
Context Summarization & Garbage Collecting Context1

Faraz Rasheed, Yong-Koo Lee, Sungyoung Lee

Computer Engineering Dept. Kyung Hee University
449-701 Suwon, Republic of Korea

faraz@oslab.khu.ac.kr, {yklee, sylee}@khu.ac.kr

Abstract. Typical ubiquitous computing environments contain a large number
of data sources, in the form of sensors and infrastructure elements, emitting a
huge amount of contextual data (called context) continuously that need to be
processed and stored in some context repository. Usually, this data is for
software system’s internal use to provide proactive services. Hence, it makes
sense not to store this entire huge amount of data but to identify and remove
some irrelevant data (garbage collecting context), summarize the left over and
only store this summarized and more meaningful data. We believe that such a
summarization will result in improved performance in query processing, data
retrieval, knowledge reasoning and machine learning. Besides, it will also save
the storage space required to store context repository. In this paper, we will
present the idea and motivation behind context summarization and garbage
collecting context and some possible techniques to achieve this.

1 Introduction

The idea of Ubiquitous Computing [1] is gaining popularity with every passing day.
Several research groups are developing their own ubiquitous computing projects [2],
[3]. Ubiquitous (or pervasive) computing provides computing environment where
computing resources are spread through out, present everywhere in the environment
and providing services to users seamlessly & invisibly without any explicit user
intervention. A ubiquitous computing environment, thus, contains a number of
devices, sensors, and software systems.

Context awareness is among the foremost features of any ubiquitous computing
environment. In order to provide appropriate services, an application needs to be
aware of the user and environmental context. Similarly at lower levels of abstraction,
an application (or middleware) is required to be aware of the computational context
including device and network state. So, what is ‘context’ itself? We take context as
the ‘implicit situational understanding’ and consider all the information that defines a
situation as context. So, location, temperature, network bandwidth, device profile,
user identity can all be taken as the context information or simply context.

Since a Ubiquitous Computing system needs to deal with such huge and diversified
information (context), there should be an appropriate context model to define,

1 This work is supported by grant No. R01-000-00357-0 from Korea Science and Engineering

Foundation (KOSEF)

represent, and store context efficiently in some context repository. The management
of context information in ubiquitous computing imposes lots of issues and challenges.
M. J. Franklin [4] has identified a number of issues in ubiquitous data management
such as those posed by adaptivity, ubiquity, mobility and context awareness

We approach the context (or data) management in ubiquitous computing from a
different perspective. We are working on to identify the relevance and significance of
information that a Ubicomp system receives from sensors and its surrounding. We
believe that identifying and removing the irrelevant context (we call it ‘garbage
collecting context’) and summarizing the available or incoming context (which we
call the ‘context summarization’) will result in the improved performance of
knowledge reasoning, inference making, machine learning and efficient use of
computing resource including the storage space required by the Context Repository.

The rest of the paper is organized as follows. Section 2 contains related work.
Shortcomings of existing systems are in Section 3. Our proposed solution is in
Section 4. Four techniques of Context Summarization are in Section 5 and our
proposed model is in Section 6. Section 7 contains issues and challenges. Finally we
mention about risk factors involved in Section 8 and conclude the paper in Section 9.

2 Related Work

Unfortunately, Garbage Collecting Context (GCC) and Context Summarization (CS)
have not yet got the attention of researchers. One primary reason is majority of
Ubicomp systems are academic projects and have not been deployed in real
environment and used for elongated periods. The issues identified in this work come
in one’s attention when actual system is deployed and run for considerable time. The
general focus of research community in ubiquitous computing is not towards context
data management; but how to make ubiquitous computing operational in first place?

Several existing ubiquitous computing systems support features like noise filtering,
privacy control, feature extraction [6], [3], [10] but we believe that using separate
components for GCC and CS with clearly defining the responsibility of each
component will produce better results; mainly because of the separation of concerns.

In Database Systems, data mining and data ware housing [7] use the concept of
histogram [8] and multidimensional views of database and work on the aggregate,
consolidated data instead of raw data to support higher level decision making and to
identify the hidden patterns in data. Hence, when we extract underlying meaning from
context data, it can be considered as something like ‘Context Mining’ where we
extract higher level context from the lower level context. Online Analytical
Processing (OLAP) and data mining are not done on actual data but on the historical,
consolidated and aggregate data while we are performing the context summarization
on actual context. Contrary to data mining and OLAP, we want to transform the raw
context to summarized form taking less storage space and provide improved and
efficient reasoning and machine learning. Anyhow, the concepts explored in the field
of data mining and OLAP are highly useful for the Context Summarization.

Researchers in DBMS have also analyzed time series data streams for very large
databases [9]. Here, they analyze the data coming in continuous streams with time.

They have proposed solutions on how to manage, represent and store the time series
data streams. This is also highly related to the context summarization.

In traditional DBMS, data is seldom removed. But in our context summarizer, we
do replace raw context with summarized information. Why? The answer lies in why,
in first place, we are storing the context? We are storing the context and maintaining
context history so as to reason on context, draw inferences from the context and make
the machine learn. If the context is summarized properly, the application can reason,
infer and learn about activities more efficiently; because, they need the history and
consolidated data which we are providing as a result of context summarization.

3 Problem Definition

A ubiquitous computing environment comprises of a number of different sensors
providing context information like Environmental context (temperature, pressure,
light), Audio / Video, Location context, Computational context (network bandwidth,
underlying operating system, hardware specification), the list goes on and on…

Context information comes in a continuous stream with each sensor emitting data
regularly (at least during some interesting activity). We are heading towards flood of
context data. Such a huge amount of data requires proper management. At this point,
we need to answer what to do with such a huge amount of data? Do we need to store
all of this? More importantly do we really need such a large amount of data?

Several data items sensed from the environment are required for some instant
processing and reasoning, e.g., presence of a person can be used to trigger the activity
of turning lights on or caching data related to a particular user. But, we also need to
store context for later use; knowledge reasoning, inference making & machine
learning. For instance, we may need to keep the context of user presence for some on
going (near future) activity or to infer what she might be up to.

But storing all such context information imposes several issues. First, it requires
considerable amount of storage space. Ubiquitous computing systems are essentially
distributed, therefore, migrating larger amount of data puts significant burden over
network traffic. Secondly, query processing and data retrieval on large context
repository requires significant computing resources decreasing the overall throughput
of the system. Thirdly, several contexts needs to be discarded and should not be
stored permanently. For example, the data with low precision, because of noise, needs
to be filtered out before sensitive operations (e.g., heartbeat rate of a patient). Privacy
control also prevents us from storing all information, e.g., the information that user is
in washroom. Lastly, efficiency of techniques such as knowledge reasoning, inference
making and machine learning depends heavily on the size of supplied data.

4 Proposed Solution

First we need to identify low precision, irrelevant and redundant context; the one that
is no longer useful and remove such context information. We call this process as
Garbage Collecting Context (GCC).

Secondly, we need to summarize the actual (raw) context in such a way that it is
more meaningful, can be used more efficiently for reasoning, etc and takes up less
storage space. We name this process as the Context Summarization (CS).

A simple analogy is human behavior towards received news. Every day, we read a
lot of news in newspaper, on internet and television. But do we (need to) remember
all the words and information that make up a particular activity or event? What we
actually (need to) remember is some compact information about a particular event
that what has actually happened. For example, Bob watches a soccer match for 70
minutes but after the match is over, he does not remember exactly what had happened
in the 14th minute of the game. What he actually remembers is a summary of the
match like who has won the match, few ups and down, and how many goals were
scored and by whom. This is very close to what we mean by Context Summarization
that instead of storing each and every raw information, only keep summarized and
meaningful context information. Coming back to scenario, after the match is over,
Bob tends to forget some information, e.g., how far did the ball go when Player X
kicked it and who received it. Also, as time goes by, he also tends to forget more
details like a spectator had broken in to the field. This act of discarding irrelevant
information is analogous to the concept behind Garbage Collecting Context.

4.1 Garbage Collecting Context (GCC)

GCC is analogous to the garbage collection in programming languages [5] where we
identify the memory areas no longer needed by a program and free it.

GCC can be used to filter out the noise in the data, i.e., the data with low precision
so that it does not affect sensitive operations. Some systems [3] provide the precision
value or the probability of the correctness of sensed value which can be employed.

GCC can be used to identify and remove the context no longer needed by an
application. For example, if an application is storing temperature values after every 5
minutes then it may not require raw history forever. But generally, discarding
information is not considered as a good idea; therefore, here we can employ the idea
of context summarization and replace the raw history with this summarized history.

Privacy control can also be dealt using GCC. In this case, certain privacy policies
determine which context should not be stored and included in the system processing.
For example, the location of user in private places (like washrooms) and activities
during the lunch break should not be processed and stored permanently in the system.

4.2 Context Summarization (CS)

Where Garbage Collecting Context (GCC) identifies and removes the irrelevant and
less significant context, Context Summarizer (CS) operates on incoming and existing
context to extract useful context from the original data so that it consumes less storage
space, improves the efficiency of query processing, reasoning and machine learning.
Consider a temperature sensor emitting temperature value after every 5 minutes.

Table 1. Temperature values stored after every 5 minute

Time Temp.
12:05 23 °C
12:10 21 °C

…
15:35 15 °C

…

Using Context Summarization, e.g., we can group (average) this on the daily basis.

Another possible way could be when a day is divided into periods like morning,
afternoon, evening and context information is kept for each such period (See Table 2).

Table 2. Temperature values stored for different periods of day

Date Period Avg. Temp Max. Temp Min. Temp
12/01 Morning 5 °C 8 °C 3 °C
12/01 Afternoon 10 °C 14 °C 8 °C
12/01 Evening 9 °C 11 °C 7 °C
12/01 Night 7 °C 8 °C 5 °C
12/02 Morning 4 °C 8 °C 1 °C
…

The above example demonstrates the summarization of historical data. CS can also

be applied as data is received from sensors. For example, when receiving data from
audio/video sensors we can extract useful information from it. With audio, we can
extract Intensity and Audio type (music, talk, telephone ring). From video sensor, we
can extract Pixel percent change, Motion pattern, etc. As a result, instead of storing
actual audio & video context, we can summarize and only store relevant information.

One of the benefits of performing context summarization is reduced storage space,
which will result in the faster query execution and data retrieval. It will also make the
data migration in distributed environment more efficient with fewer burdens on
network traffic. Another important motivation behind CS is to store only the relevant
context information in such a way that it is more useful for context consumers.

Reasoning about context and drawing inferences is the primary reason for keeping
context in context repository in first place, and is primary tool for providing context
aware services. For example, if a ubiquitous computing system knows that when Bob
comes to his office in morning, he likes to check his emails, then a system can start
downloading his emails when Bob enters the room in the morning. The amount and
quality of input data makes reasoning engine perform more efficiently. We believe
that if context summarization is done properly then it will result in less data;
optimized for reasoning and inference making and machine learning

Context Summarization can either be ‘Active’ or ‘Passive’. In Active Context
Summarization, the context is summarized as it is received from the context sources;
sometimes, even before it being stored in the Context Repository, e.g., the
summarization of audio and video context. Active Context Summarization is usually
irregular and event-based and is performed more frequently.

Passive Context Summarization is usually performed on the context already stored
in the repository. The summarization of temperature (as discussed earlier) and other
numerical valued contexts comes in this category. It is regular and periodic, i.e.,
performed in background after a regular interval or at some pre-specified time. It is
performed less frequently and may consume considerable computing resources

5 Context Summarization Techniques

We have identified several categories of context information based on the similarities
and nature of context. Each technique is designed for a particular category of context.

5.1 Aggregation

In aggregation, the history of context information is aggregated to generate compact
and consolidated context. Numerical context types like temperature, light intensity,
humidity, available network bandwidth can be summarized using this technique. In
section 4.2, we have demonstrated how this technique.

Aggregation is a passive, regular and periodic type of context summarization,
which works in background periodically and is performed less frequently. It removes
the original (raw) context after the context summarization has been performed.

5.2 Categorization

Here we categorize different context entities, e.g., user and device profile can be
categorized into user and device groups. In this way, we can track the network
bandwidth utilization by some particular user group (say doctors) or by some
particular device group (say PDAs) during office hours.

Categorization is passive and static type of context summarization, i.e., it is not
performed frequently. It can be performed at system startup by some human or the
system can learn itself to define categories. In any case, categorization supports
machine learning and higher level reasoning. Unlike other techniques, it does not
remove original context information such as existing user or device profiles.

5.3 Context Extraction

In Context Extraction, useful interesting context is extracted from continuous streams
like audio and video. For example, it can be applied to video stream received from
Camera, Webcam to extract features like pixel percent change, picture motion pattern
(like stable, regular, irregular), etc. Similarly, audio context can also be summarized.

It is an active, irregular and event based context summarization. It can start any
time with an interesting activity. Unlike other techniques, it can be triggered even
before the context is stored in the repository and even discard it before storage. It
results in saving a lot of storage space but may take considerable time in doing so.

5.4 Pattern Identification

Context can be summarized by identifying existing patterns in the context repository
or history of activities. Location context can be summarized using this technique.
Consider the location context history in the context repository (See Table 3)

Table 3. Location Context History of Users and Rooms

Time User Room
09:05 1 1
09:02 2 1
10:08 1 2
11:26 3 3
11:44 3 3
…

Using pattern identification, a system may deduce the pattern of user’s location

during week days and come out with something as presented in Table 4.

Table 4. Pattern Identification for User Location

Time Period
From To User Room Probability

09:00 12:00 1 1 0.76
13:00 17:00 1 1 0.83
09:00 12:00 2 2 0.67
13:00 17:00 2 1 0.89
…

Similarly, a system can identify pattern of room occupants at various time periods.

Using categorization with pattern identification, a system may also infer which user
group (doctors, programmers, etc) occupies which room at different periods of time.

Pattern Identification is again passive, regular and periodic class of summarization
that works in background. It is resource intensive and thus performed less frequently.
On the positive side, it results in reducing considerable amount of storage space and
also supports higher level inference making, machine learning and in predicting future
intentions of a user or device in the specific situation. Pattern identification works on
the history of context and replaces larger history with patterns of activities.

6 Proposed Model for GCC and CS

The first question, while designing and developing the GCC and CS, is should these
components be part of middleware or not? We believe that making these components
part of a middleware will yield us the re-usability of design and code.

We prefer designing these components (GCC and CS) as frameworks [11] so that
applications only need to provide the hotspots (areas of specification). Hence,
Garbage Collecting Context (GCC) can be developed in such a way that application

specific techniques for Noise Filtering and Privacy Policies can be induced even
while the application is operational. For example, an application can specify, through
XML, that from 1 pm to 2 pm, there is a lunch time at room X, so the location and
other activities of users over there should not be monitored. Figure 1 presents the
proposed architecture of Garbage Collecting Context (GCC) module.

NF Noise Filter PP Privacy Policy CR Context Repository

Figure 1. Garbage Collecting Context Module

GCC retrieves context data from Context Repository (CR), identifies noise
(corrupted) context using Noise Filters (NF), applies Privacy Policies (PP) to remove
privacy sensitive context and updates the context repository. In a particular
implementation, GCC may not delete the context as it identifies it as garbage but only
mark it or move such context to some other repository for some later analysis.

Context Summarizer (CS) can also be developed with framework technique. There
are various context summarizer sub-modules for each different category of context,
called Context Category Summarizer (CCS). Thus temperature, network bandwidth,
etc can all be summarized using a single CCS. Context Summarizer (CS) is supplied
context information along with Context Meta-Data (CMD). This context meta-data,
usually represented through XML, specifies the category of supplied data, so that CS
may decide which Context Category Summarize (CCS) should be used to summarize
this context. All CCS sub-modules implement a particular interface so that CS can
access each of them uniformly. Because of the framework based design of the CS,
new CCS can be added and the existing CCS can be updated while the application is
operational. Figure 2 shows the architecture of Context Summarizer (CS).

Figure 2. Context Summarization Module

CCS Context Category Summarizer sub-module CMD Context Meta Data
RCR Raw Context Repository SCR Summarized Context Repository

Stores

CS Module

CCS CCS CCS

CCS CCS CCS SCR

RCR
Receives

CMD Data from Sensor

Updates

GCC Module

NF NF NF
Receives

CR

PP PP PP

7 Issues and Challenges in GCC and CS

Garbage Collecting Context (GCC) and Context Summarization (CS) have their own
research issues and challenges both at conceptual and implementation level. Here, we
identify several such issues and wherever possible identify few applicable solutions.

7.1 What Can Be Summarized & When The Context Should Be Summarized?

Can we summarize each and every type of context? We do not think so; we should
only apply context summarization where our application specific analysis identifies
some performance or storage optimization. Also, different kind of context information
can not be efficiently summarized using a single method. Rather, we can form several
categories according to similarities in the nature of context information and define
mechanisms to summarize each different category of context data

Another important question asks what is the appropriate time to trigger context
summarization? Should we start context summarization just as sensors provide
contexts? (may be useful for audio and video sensors) or as the application processes
it to some more useful form and stores in the context repository (may be applicable
for location context) or once the context has become the history and is not directly
useful for application (applicable for temperature and similar type of contexts) or
periodically after some regular interval of time or some pre-specified time?

7.2 Performance Overhead & Other Challenges

Perhaps the foremost concern to apply these techniques is the performance cost. Do
the benefits achieved by these methods justify the computing resource consumption?
We believe that a proper application of GCC and CS (like those discussed in section
5) will yield the performance improvement and will not eat up many resources. In any
case, the overall system should not be ceased or hung-up during the execution of GCC
and CS modules, the resources (like context repository) should not be locked for
noticeable period of time. But the problem is how to achieve this? We need GCC and
CS only when there is considerable amount of context information, a considerable
amount of context means a considerable amount of processing and resource
consumption to produce useful output.

Other issues and challenges include how are we going to deal with distributed and
ubiquitous nature of middleware, data repository and applications? What are security,
trust and service level guarantees required for systems using GCC and CS techniques?

8 Risks Involved

Garbage Collecting Context (GCC) and Context Summarization (CS) are sensitive in
nature as they directly access context information and modify it. Information is
always one of the most important assets of any system and organization. In this

section, we will briefly mention about some risk factors that should be considered
while developing and implementing GCC and CS techniques

Both GCC and CS result in some data and precision loss. Failing to compensate
this precision lost may affect performance and overall throughput of the system badly.

Improper context summarization may make reasoning and machine learning more
difficult, complicated, inefficient, incorrect and misleading instead of improving it

GCC and CS modify Context Repository (CR). Several modules of middleware
and application access CR simultaneously. Such a sudden modification may be
unexpected and make these modules produce unexpected results and must be avoided.

9 Conclusion

Garbage Collecting Context (GCC) and Context Summarization (CS) are new,
interesting and useful research areas with a number of interesting research issues. We
have presented both the benefits and risk factors involved in using these techniques
and have also identified four techniques for implementing Context Summarization
(CS). We have also proposed a model for implementing these concepts and identified
certain research issues and challenges expected to be faced. We conclude with the fact
that they are sensitive operations which must be handled carefully and applied after
rigorous testing. Finally, ‘to summarize and how to summarize?’ that is the question!

References

1. M. Weiser, The computer for the 21st century. ACM SIGMOBILE 1999 Review
2. Dey, A.K., et al.: A Conceptual Framework and Toolkit for Supporting Rapid Prototyping
of Context-Aware Applications. Human-Computer Interaction (HCI) Journal, Vol. 16. (2001)
3. Hung Q. Ngo et al: Developing Context-Aware Ubiquitous Computing Systems with a
Unified Middleware Framework. EUC 2004: 672-681
4. Michael J. Franklin, Challenges in Ubiquitous Data Management. . Informatics: 10 Years
Back, 10 Years Ahead, LNCS #2000, R. Wilhiem (ed)., Springer-Verlag 2001
5. Richard Jones, The Garbage Collection, http://www.cs.ukc.ac.uk/people/staff/rej/gc.html
6. Jason I. Hong, James A. Landay, Support for location: An architecture for privacy-
sensitive ubiquitous computing, Proceedings of the 2nd international conference on Mobile
systems, applications, and services, June 2004
7. Alex Berson , Stephen J. Smith, Data Warehousing, Data Mining, and OLAP, McGraw-
Hill, Inc., New York, NY, 1997
8. D. Barbara et al., The New Jersey Data Reduction Report, Bulletin of the IEEE Technical
Committee on Data Engineering December 1997 Vol. 20
9. Lin Qiao et al, Data streams and time-series: RHist: adaptive summarization over
continuous data streams, Proceedings of the eleventh international conference on Information
and knowledge management, Nov 2002
10. Moore, D., I. Essa, and M. Hayes, Exploiting Human Actions and Object Context for
Recognition Tasks, In Proceedings of IEEE International Conference on Computer Vision 1999
(ICCV’99), Corfu, Greece, March 1999
11. Mohamed Fayad, Douglas C. Schmidt, Object-Oriented Application Frameworks,
Communications of the ACM, Volume 40 Issue 10, Oct 1997

http://www.cs.ukc.ac.uk/people/staff/rej/gc.html
http://www.cc.gatech.edu/fce/ahri/publications/99-11.pdf
http://www.cc.gatech.edu/fce/ahri/publications/99-11.pdf

