the time of trapdoor 
construction is not more than 1 second. Therefore, this 
process will not impose a burden on the data user.

Figure 6 Time of Trapdoor Construction

5.2.3 Search
The search process conducted at the cloud server 

consists of computing and ranking the similarity scores of 
relevant documents. The search algorithm will terminate 
at once if the top-k documents are selected. Figure 7 
shows the time for trie-based search, compared with 
baseline search with respect to the number of documents. 
In the baseline search, the cloud server needs to calculate 
the similarity score of each document stored in cloud. 
Therefore, the time of baseline search rises with the number 
of documents. Compared with baseline search, our trie-
based search algorithm is quite efficient and barely affected 
by the number of documents.

6 Conclusion

In this paper, we propose a document-based similarity 
search scheme over encrypted cloud document. In our 
solution, each document is transformed into a fingerprint 
with simhash and hamming distance is used as the 
similarity score between documents. Moreover, trie-based 
index is adopted to address the top-k problem and search Figure 5 Time of the Step of Building Trie-Based Index

Figure 4 Time of Index Construction
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efficiency is improved greatly. Experiment on real-world 
dataset proves our scheme is quite efficient.
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