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Abstract: CCTV-based behavior recognition systems have gained considerable attention
in recent years in the transportation surveillance domain for identifying unusual patterns,
such as traffic jams, accidents, dangerous driving and other abnormal behaviors. In this
paper, a novel approach for traffic behavior modeling is presented for video-based road
surveillance. The proposed system combines the pachinko allocation model (PAM) and
support vector machine (SVM) for a hierarchical representation and identification of traffic
behavior. A background subtraction technique using Gaussian mixture models (GMMs) and
an object tracking mechanism based on Kalman filters are utilized to firstly construct the
object trajectories. Then, the sparse features comprising the locations and directions of the
moving objects are modeled by PAM into traffic topics, namely activities and behaviors. As a
key innovation, PAM captures not only the correlation among the activities, but also among
the behaviors based on the arbitrary directed acyclic graph (DAG). The SVM classifier is
then utilized on top to train and recognize the traffic activity and behavior. The proposed
model shows more flexibility and greater expressive power than the commonly-used latent
Dirichlet allocation (LDA) approach, leading to a higher recognition accuracy in the behavior
classification.
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1. Introduction

Human behavior analysis (HBA), an integral component of many video surveillance systems, is a
research area that has recently attracting attention from the computer vision and artificial intelligence
communities. The aim of visual surveillance is to detect, recognize and track moving objects from
image sequences and to further understand and describe object behaviors. Visual surveillance in dynamic
scenes has been considered in a wide range of potential applications [1], such as security guard services in
smart buildings [2–4], traffic surveillance in urban areas [5,6] and access control in specific places [7]. In
surveillance applications involving people or vehicles, the behaviors can be analyzed based on the human
postures [8–11], the object trajectories [12,13] and the tracking information [14]. This information
can be combined to recognize more complex contexts, such as vehicle interactions [15,16], human
interactions [17,18] and human to vehicle interactions [19]. Given the large amount of surveillance video
data available from closed-circuit television (CCTV) systems and the real-time nature of surveillance
applications, it is desirable to provide an automatic operating system that may reduce human intervention
as much as possible.

One of the most important applications of surveillance systems, automatic road surveillance, has
received increasing interest in recent years. In this domain, the learning of the traffic behavior appears
to be the most complex task, especially in highly dynamic environments [5]. A behavior is basically
represented through the combination of atomic activities, which are modeled from object features,
such as location, direction or tracking information, among others. In order to learn the behavior, the
correlation between potential features in the spatial and temporal dimension is normally used as part of
probabilistic graphical models [16]. The most widely-used probabilistic approach is the hidden Markov
models (HMMs), in which the unknown behaviors are derived from the combination of sequential states
with a given likelihood. Although HMM is a simple and efficient model for sequential state estimation,
its performance in terms of recognition accuracy tends to degrade in the case of complex scenarios,
including multiple objects and long-term temporal behaviors [14]. This limitation has motivated the
recent use of topic models as a more effective solution.

Compared with previous works, the authors propose a method for traffic behavior learning for
multi-object environments. Firstly, the feature-book, including object trajectories, is created from sparse
tracking information in the temporal-spatial dimension. The foreground containing moving objects is
extracted using a background subtraction technique based on the Gaussian mixture models (GMM).
The Kalman filter is then utilized to track the trajectories of the detected objects in frame sequences.
Traffic activities and behaviors are then generated from the identified trajectories with a flexible topic
model, namely the pachinko allocation model (PAM). PAM provides a full correlation between features
and activity and activities and behavior based on an arbitrary directed acyclic graph (DAG) structure.
Finally, a multi-class support vector machine (SVM) technique is employed to classify the activity and
behavior according to the outputs of the PAM model. The remainder of this paper is organized as
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follows. Section 2 provides the discussion of related works. Section 3 describes the proposed method
for modeling and identification of traffic behavior. The experimental setup, results and discussion are
presented in Section 4. Finally, the conclusions of this paper are summarized in Section 5.

2. Related Work

Diverse contributions have been made in the development of behavior recognizers for smart building
surveillance applications. The switching hidden semi-Markov model (S-HSMM), an extended version
of HMMs, was first introduced by Duong et al. [12] for learning and recognizing daily living human
activities. The activities are modeled in two stages—presentation and duration—using HSMMs in
the bottom layer and the presentation of the sequence of atomic activities in the top layer. To detect
abnormal behaviors in indoor environments, a sparse reconstruction analysis of movement trajectories
was proposed by Li et al. [13]. Although this approach is efficient for small training sets, its performance
is sensitive to the numbers of control points used in the cubic B-spline curve approximation, especially
for large training sets. Xiang et al. [20] proposed a novel framework developed for automatic behavior
profiling and online abnormalcy detection using a dynamic Bayesian network (DBN). In this work,
the behavior patterns are grouped by using the relevant eigenvectors of the normalized affinity matrix.
Unlike some existing techniques, the present approach is apparently simple and robust, even with outliers
in the input data. A two-stage learning algorithm based on the time-delayed probabilistic graphical
model (TD-PGM) was formulated by Loy et al. [21] to effectively detect and localize unusual global
events as context-incoherent patterns. Unlike other approaches, the proposed scheme in [22] detects
multi-camera group activities from intra- and inter-cameras without a topology inference. The context
is characterized by the structure of the hidden variables, which are developed from a discriminative
graphical model (DGM). However, it has the drawback of the co-occurrence relationship being captured
among activity patterns, which cannot be completely obtained. Rather than propose a novel learning
model, Huang et al. [23] focused on improving the positioning accuracy by combining the head location
and posture recognition as a multi-camera positioning algorithm.

In automatic road surveillance, the vehicle activities and behaviors are detected and recognized for
monitoring and warning purposes. A simple method of robustly detecting moving objects was suggested
by Kermani et al. [6] for recognition of abnormalities in both indoor and outdoor scenarios. The Bayesian
change detection (BCD) algorithm is used to eliminate noise, shadows, illumination variations and
repeated motions on the background. To produce an analysis of the behavior of moving objects, a
generic framework [24] was constructed with two modular blocks: the first is moving region detection
and tracking; the second is the integration of the trajectory and geospatial context. A combination
of Bayesian computer vision system (BCVS) and coupled hidden Markov models (CHMMs) [14]
was suggested for modeling of pedestrian interactions in outdoor environments. In another study,
DBN was used for behavior recognition in a road detection system (BRRD) [25] through vehicle
sensor networks (VSNs) to infer road events. Moreover, group detection using collaborative filtering
provides an improvement in detection performance. HMMs were also applied by Brand et al. [15] to
organize observed activities based on minimizing the entropy of component distributions for both office
activities and outdoor traffic flows. This framework was further adapted to infer the hidden state from
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ambiguous videos by referencing human body orientations and poses. In [5], Xiang et al. recommended
a dynamically multi-linked hidden Markov model (DML-HMM) comprising expectation-maximization
(EM) clustering and the Bayesian information criterion (BIC) classification. Moreover, dynamic
probabilistic networks (DPNs) have been formulated to model the temporal and causal correlations
among discrete events for holistic scene-level behavior interpretation. To unify simple and complex
action recognition, Sanroma et al. [26] encoded simple action HMMs within a stochastic grammar that
models complex actions. This approach substantially improved the classification accuracy by developing
the higher activity layers based on the recognition of simple actions. Another framework using an
extension of stochastic context-free grammar (SCFG) to model the complex temporal relations between
atomic activities was suggested by Zhang et al. [27]. Their main innovation was a multithread parsing
algorithm adopted for the trained event rule induction for recognition instead of the common parser.
The common limitation of most of these HMM-based approaches refers to the need of large amounts of
training data, since they do not scale well for complex behavior cases.

The use of topic models for context learning has recently been introduced. Zhao et al. [16] suggested
an effective framework comprised of three steps: construct the motion frame codebook, compose the
atomic activities through the LDA-based topic model and classify the behavior with the rough set
scheme. Detecting and recognizing urban activity using topic models from online geo-location data
was proposed by Hasan et al. [28]. Two well-known topic modeling algorithms, the latent Dirichlet
allocation (LDA) and hierarchical Dirichlet process (HDP), have been typically employed in HBA
systems. The delta-dual hierarchical Dirichlet process (dDHDP), which is an extension of HDP, was
designed by Haines et al. [29] for jointly learning both normal and abnormal behavior using weakly
supervised training examples. A new topic model is introduced by Hospedales et al. [30] to overcome
the drawbacks on the sensitivity, robustness and efficiency of object behavior mining. The topic model,
namely the Markov clustering topic model (MCTM), builds on existing dynamic Bayesian network
models and Bayesian topic models. This model was demonstrated to succeed on the unsupervised mining
of behaviors in complex and crowded public scenes. Three hierarchical Bayesian models [31]—the LDA
mixture model, the HDP mixture model and the dual-HDP model—were proposed in Wang’s research.
These models cluster both motion pixels and video clips into atomic activities and into interactions.
The atomic activities are modeled as distributions over low-level visual features, such as the location
and direction of motion pixels, while multi-agent interactions are modeled as distributions over atomic
activities. Although many challenging visual surveillance tasks have been completed in the above
research, the task of considering activities and interactions with complicated temporal structures remains.

3. Methodology

The proposed method consists of the following modules: feature extraction, topic modeling and
classification, as presented in Figure 1.
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Figure 1. Proposed traffic behavior recognition workflow.

3.1. Feature Extraction

As a preprocess for improving the quality of input video sequences, an efficient histogram
equalization [32] is used to enhance the overall contrast. The object trajectories in the input video
captured from the CCTV system are then extracted using a combined background subtraction and
tracking technique. The adaptive-K Gaussian mixture model (AK-GMM) [33] is used to establish the
model for background estimation on account of its robustness under changing environments. The moving
objects are distinguished from the foreground using a background subtraction technique [34]. As a result,
the object coordinates are obtained as the centroid point of the bounding box surrounding the potential
object. The Kalman filter is used for tracking objects, and it enables the prediction of an object’s future
location, a reduction of noise introduced by inaccurate detections and facilitation of the association of
multiple objects to their tracks.

The object trajectories are represented in the temporal-spatial dimension. Example object trajectories
illustrated in the spatial domain are shown in Figure 2a; those in the temporal-spatial domain are shown
in Figure 2b. To determine the orientation of the object trajectory, the absolute angle α of the current
location is calculated through the following equation:

αi = arcsin

(
yi√

x2i + y2i

)
(1)

where (xi, yi) are the coordinates of the object at the i-th frame. A direction computation example is
shown in Figure 2c. Only one angle value corresponding to the current frame is acquired. Each moving
object is described by two features: the location and the direction. During a specific time period of the
input video, which is presented under the number of input frames from ta to tb, the trajectory of an object
is formed as:
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where xtak and ytak are the X and Y coordinate, respectively. αta
k is the moving direction of the k-th

detected object at current frame ta. The object Ok presents the trajectory vector in (tb − ta) frames.
Assuming that each input video has n frames, the trajectory is defined as follows:
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Figure 2. The object trajectory: (a) in the spatial dimension (b) in the temporal-spatial
dimension; and (c) the direction of motion path.
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The features extracted from the video can be expressed as the feature-book C:
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where K is the number of detected objects.

3.2. Topic Modeling

In this work, the traffic behavior is defined as the collection of activities in which an object trajectory
is automatically assigned into an activity class. A short video can contain several trajectories that
can be classified into the same activity class; i.e., they correlate in terms of location and/or direction.
Therefore, it is important to model object trajectories in the correlative activities and to automatically
model activities in the satisfactory behavior.

The pachinko allocation model (PAM) [35] is a hierarchical generative model considered here to
define behaviors from the combination of features from moving objects. PAM was firstly suggested for
use in the machine learning and natural language processing as a topic model. In its original application,
PAM models correlations between topics in addition to word correlations and, thereby, establishes topics.
To represent and learn arbitrary, nested and possibly sparse topic correlations, this model utilizes an
arbitrary directed acyclic graph (DAGs) structure. Furthermore, compared to LDA [36], PAM provides
more flexibility and greater expressive power than LDA, since it captures not only the correlations among
the words, like in LDA, but also the correlations among topics.

In the following subsection, the details of the proposed model based on PAM are introduced with
the algorithm for the estimation of the parameters. Although PAM employs arbitrary DAGs to model
the topic correlations, this work proposes a four-level hierarchy structure as a special case of PAM [37].
This structure consists of one root topic, u super topics at the second level P = {p1, p2, . . . , pu}, v
subtopics at the third level Q = {q1, q2, . . . , qv} and the words at the bottom. Words refer here to the
object features comprising the location and direction information, which were organized in the previous
stage. The super topic and subtopic correspond to the traffic behavior and activity, respectively. The root
is associated with behaviors; the behaviors are fully associated with activities; and the activities are
fully connected to the features, as shown in Figure 3a. The multinomials of the root and behaviors
are sampled for each frame based on a single Dirichlet distribution gr (δr) and gj (δj)|uj=1, respectively.
The activities are modeled with multinomial distributions φqj

∣∣v
j=1

and ψqj

∣∣v
j=1

sampled from Dirichlet
distribution g (β) and g (γ), which are used for sampling the location and direction features. Figure 3b
depicts a graphic model for the four-levels PAM. The particular notations used in PAM are summarized
in Table 1. According to the standard PAM [35], considered a scene as a document d consisting of a the
sequence of n frames D = {d1, d2, . . . , dn}, this is modeled as follows:

1. Sample a multinomial distribution θ(d)r from a Dirichlet prior δ(d)r for each scene d.
2. For each behavior pj , sample a multinomial distribution θ

(d)
pj from gj (δj) in which θ

(d)
pj is a

multinomial distribution over activities.
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3. Sample multinomial distributions φqj

∣∣v
j=1

from a Dirichlet prior β for each activity qj .
4. Sample multinomial distributions ψqj

∣∣v
j=1

from a Dirichlet prior γ for each activity qj .
5. For the m-th feature in the current scene d of the object Ok:

• Sample a behavior pm,d,Ok
from θ

(d)
r and an activity qm,d,Ok

from θ
(d)
pm,d,Ok

• Sample a location feature χm,d,Ok
from multinomial φqm,d,Ok

and a direction feature τm,d,Ok

from multinomial ψqm,d,Ok
.

Following this process, the joint probability of the generated scene d, the behavior assignments p(d),
the activity assignments q(d) and the multinomial distribution θ(d) is calculated as:

P
(
d, q(d), p(d), θ(d)

∣∣ δ, β, γ) = P (θr| δr)
u∏

j=1

P
(
θ(d)pj

∣∣∣ δj)∏
m

(
P
(
pm| θ(d)r

)
P
(
qm| θ(d)pm

)
P (fm|φq, ψq)

)
(5)

where P (fm|φq, ψq) = P (χm|φq)P (τm|ψq). Integrating out θ(d) and summing over p(d) and q(d), the
marginal probability of each scene can be calculated as:

P (d| δ, β, γ) =
∫
P
(
θ(d)r

∣∣ δr) u∏
j=1

P
(
θ(d)pj

∣∣∣ δj)∏
m

∑
pm,qm

(
P
(
pm| θ(d)r

)
P
(
qm| θ(d)pm

)
P (fm|φq, ψq)

)
dθ(d)

(6)
The probability of generating the corpus D is computed by:

P (D| δ, β, γ) =
∫ v∏

j=1

(
P
(
φqj

∣∣ β)+ P
(
ψqj

∣∣ γ))∏
d

P (d| δ, β, γ) dφdψ (7)

The approximate inference result of the condition distribution that samples the behavior and activity
assignments for each feature can be obtained as:

P (pm, qm| D,P−m,Q−m, δ, β, γ) ∝ P (m, pm, qm| D−m,P−m,Q−m, δ, β, γ)

=
P (D,P ,Q| δ, β, γ)

P (D,P−m,Q−m| δ, β, γ)

=
n
(d)
j + δrj

n
(d)
r +

u∑
j=1

δrjn
(d)
j

×
n
(d)
jl + δjl

n
(d)
j +

v∑
l=1

δjl

× nlh + βh

nl +
N∑

h=1

βh

× nlz + γz

nl +
M∑
z=1

γz

(8)

Hyper-parameters δ, β and γ can be estimated via the Gibbs sampling algorithm, which is
described in [35]. As in [35], the notation−m denotes behavior assignments, except for them-th feature.
After modeling, the new data obtained by tagging the motion location and direction are generated.
By merging the same feature items for different video contents, the probability distribution is obtained
as an implicit activity-behavior-frame sequence matrix. The posterior is maximized by multiplying the
direction probability of all locations from their corresponding subtopic location distributions.
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Figure 3. Pachinko allocation model: (a) hierarchical topic model (b) graphic model.

Table 1. Notations used in the pachinko allocation model (PAM) model.

Symbol Description

u Number of behaviors
v Number of activities
n Number of frames
N Number of unique locations
M Number of unique directions

gr (δr) Dirichlet distribution associated with the root
gj (δj) Dirichlet distribution associated with the j-th behavior, u-dimensional vector gj
g (β) Dirichlet distribution associated with activity for location feature
g (γ) Dirichlet distribution associated with activity for direction feature

θ
(d)
r Multinomial distribution sampled from gr (δr) for the root to scene d, n-dimensional vector θr
θ
(d)
pj Multinomial distribution sampled from gj (δj) for a behavior to scene d, u× n matrix θp
φq Multinomial distribution sampled from g (β) for an activity to scene d, v × n matrix φ
ψq Multinomial distribution sampled from g (γ) for an activity to scene d, v × n matrix ψ

χm,d,Ok
m-th location in the frame d of an object Ok, N × n× k matrix χ

τm,d,Ok
m-th direction in the frame d of an object Ok, M × n× k matrix τ

pm,d,Ok
Behavior p associated with the m-th feature in d of Ok, u-dimensional vector P

qm,d,Ok
Activity q associated with the m-th feature in d of Ok, v-dimensional vector Q

n
(d)
r Number of occurrences of the root r in the scene d

n
(d)
j Number of occurrences of the behavior j in the scene d
nl Total number of occurrences of activity ql in the whole corpus D
n
(d)
jl Number of times that activity ql is sampled from the behavior pj in the scene d
nlh Number of occurrences of location feature χh in the activity ql
nlz Number of occurrences of direction feature τz in the activity ql
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3.3. Classification

Based on the PAM-based topic modeling, every video sequence can be represented through a u × v
matrix, where u is the number of behaviors and v is the number of activities. To train the classifier,
the labels of vectors and matrices are manually denoted with their classes manually. In this paper,
the authors use a SVM with binary tree architecture (SVM-BTA) [38] to solve the N -class pattern
recognition problem. An illustration of SVM-BTA is shown in Figure 4. Each node in the architecture
makes a binary decision using the original SVM. By recursively dividing the classes into two disjointed
groups in each node of the decision tree, the SVM classifier decides the group to which the unknown
samples that should be assigned. The class is determined by a clustering algorithm according to the
class membership and the inter-class distance. Although N − 1 SVMs are trained for an N -class
problem, only log2N SVMs are consulted at most to classify a sample. This approach requires fewer
binary SVMs than popular methods, such as N (N − 1)/2 SVMs in the one-against-one approach and
N SVMs in the one-against-others approach. Moreover, both approaches have the drawback of very
expensive computational cost requirements and accuracy degradation [38]. An essential contribution
of the SVM-BTA approach, the multiclass issue, is converted into binary-tree architectures without
performance reduction. Moreover, a dramatic improvement in recognition speed can be achieved for
increasing the number of classes.
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Figure 4. Illustration of SVM-binary tree architecture (BTA).

4. Experimental Evaluation

4.1. Experimental Setup

The experiments were performed on the QMUL (Queen Mary University of London) dataset [39],
which includes a long-term video recorded at 25 fps for the frame rate and 360 × 288 for the frame
resolution. Placed at an intersection, the video captured a busy traffic scenario involving a vehicle and
pedestrian with dynamic movements. The video sequence was divided into short non-overlapping clips,
each of which was 4 s. This duration is more convenient for observing when compared with too long
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a duration in Hospedales’s work [40] (12 s) or two short a duration in Zhao’s work [16] (2 s). The
length of each clip was set to ensure that a behavior was not covered by others. A total of 750 clips
comprised 320 vertical traffic flow clips; 430 horizontal traffic flow clips were tested with the manual
activity and behavior labeling. Some activities cannot be fully categorized into horizontal or vertical
traffic behavior, for example 40 frames may represent vertical traffic and 60 frames horizontal traffic.
For example, a car can move in the vertical traffic from the top, and it will turn left or turn right at the
intersection. Therefore, the authors categorized a given clip into either vertical or horizontal behavior
based on the duration of the observed behaviors. If both behaviors are present during the whole clip,
this is categorized into the most fluent behavior, i.e., with less changes or interruptions. In the vertical
traffic, activities were discovered by PAM, as shown in Figure 5a–c. The horizontal traffic activities are
presented in Figure 5d–h. Although PAM automatically discovered and modeled sparse words into super
topics and subtopics, the number of topics had to be initially set. In this work, u = 2 for vertical and
horizontal traffic behaviors; and v = 14 for traffic activities involving six vertical and eight horizontal
activities. The description of the discovered activities outlined in Figure 5 is referenced in Table 2.
In the PAM modeling, the Dirichlet distribution over behaviors and activities was produced with the
parameter 0.01; the Gibbs sampling was processed with 1000 burn-in iterations. In the SVM-BTA
classifier, the Gaussian kernel was used to set up for each node of binary classification. For each vertical
and horizontal traffic dataset, the proposed method was evaluated using the 10-fold cross-validation. In
order to analyze accuracy of the proposed method, Recall and Precision are used with the confusion
matrix of each experiment. All of the experiments were performed on a desktop PC operating Windows
7 with a 2.67-GHz Intel Core i5 CPU and 4 GB of RAM. MATLAB R2013a was the software used for
simulation.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Traffic activities discovered by PAM. (a–c) The vertical traffic behavior; (d–h) the
horizontal traffic behavior.
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Table 2. Activity descriptions of two main behaviors.

Vertical Traffic

Activity Color Figure 5 Description

V1 Orange (a), (b), (c) Bottom to top flow
V2 Blue (c) Bottom to top and turn left at the intersection
V3 Pink (c) Bottom to top and turn right at the intersection
V4 Yellow (a), (b), (c) Top to bottom flow
V5 Green (b), (c) Top to bottom and turn left at the intersection
V6 Cyan (c) Top to bottom and turn right at the intersection

Horizontal Traffic

Activity Color Figure 5 Description

H1 Black (d) Vertical flow for pedestrian on the left side
H2 White (f) Vertical flow for pedestrian on the right side
H3 Pink (d), (g) Left to right flow
H4 Yellow (d), (g) Left to right and turn right at the intersection
H5 Blue (g) Left to right and turn left at the intersection
H6 Cyan (e), (f), (h) Right to left flow
H7 Green (e), (f), (h) Right to left and turn right at the intersection
H8 Orange (h) Top to bottom and stop at the intersection

4.2. Results and Discussion

In the experiments, the authors evaluated the performance in the classification accuracy of the
proposed method for the detection of the vertical and horizontal traffic. Moreover, the method was
compared with similar approaches using standard latent Dirichlet allocation (LDA) [36] and Markov
clustering topic mode (MCTM) [30] for topic modeling. At first, the activity classification was applied
to each separate dataset of the vertical and horizontal clips. The confusion matrices of the SVM-BTA
classifier using PAM and LDA are reported in Tables 3–5 for the vertical and in Tables 6–8 for
the horizontal traffic dataset. The mixture of all vertical and horizontal traffic activity classification
results are presented in the confusion matrix shown in Figure 6 with 14 classes in total. Secondly,
the behavior classification was evaluated for all clips to identify the category of the input clip. For
behavior classification, all clips in the merged dataset were evaluated using the binary SVM classifier.
The quantitative results of the evaluated metrics are represented in Table 9. It is important to note that
only the binary SVM classifier was utilized for the behavior classification (either vertical or horizontal)
instead of the multi-class SVM classifier for the activity case.
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Table 3. Confusion matrix of the SVM classifier using PAM for the vertical traffic.

Activities V1 V2 V3 V4 V5 V6 Recall (%)

V1 93 5 3 0 0 0 91.18
V2 2 26 0 0 0 0 92.86
V3 1 0 19 0 0 0 95.00
V4 0 2 0 97 6 5 88.18
V5 0 0 0 4 38 0 90.48
V6 0 0 0 1 0 17 94.44

Precision (%) 96.88 78.79 86.36 95.10 86.36 73.91

Accuracy (%) 90.63

Table 4. Confusion matrix of the SVM classifier using LDA for the vertical traffic.

Activities V1 V2 V3 V4 V5 V6 Recall (%)

V1 89 4 1 7 0 1 87.25
V2 0 25 0 3 0 0 89.29
V3 3 0 17 0 0 0 85.00
V4 9 2 0 88 8 3 80.00
V5 0 0 3 4 35 0 83.33
V6 0 0 0 3 0 15 83.33

Precision (%) 88.12 80.65 80.95 83.81 81.40 78.95

Accuracy (%) 84.06

Table 5. Confusion matrix of the SVM classifier using Markov clustering topic model
(MCTM) for the vertical traffic.

Activities V1 V2 V3 V4 V5 V6 Recall (%)

V1 92 4 2 3 0 1 90.20
V2 1 27 0 0 0 0 96.43
V3 5 0 15 0 0 0 75.00
V4 5 0 0 105 2 2 95.45
V5 0 0 3 3 36 0 85.71
V6 0 0 1 1 0 16 88.89

Precision (%) 92.93 87.10 71.43 93.75 94.74 84.21

Accuracy (%) 90.94
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Table 6. Confusion matrix of the SVM classifier using PAM for the horizontal traffic.

Activities H1 H2 H3 H4 H5 H6 H7 H8 Recall (%)

H1 11 0 0 0 1 0 0 0 91.67
H2 0 9 0 0 0 0 0 1 90.00
H3 0 0 112 2 0 9 3 0 88.89
H4 0 0 0 31 0 3 0 0 91.18
H5 1 0 0 0 18 0 1 0 90.00
H6 0 0 12 0 0 125 5 0 88.03
H7 0 0 0 0 4 0 60 0 93.75
H8 0 1 0 0 0 0 0 21 95.45

Precision (%) 91.67 90.00 90.32 93.94 78.26 91.24 86.96 95.45

Accuracy (%) 90.00

Table 7. Confusion matrix of the SVM classifier using LDA for the horizontal traffic.

Activities H1 H2 H3 H4 H5 H6 H7 H8 Recall (%)

H1 11 0 0 0 1 0 0 0 91.67
H2 0 9 0 0 0 0 0 1 90.00
H3 1 1 106 4 0 11 3 0 84.13
H4 0 0 0 28 0 6 0 0 82.35
H5 1 0 1 0 17 0 1 0 85.00
H6 0 0 10 5 0 119 8 0 83.80
H7 0 0 0 0 7 0 57 0 89.06
H8 0 1 0 0 0 0 0 21 95.45

Precision (%) 84.62 81.82 90.60 75.68 68.00 87.50 82.61 95.45

Accuracy (%) 85.58

Table 8. Confusion matrix of the SVM classifier using MCTM for the horizontal traffic.

Activities H1 H2 H3 H4 H5 H6 H7 H8 Recall (%)

H1 10 0 1 0 1 0 0 0 83.33
H2 0 9 0 0 0 0 0 1 90.00
H3 1 1 111 4 0 6 3 0 88.10
H4 0 0 2 26 0 6 0 0 76.47
H5 1 0 1 0 17 0 1 0 85.00
H6 0 0 5 3 3 128 3 0 90.14
H7 0 0 0 0 7 0 57 0 89.06
H8 0 1 0 0 0 0 0 21 95.45

Precision (%) 83.33 81.82 92.50 78.79 60.70 91.43 89.06 95.45

Accuracy (%) 88.14
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Table 9. Behavior classification comparison between PAM and LDA.

PAM LDA [36] MCTM [30]

Behavior Vertical Horizontal Recall (%) Vertical Horizontal Recall (%) Vertical Horizontal Recall (%)

Vertical 286 34 89.38 259 61 80.94 291 29 90.94
Horizontal 59 371 86.28 66 364 84.65 47 383 89.07

Precision (%) 82.90 91.60 – 79.69 85.65 – 86.09 92.96 –

Accuracy (%) 87.60 83.07 89.87
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Figure 6. Confusion matrix of the SVM classifier for the mixing of all vertical and
horizontal traffic with overall classification accuracy: (a) PAM 86.4%; (b) LDA 80.4%;
and (c) MCTM 81.6%.
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In the vertical and horizontal traffic datasets, the numbers of clips presenting particular activities
discovered by PAM were not equivalent. For example, the occurrence of activity V1 and V4 in the
vertical dataset corresponding to the top-bottom flows consumed more than 66% of the full video length.
Similarly, activities H3 and H6 in the horizontal dataset corresponding to left-right flows consumed more
than approximately 62% of the video length. Therefore, they can be regarded as the primary activities
corresponding to each dataset. Based on the results in the Table 3, activities V3 and V6 obtained the
highest accuracies (greater than 94%), because they contained specific features in the given direction.
On the other hand, activities V4 and V5 had the worst classification rates, since they easily overlapped
by covering similar location and direction features. Six clips were recognized as V5, and five clips were
recognized as V6 instead of the correct class of V4. It was evident that the primary activities with high
appearance frequencies had larger interesting regions compared with the others. Some small regions
with fewer appearance activities were covered by them, which resulted in the classification confusion.
This phenomenon likewise occurred in the horizontal dataset with the worst classification results of the
primary activities, particularly activities H3 and H6 in Table 5.

In the activity classification using the respective vertical and horizontal traffic clips separately, the
proposed method using PAM for topic modeling outperformed the LDA-based method in most tested
activities (above 90% of overall accuracy rate). Compared with LDA, PAM provided the higher accuracy
rate through the Recall and Precision metrics, especially with the overall Accuracy (greater than 6%
in the vertical dataset and 4% in the horizontal dataset). Although obtaining a high classification
performance, MCTM overall accuracy degraded along with the increase of the number of classes
(90.94% for six vertical classes compared with 88.14% for eight horizontal classes). When merging the
vertical and horizontal dataset for activity classification, the accuracy tended to reduce in all evaluated
models. From the results in Figure 6, PAM outperformed LDA and MCTM with 86.4% vs. 80.4%
and 81.6% in terms of Accuracy. When the number of classes was increased in the merging dataset, a
strong degradation was again observed in the MCTM model, because it is difficult to correctly classify
activities of two or more phases, for example activity V5 including one part of a common activity
(top to bottom flow) and another part of unusual activity (turning left at the intersection). MCTM
got only 60% in terms of accuracy with rare activity H2, while some common activities are confused
with others, such as activity V4 with V5 and H8 and activity H6 with V3 and H7. In the merging
of all clips to classify the behavior, MCTM still showed the highest accuracy rate. Concretely, only
76 clips (≈10.1%) were incorrectly recognized by MCTM instead of 93 and 127 clips (≈12.4% and
16.9%) respectively misclassified by PAM and LDA. Despite using the DAGs structure and exploiting
the Dirichlet distribution, LDA only captured the correlation among the features to support the high level
information (activities or behaviors), because it was constructed by a three-layer model comprising the
feature, activity (or behavior) and root layers. Therefore, LDA has difficulty modeling data in which
some behaviors co-occurred more frequently than in others. Compared with PAM capturing only spatial
correlation between activities, MCTM further measured temporal correlation between events to improve
the binary behavior classification. Moreover, the distinction between only two vertical and horizontal
behaviors is more explicit under the spatio-temporal dimension. However, MCTM sometimes had a
negative effect for allowing a rare activity to occur alongside numerous common activities [30]. This led
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to the degradation of the classification accuracy in the MCTM model whenever the number of behaviors
or activities was increased.

4.3. Complexity and Computational Time

It is difficult to provide theoretical analysis for the convergence of Gibbs sampling. Concretely, the
time complexity of each Gibbs sampling iteration for LDA was O (Nu) + O (Nv) when modeling N
features into u behaviors and v activities. Running on our system, it took less than 2 h to process 750
4-s clips from the UMUL dataset. The Gibbs sampling for PAM was much slower at approximately
3.5 h, because it depended not only on the number of super topics, but also on the number of sub-topics
with O (Nuv). Since two layers, including action and behavior, were considered in the MCTM model,
it required O (u2) + O (Nuv) time per parameter sample [30]. The total process time of MCTM was
quite equivalent to PAM’s time owing to the insignificance of the component O (u2) in comparison to
O (Nuv) of the proposed method.

5. Conclusions

In this paper, the authors proposed a behavior recognition method based on a four-level hierarchy
PAM model for traffic video surveillance purposes. Two types of features extracted from a traffic
video, comprising the location and direction of the moving object, are used to construct the object
trajectory. For topic modeling, the PAM algorithm is then used to reorganize the sparse features.
The probability distribution, the new data generated from PAM, is then provided for the SVM-BTA
classifier. With the advantage of capturing correlations among features, as well as among activities
and behaviors, PAM provides more expressive power to support complicated structures, while adopting
more realistic assumptions. This property helps improve the classification rate in behavior recognition.
In our experimental evaluation, the proposed method is compared with LDA and MCTM in individual
datasets of vertical and horizontal traffic, as well as a merged dataset, including both activities and
behaviors. PAM outperformed LDA in most of the tests with an accuracy of 90.63% vs. 84.06% in the
vertical traffic dataset, 90.00% vs. 85.58% in the horizontal traffic dataset and 87.60% vs. 83.07% in the
merged dataset. Although MCTM provided the best results in binary behavior classification, this model
showed the limitation of the multiclass problem, especial with complex activities comprising two or more
phases. Contrary to MCTM, PAM is preferable in the recognition of rare and complex activities due to
the captured correlations among the visual words and topics. For future work, the feature extraction
algorithm will be considered to increase the processing speed through complexity reduction.
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