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Classification techniques are important in bioinformatics analysis as they can separate various bioinfor-
matical data into distinct groups. To obtain good classifiers, accurate labeling of the training data is
required. However labeling in practical bioinformatics applications might be erroneous due to various
reasons. To identify those mislabeled data, an ensemble learning based scheme, single-voting has been
widely used. It generates multiple classifiers and makes use of their voting to detect mislabeled data. Sin-
gle-voting scheme mainly consists of two components: data partitioning component to generate multiple
classifiers, and mislabeled detection component to identify mislabeled data. Existing works in this field
mainly focus on mislabeled detection part and neglect data partitioning. However, our analysis shows
that data partitioning plays an important role in single-voting scheme. This analysis helps us proposing
a novel multiple-voting scheme. It is superior to traditional single-voting by reducing the unreliable
influence from data partitioning. Empirical and theoretical evaluations on a set of bioinformatics datasets
illustrate the utility of our proposed scheme.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Classification techniques are widely used for bioinformatics
data analysis [1–5]. It can separate bioinformatics data with similar
features into distinct sets, which can support many applications. In
classification, a training set is required to train a classifier, which
can be used later to classify new data. To obtain a satisfied classi-
fier, the training data is generally required to be with accurate fea-
tures and labels.

However, in the field of bioinformatics, mislabeling of training
data is usually present mainly due to two reasons including subjec-
tive nature of the labeling task and the insufficient information to
determine the true label. Subjective mislabeling occurs when
experts give the labeling according to their personal judgments.
The annotations provided by multiple experts might disagree with
the general consensus, which leads to mislabeling errors. For
example, in [6], 9 mislabeled samples are detected from 49 breast
tumor training data. The other source of mislabeling is from insuf-
ficient information. For example, a physician may not be able to
make the right diagnosis if certain expensive medical procedures
are missing.

Existing study [7] has shown that even a small number of mis-
labeled data could dramatically degrade the performance of the
obtained classifier. This has attracted many researchers to develop
various techniques to address this issue [8–22]. Existing methods
can be classified into two groups: robust classifier designing [8,9]
and mislabeled data detecting [10–22]. Robust classifier designing
mainly focuses on developing novel classifiers which are robust to
mislabeled data during model training. While, mislabeled data
detection is to detect and remove mislabeled data prior to training.
Our study focuses on mislabeled data detection techniques, which
mainly consists of two types: k-nearest neighbor based and ensem-
ble learning based.

The core idea of k-nearest neighbor (kNN) based algorithms is
to compare the label of one sample with the labels of its sur-
rounding neighbors [10]. If there is strong inconsistency among
these labels, this training sample is treated as mislabeled. One
problem with this approach is from the limitation of kNN algo-
rithm. Not every data distribution is suitable for kNN based
method. There are some data distributions wherein the neighbor
samples have different labels. Moreover, this group of algorithms
does not propagate the mislabeling information to the detection
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of other training examples, so each training sample is checked
independently.

By contrast, ensemble learning based algorithms are used more
widely [11–14,16,18,21] for mislabeling detection. The representa-
tive algorithms in this group are majority and consensus filtering
[13]. In their algorithms, the training data is firstly randomly par-
titioned into several subsets. Each subset will be checked for mis-
labeled data separately. The checking is through the voting of
multiple classifiers which are trained based on the remaining sub-
sets. These algorithms mainly consists of two steps: data partition-
ing and multiple classifier voting. As partitioning and voting are
executed only once, they are called single-voting scheme in this
work.

As an ensemble learning based algorithm, single-voting can
achieve accurate mislabeling detection performance based on the
voting of multiple classifiers. For single-voting scheme, various ele-
gant voting policies have been proposed, such as majority voting
and consensus voting. However, data partitioning, an actual impor-
tant part of single-voting, is usually neglected. So far random par-
titioning (randomly partition training data into several subsets) is
widely used as it has various advantages. But on the other hand,
our analysis has shown that its randomness property makes sin-
gle-voting unreliable. Some successful detected mislabeled data
under one partitioning case are failed to identify when the parti-
tioning changes.

To address this issue, in this paper, we propose a novel multi-
ple-voting scheme. Multiple-voting consists of several single-vot-
ing detectors which are different to each other due to various
random partitioning. Multiple-voting is superior to single-voting
by alleviating the dependency of mislabeled data detection on data
partitioning. We also propose various fusion techniques to com-
bine the decisions from different detectors, including one vote
veto, majority voting, and consensus voting. Based on the proposed
multiple-voting scheme, new variants of majority filtering and
consensus filtering algorithms are proposed.

The comparison of multiple-voting and single-voting is ana-
lyzed both theoretically and experimentally. Experimental results
indicate that our proposed scheme can effectively improve the per-
formance of single-voting. Straightforwardness is a distinguished
advantage of our scheme. It can be easily applied on existing sin-
gle-voting approaches.

In summary, the main technical contribution is pointing out the
limitation of existing single-voting scheme and proposing an effi-
cient multiple-voting scheme with sufficient theoretical proofs
for solving it.
Table 1
Majority filtering algorithm.

Algorithm 1: Majority Filtering (MF)

Input: E (training set)
Parameter: n (number of subjects), y (number of learning algorithms),
A1;A2; . . . ;Ay (y kinds of learning algorithms)
Output: A (detected noisy subset of E)
(1) form n disjoint almost equally sized subset of Ei , where

S
iEi ¼ E

(2) A ;
(3) for i ¼ 1; . . . ;n do
(4) form Et  E n Ei

(5) for j ¼ 1; . . . y do
(6) induce Hj based on examples in Et and Aj

(7) end for
(8) for every e 2 Ei do
(9) ErrorCounter  0
(10) for j ¼ 1; . . . ; y do
(11) if Hj incorrectly classifies e
(12) then ErrorCounter  ErrorCounter þ 1
(13) end for
(14) if ErrorCounter > y

2, then A A [ feg
(15) end for
(16) end for
2. Related works

Mislabeled training data detection and elimination is crucial to
improve the accuracy of classifiers when mislabeling is present in
the training set. Various techniques have been proposed, among
which, ensemble learning based methods including majority filter-
ing (MF) and consensus filtering (CF) have been widely used. MF
utilizes the idea of majority voting, while CF utilizes the idea of
consensus voting.

The general idea of MF and CF is as follows: They employ
ensemble classifier to detect mislabeled instances by constructing
a set of base-level classifiers and then using their classifications to
identify mislabeled instances. The general approach is to tag an
instance as mislabeled if x of the m base-level classifiers cannot
classify it correctly. MF tags an instance as mislabeled if more than
half of the m base level classifiers classify it incorrectly. CF requires
that all base-level classifiers must fail to classify an instance as the
class given by its training label for it to be eliminated from the
training data.
The reason to employ ensemble classifiers in MF and CF is that
ensemble classifier has better performance than each base-level
classifier on a dataset if two conditions hold: (1) the probability
of a correct classification by each individual classifier is greater
than 0.5 and (2) the errors in predictions of the base-level classifi-
ers are independent.

Shown in Table 1, majority filtering begins with n equalsized
disjoint subsets of the training set E (step 1) and the empty output
set A of detected noisy examples (step 2). The main loop (steps 3–
6) is repeated for each training subset Ei . In step 4, subset Et is
formed which includes all examples from E except those in Ei,
which then is used as the input an arbitrary inductive learning
algorithm that induces a hypothesis (a classifier) Hj (step 6). Those
examples from Ei for which majority of the hypotheses does not
give the correct classification are added to A as potentially noisy
examples (step 14).

Consensus filtering algorithm is shown in Table 2. Its only dif-
ference with MF is at step 14. In CF, the example in Ei is regarded
as a noisy example only when all the hypotheses incorrectly clas-
sify it. Compared with MF, CF is more conservative due to the sev-
erer condition for noise identification, and which results in fewer
instances being eliminated from the training set. The drawback
of CF is the added risk in retaining bad data.

Majority filtering and consensus filtering are regarded as single-
voting detectors. Single-voting detector consists of two steps. The
first step is data partitioning. The training data E will be randomly
divided into n equal size subsets ðE1; E2; . . . ; EnÞ. Then each subset Ei

is taken out. Other n � 1 subsets, E n Ei are used to train k different
classifiers based on different classification algorithms. These k clas-
sifiers will be used as noise filters to detect the potential misla-
beled data in Ei. Each classifier will classify the data in Ei

individually. Suppose e is one training data in Ei; its given label
is Labele; its predicted label by classifier C is PLabele. If PLabele

equals to Labele, then classifier C will treat e as a noise-free data.
Otherwise, e will be treated as a mislabeled data. Considering dif-
ferent classifiers (totally num. is k) might have different opinions
on e, a voting mechanism is needed to combine their opinions.
3. The proposed multiple voting scheme

In single-voting, the voting of different classifiers can guarantee
the reliability for mislabeling detection to some extent. However, it



Table 2
Consensus filtering algorithm.

Algorithm 2: Consensus Filtering (MF)

Input: E (training set)
Parameter: n (number of subjects), y (number of learning algorithms),
A1;A2; . . . ;Ay (y kinds of learning algorithms)
Output: A (detected noisy subset of E)
(1) form n disjoint almost equally sized subset of Ei , where

S
i

Ei ¼ E

(2) A ;
(3) for i ¼ 1; . . . ;n do
(4) form Et  E n Ei

(5) for j ¼ 1; . . . y do
(6) induce Hj based on examples in Et and Aj

(7) end for
(8) for every e 2 Ei do
(9) ErrorCounter  0
(10) for j ¼ 1; . . . ; y do
(11) if Hj incorrectly classifies e
(12) then ErrorCounter  ErrorCounter þ 1
(13) end for
(14) if ErrorCounter ¼ y, then A A [ feg
(15) end for
(16) end for
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neglects the influence of data partitioning. For different data
partitioning cases, the trained classifiers are also different as
training data changes. Consequently, the classifiers’ detection
results can also vary. Therefore, it is possible that in partitioning
case 1, a mislabeled data could be successfully detected; while in
partitioning case 2, the same mislabeled data is failed to be
detected. Since the partitioning is random, single-voting is risky
and unrilable.
Fig. 1. Multiple-voting based misla
To reduce the effects of data partitioning, a novel multiple-
voting scheme is proposed (Fig. 1). As shown in Fig. 1, multiple-
voting consists of t single-voting detectors. Each single-voting
detector Mi will generate its own decision about suspected
mislabeled data index Ai in the 1st layer voting. Finally, in the
2nd layer voting, all the different decisions Ai will be combined
to output the final decision A about which data is mislabeled.

In Fig. 1, the 1st layer voting can use either majority voting or
consensus voting. In the 2nd layer voting, as our new proposed
layer, we have proposed three voting policies for it: one vote veto,
majority and consensus voting. One vote veto tags a data as misla-
beled if at least one single-voting detector agrees with that. Major-
ity and consensus voting in the 2nd layer are identical to them
used in 1st layer voting.

By adopting majority or consensus voting, existing work [9]
consists of two methods: majority filtering (MF) and consensus fil-
tering (CF). Based on our multiple-voting scheme, several new vari-
ants are developed (Table 3).

For the new proposed MF/CF variants, their only difference is
how to combine the detection results in the second layer voting.
Instead of presenting all the algorithms here, we select MFMF as
the representative and present its algorithm in Table 4.

4. Analysis of proposed multiple-voting scheme

In identifying mislabeled instances, two types of error can be
made. The first type (E1) occurs when declaring a correctly labeled
example as mislabeled and is subsequently discarded. The second
type of error (E2) corresponds to declare a mislabeled example as
correctly labeled. In this section we analyze the probability of each
of these types of errors for our proposed multiple-voting
approaches.
beled data detection scheme.



Table 3
Our proposed multiple-voting based methods.

Proposed methods 1st Layer voting policy 2nd Layer voting policy

MF variants MF1 Majority voting One vote veto
MFMF Majority voting Majority voting
MFCF Majority voting Consensus voting

CF variants CF1 Consensus voting One vote veto
CFMF Consensus voting Majority voting
CFCF Consensus voting Consensus voting

Table 4
Proposed MFMF algorithm.

Algorithm 3: MajorityFiltering_MajorityFiltering (MFMF )

Input: E (training set)
Parameter: n (number of subsets), y (number of learning algorithms),
t (number of times of subsets partitioning), A1;A2; . . . ;Ay (y kinds of learning

algorithms)
Output: A (detected noisy subset of E)
(1) for p ¼ 1; . . . ; t do
(2) form n disjoint almost equally sized subset of Epi , where

S
i

Epi ¼ E

(3) Ap  ;
(4) for i ¼ 1; . . . ;n do
(5) form Et  E n Epi

(6) for j ¼ 1; . . . y do
(7) induce Hpj based on examples in Et and Aj

(8) end for
(9) for every e 2 Epi do
(10) ErrorCounter  0
(11) for j ¼ 1; . . . ; y do
(12) if Hpj incorrectly classifies e
(13) then ErrorCounter  ErrorCounter þ 1
(14) end for
(15) if ErrorCounter > y

2, then Ap  Ap [ feg
(16) end for
(17) end for
(18) end for
(19) A ;
(20) for every e 2 E do
(21) ErrorCounter  0
(22) for j ¼ 1; . . . ;p do
(23) if e 2 Ap

(24) then ErrorCounter  ErrorCounter þ 1
(25) end for
(26)if ErrorCounter > p

2, then A A [ feg
(27) end for
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Let PðE1iÞ and PðE2iÞ be the probability that classifier i makes an
E1 and E2 error respectively. To clarity the analysis, it is assumed
that all m various classifiers have the same probability of making
an E1 error that is equal to P (E1). The same assumption is for
the PðE2iÞ that is equal to P (E2).

4.1. Analysis of MF and our proposed MF variants

For majority filtering (MF), it makes an E1 (or E2) error when
more than half of these m classifiers fail to classify the instance cor-
rectly. Therefore,

PðE1MFÞ ¼
Xj¼m

j>m=2

PðE1Þjð1� PðE1ÞÞm�j m

j

� �
PðE2MFÞ ¼
Xj¼m

j>m=2

PðE2Þjð1� PðE2ÞÞm�j m
j

� �

We have proposed three MF variants MF1,MFMF , and MFCF which
run MF for several times (suppose this value is t) and combine the
results based on one vote veto, majority voting, and consensus
voting respectively. Suppose PðE1MFi
Þ and PðE2MFi

Þ be the probabil-
ity that single-voting detector MFi makes an E1 and E2 error
respectively. To simply the analysis, we assume that each
PðE1MFi

Þ is identical and equals to PðE1MFÞ. Each PðE2MFi
Þ is also

identical and equals to PðE2MFÞ.
MF1 will make an E1 error if there is at least one MF mistakenly

declares the instance as mislabeled. Or we can say E1 error will be
made except all the MF detectors do not make this mistake. On the
other hand, it will make an E2 error only if all the MFi mistakenly
declare the mislabeled instance as correctly labeled one. Therefore,

PðE1MF1 Þ ¼ 1� ð1� PðE1MFÞÞt

PðE2MF1 Þ ¼ PðE2MFÞt

MFMF will make an E1 (or E2) error when more than half of these
j MF detectors make an error. Therefore,

PðE1MFMF Þ ¼
Xj¼t

j>t=2

PðE1MFÞjð1� PðE1MFÞÞt�j t

j

� �

PðE2MFMF Þ ¼
Xj¼t

j>t=2

PðE2MFÞjð1� PðE2MFÞÞt�j t
j

� �

MFCF will make an E1 error only when all the j MF detectors
make this E1 error. It will make an E2 error if there is at least
one MF detector makes this E2 error. Therefore,

PðE1MFCF Þ ¼ PðE1MFÞt

PðE2MFCF Þ ¼ 1� ð1� PðE2MFÞÞt

Because each MFi tags a training sample independently based
on the random data partitioning, the mistakes they make can be
regarded as independent of each other. Therefore, if PðE1MFÞ and
PðE2MFÞ are less than 0.5, we have the following relationship with
above probabilities:

(1) PðE1MFCF Þ < PðE1MFMF Þ < PðE1MFÞ < PðE1MF1 Þ.

(2) PðE2MF1 Þ < PðE2MFMF Þ < PðE2MFÞ < PðE2MFCF Þ.

Since PðEÞ ¼ PðE1Þ þ PðE2Þ, thus, we have PðEMFMF Þ < PðEMFÞ. It
means mathematically, MFMF can make few errors than MF. For
PðEMF1 Þ and PðEMFCF Þ, Compared to MF, they make less mistakes
for one type of error, but simultaneously make more mistakes for
the other type of error. Therefore, it is hard to judge whether they
are better than MF. It depends on whether their improvements on
one type of error can complement their loss on the other type of
error. This will be tested through experiments in the following
section.

4.2. Analysis of CF and our proposed CF variants

The notations in this part are same to those in Section 4.1.
Meanwhile, the assumptions for problem analysis are also
identical.

We have the following probabilities of errors for each CF related
methods.

PðE1CFÞ ¼ PðE1Þm

PðE2CFÞ ¼ 1� ð1� PðE2ÞÞm

PðE1CF1 Þ ¼ 1� ð1� PðE1CFÞÞt

PðE2CF1 Þ ¼ PðE2CFÞt



Table 5
Datasets used in this work.

Data name # Of samples # Of features
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PðE1CFMF Þ ¼
Xj¼t

j>t=2

PðE1CFÞjð1� PðE1CFÞÞt�j t

j

� �
Parkinson 197 23
Iris 150 4
WDBC 569 31
Heart disease 303 13
PðE2CFMF Þ ¼
Xj¼t

j>t=2

PðE2CFÞjð1� PðE2CFÞÞt�j t

j

� �
Diabetes 768 8
Breast cancer 699 9
Cardiotocography 2126 23
PðE1CFCF Þ ¼ PðE1CFÞt
Acute Inflammations1 120 6
Acute Inflammations2 120 6
PðE2CFCF Þ ¼ 1� ð1� PðE2CFÞÞt

The following relationships can be summarized from above
probabilities,

(1) PðE1CFCF Þ < PðE1CFMF Þ < PðE1CFÞ < PðE1CF1 Þ.

(2) PðE2CF1 Þ < PðE2CFMF Þ < PðE2CFÞ < PðE2CFCF Þ.

Thus, we havePðECFMF Þ < PðECFÞ. For PðECF1 Þ and PðECFCF Þ, Com-
pared to CF, they make less mistakes for one type of error, but
simultaneously make more mistakes for the other type of error.
Therefore, it is hard to judge whether they are better than CF. It
depends on whether their improvements on one type of error
can complement their loss on the other type of error. This will be
also be tested through experiments in the following section.
Table 6
Performance of each mislabeled data detection method on Parkinson, Iris, Wdbc.
5. Experimental work

5.1. Datasets

Nine bioinformatics datasets are used in this work (Table 5). All
of these datasets are obtained from the well-known UCI Repository
(http://archive.ics.uci.edu/ml/). The purpose of each dataset is as
follows: Parkinson (Discriminate healthy people from those with
Parkinson), Iris (Classify iris plants to iris setosa, iris virginica,
and iris versicolor), WDBC (Classify breast mass to malignant or
benign), Heart disease (Presence of heart disease or not), Diabetes
(Diabetes test is positive or negative), Breast cancer (Classify Wis-
consin breast cancer data into malignant or benign), Cardiotocog-
raphy (Classify fetal cardiotocograms to different fetal states:
normal, suspect, and pathologic), Acute Inflammations1 (perform
the presumptive diagnosis of diseases of urinary system (Inflam-
mation of urinary bladder)), Acute Inflammations2 (perform the
presumptive diagnosis of diseases of urinary system (Nephritis of
renal pelvis origin)).
Noise Class noise detection algorithms

MF related CF related

MF MF1 MFMF MFCF CF CF1 CFMF CFCF

Dataset1: Parkinson
10% 0.755 0.745 0.790 0.763 0.741 0.743 0.749 0.726
20% 0.690 0.691 0.698 0.639 0.614 0.662 0.623 0.562
30% 0.510 0.550 0.579 0.491 0.454 0.564 0.476 0.404
Ave. 0.652 0.662 0.689 0.631 0.603 0.656 0.616 0.564

Dataset2: Iris
10% 0.936 0.929 0.937 0.940 0.933 0.939 0.940 0.928
20% 0.933 0.929 0.936 0.921 0.915 0.927 0.913 0.876
30% 0.892 0.883 0.916 0.873 0.844 0.897 0.863 0.797
40% 0.860 0.832 0.871 0.847 0.825 0.872 0.843 0.741
Ave. 0.905 0.893 0.915 0.895 0.879 0.909 0.890 0.836

Dataset3: Wdbc
10% 0.968 0.966 0.968 0.965 0.953 0.971 0.955 0.928
20% 0.962 0.974 0.972 0.931 0.887 0.953 0.903 0.824
30% 0.938 0.969 0.952 0.908 0.801 0.926 0.833 0.698
40% 0.798 0.953 0.895 0.672 0.614 0.786 0.632 0.501
Ave. 0.917 0.966 0.947 0.869 0.814 0.909 0.831 0.738
5.2. Experimental configurations and results

To evaluate the effectiveness of the proposed multiple-voting
based mislabeling detection scheme, we compare our proposed
MF variants and CF variants with conventional MF and CF.

Refer to Fig. 1, the experimental comparisons are configured as
follows: data is partitioned into three subsets (n = 3); single-voting
is executed for ten times (t = 10); to train multiple classifiers, three
algorithms are used including naïve Bayes, decision tree, and k-NN
(k = 3).

In experiments, each dataset was divided into a training set and
a test set. Training set includes mislabeled data. Each mislabeling
detection algorithm filtered mislabeled data from the training
set, and the performances of each algorithm were evaluated using
the test set. Classification accuracy has been widely used in previ-
ous studies evaluating mislabeled data detection performance. In
this study, the k-nearest neighbor (k = 3) was used. When two
noise detection methods are applied to the same dataset with
the same kNN algorithm, higher classification accuracy indicates
better noise detection performance.

To determine classification accuracy, each dataset D was pro-
cessed as follows:

� Three trials derived from threefold cross-validation of D were
used to evaluate the performance of each feature selection algo-
rithm. During each trial, 66.6% of D, or Tr, was used as a training
set. The remaining 33.3% of D, or Ts, was used as a test set to
evaluate the classification accuracy of each class noise detection
method. We artificially changed some labels that were origi-
nally correct in Tr, according to predefined mislabeled ratios
to generate mislabeled data. We considered four different mis-
labeled ratios: 10%, 20%, 30%, and 40%. For example, if we
wanted to evaluate the classification on Tr under a 10% misla-
beled ratio, we randomly selected 10% of the samples from Tr
and changed correct labels to incorrect labels.
� The average classification accuracy was obtained by averaging

the accuracies of three trials.
� Considering that the partitioning of D and that the mislabeled

data generated could influence average classification accuracy,
we executed each experiment 10 times for 10 classification
accuracies (executed the previous two steps 10 times).
� Finally, the reported accuracy was calculated as the average of

these 10 values.

The performances of each mislabeled data detection method on
Parkinson, Iris, and Wdbc are shown in Table 6. The noise ratio for
Parkinson is up to 30% because the classification accuracy is too
low to consider when the noise ratio is 40%.



Table 8
Performance of each mislabeled data detection method on Cardiotocography, Acute
Inflammations1, Acute Inflammations2.

Noise Class noise detection algorithms

MF related CF related

MF MF1 MFMF MFCF CF CF1 CFMF CFCF

Dataset7: Cardiotocography
10% 0.985 0.984 0.984 0.984 0.977 0.979 0.977 0.973
20% 0.979 0.983 0.983 0.979 0.958 0.970 0.963 0.942
30% 0.971 0.981 0.977 0.958 0.918 0.951 0.933 0.868
40% 0.925 0.971 0.951 0.887 0.839 0.921 0.865 0.736
Ave. 0.965 0.979 0.974 0.952 0.923 0.955 0.935 0.880

Dataset8: Acute Inflammations1
10% 0.990 0.991 0.992 0.986 0.991 0.999 0.989 0.981
20% 0.948 0.969 0.985 0.942 0.943 0.977 0.957 0.926
30% 0.862 0.855 0.898 0.829 0.829 0.876 0.851 0.786
40% 0.778 0.796 0.782 0.735 0.733 0.815 0.742 0.673
Ave. 0.895 0.903 0.914 0.873 0.874 0.917 0.885 0.842

Dataset9: Acute Inflammations2
10% 0.991 0.999 0.996 0.986 0.984 0.991 0.986 0.977
20% 0.977 0.988 0.985 0.971 0.967 0.994 0.971 0.945
30% 0.945 0.950 0.948 0.920 0.913 0.964 0.928 0.847
40% 0.812 0.836 0.830 0.768 0.803 0.862 0.795 0.737
Ave. 0.931 0.943 0.940 0.911 0.917 0.953 0.920 0.877
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Parkinson: as shown in Table 6, in terms of average accuracy,
the ranking of MF related methods is MFMF , MF1, MF, and MFCF .
The ranking of CF related methods is CF1, CFMF , CF, and CFCF . For
all the different noise ratios, MFMF is always better than MF. But
MF1 is only better than MF when noise level is 30%. Therefore, in
MF related methods, only MFMF is better than MF when considering
both accuracy and robustness. In CF related methods, CF1 and CFMF

are better than CF in all the different noise ratios. Compared to con-
ventional MF and CF methods, the improvements of MFMF , CF1, and
CFMF are correlated to the noise ratio. Basically the improvements
become more significant when the number of mislabeled samples
increases.

Iris: In Table 6, among MF related methods, the accuracy rank-
ing is MFMF , MF, MFCF , and MF1. The rank of CF related methods is
CF1, CFMF , CF, and CFCF . In four various noise levels, MFMF , CF1, and
CFMF are consistently better than original methods. When the noise
ratios are small (10% and 20%) the improvements are not very obvi-
ous. However the improvements become more significant when
the noises are above 20%.

Wdbc: the accuracy ranking of MF related methods is MF1,
MFMF , MF, and MFCF; the accuracy ranking of CF related methods
is CF1, CFMF , CF, and CFCF . Compared to MF, MF1 and MFMF give sim-
ilar or better accuracies in all the four different noise ratios. Simi-
larly, CF1 and CFMF are better than CF under all various noise ratios.
For this dataset, when noise ratio is 10%, the improvements of
these variants are little. But when noise ratio is above 10%, the
improvements become much more significant. For example, when
noise ratio is 40%, the accuracy of MF1 is 0.953 and it is only 0.798
for MF.

The performances of each mislabeled data detection method on
Heart disease, Diabetes, Breast cancer are shown in Table 7.

Heart disease: Table 7 shows that among MF related methods,
the ranking of accuracies is MF1, MFMF , MF, and MFCF; among CF
related methods, the ranking of accuracies is CF1, CFMF , CF, and
CFCF . Compared to MF, MF1 and MFMF show better accuracies on
all the different ratios. In addition, the improvement is more signif-
icant when the noise ratio is higher. For CF related methods, the
performance of CFMF is similar to CF. CF1 defeats CF on all the dif-
ferent ratios. Moreover, the improvement is more obvious when
the number of mislabeled samples increases.

Diabetes: as Table 7 shows, in MF variants, MFMF is the best one
which is better than MF in all the different noise ratios, while MF1’s
Table 7
Performance of each mislabeled data detection method on heart disease, diabetes,
breast cancer.

Noise Class noise detection algorithms

MF related CF related

MF MF1 MFMF MFCF CF CF1 CFMF CFCF

Dataset4: heart disease
10% 0.819 0.822 0.823 0.802 0.8 0.814 0.799 0.771
20% 0.786 0.808 0.797 0.759 0.754 0.776 0.754 0.703
30% 0.751 0.768 0.766 0.705 0.697 0.748 0.700 0.648
40% 0.693 0.728 0.714 0.669 0.662 0.708 0.663 0.620
Ave. 0.762 0.782 0.775 0.734 0.728 0.762 0.729 0.686

Dataset5: diabetes
10% 0.782 0.769 0.785 0.769 0.768 0.778 0.773 0.762
20% 0.753 0.757 0.769 0.757 0.752 0.768 0.761 0.737
30% 0.758 0.758 0.769 0.751 0.738 0.759 0.752 0.713
40% 0.728 0.735 0.746 0.71 0.701 0.723 0.709 0.687
Ave. 0.755 0.755 0.767 0.747 0.74 0.757 0.749 0.725

Dataset6: breast cancer
10% 0.968 0.972 0.97 0.965 0.964 0.969 0.964 0.948
20% 0.967 0.974 0.971 0.957 0.948 0.967 0.949 0.918
30% 0.957 0.968 0.964 0.917 0.903 0.949 0.902 0.845
40% 0.899 0.947 0.928 0.868 0.843 0.921 0.849 0.771
Ave. 0.948 0.965 0.958 0.927 0.915 0.952 0.916 0.871
performance is similar to MF. In CF related methods, both CF1 and
CFMF are better than CF in all the noise ratios. CF1 is the best one in
CF variants. For all the improved variants, the improvement tends
to be significant when the noise ratio is higher.

Breast cancer: the ranking of MF related methods is MF1, MFMF ,
MF, and MFCF; the ranking of CF related methods is CF1, CFMF , CF,
and CFCF . In addition, although MF1, MFMF , and CF1 are better than
original methods on all the different ratios, the improvements are
more when the noise ratio is higher.

Table 8 shows the experimental results on Cardiotocography,
Acute Inflammations1, and Acute Inflammations2.

Cardiotocography: the ranking of MF related methods is MF1,
MFMF , MF, and MFCF; the ranking of CF related methods is CF1,
CFMF , CF, and CFCF .

Acute Inflammations1: the ranking of MF related methods is
MFMF , MF1, MF, and MFCF; the ranking of CF related methods is
CF1, CFMF , CF, and CFCF .

Acute Inflammations2: the ranking of MF related methods is
MF1, MFMF , MF, and MFCF; the ranking of CF related methods is
CF1, CFMF , CF, and CFCF .

In Tables 6–8, we have compared various noise detection meth-
ods on each individual dataset. We summarize the performances of
MF variants and CF variants in Tables 9 and 10. In these tables, in
addition to the average accuracies, there is the other metric, named
Scores. For each individual dataset, the best algorithm is assigned
Table 9
The accuracies of MF variants in all the different datasets.

Data MF MF1 MFMF MFCF

MF related class noise detection algorithms
Parkinson 0.652 0.662 0.689 0.631
Iris 0.905 0.893 0.915 0.895
Wdbc 0.917 0.966 0.947 0.869
Heart 0.762 0.782 0.775 0.734
Diabetes 0.755 0.755 0.767 0.747
Breast 0.948 0.965 0.958 0.927
Cardio 0.965 0.979 0.974 0.952
Acute1 0.895 0.903 0.914 0.873
Acute2 0.931 0.943 0.940 0.911
Ave. 0.859 0.872 0.875 0.848
Scores 0 5 4 �9



Table 10
The accuracies of CF variants in all the different datasets.

Data CF CF1 CFMF CFCF

CF related class noise detection algorithms
Parkinson 0.603 0.656 0.616 0.564
Iris 0.879 0.909 0.89 0.836
Wdbc 0.814 0.909 0.831 0.738
Heart 0.728 0.762 0.729 0.686
Diabetes 0.74 0.757 0.749 0.725
Breast 0.915 0.952 0.916 0.871
Cardio 0.923 0.955 0.935 0.880
Acute1 0.874 0.917 0.885 0.842
Acute2 0.917 0.953 0.920 0.877
Ave. 0.821 0.863 0.830 0.780
Scores 0 9 0 �9

Table 12
The improvements of CF1 on different noise ratios.

Data Noise ratios

10% 20% 30% 40%

Improvement of CF1 on CF
Parkinson 0.002 0.048 0.110 ⁄
Iris 0.006 0.012 0.053 0.047
Wdbc 0.018 0.066 0.125 0.172
Heart 0.014 0.022 0.051 0.046
Diabetes 0.010 0.016 0.021 0.022
Breast 0.005 0.019 0.046 0.078
Cardio 0.002 0.012 0.033 0.082
Acute1 0.008 0.034 0.047 0.082
Acute2 0.007 0.027 0.051 0.059
Ave. 0.008 0.028 0.060 0.070

Table 13
Comparison between our proposed methods and edited nearest neighbors.

Data MFMF CF1 ENN1 ENN3

Multiple-voting and edited nearest neighbor comparison
Parkinson 0.689 0.656 0.634 0.677
Iris 0.915 0.909 0.848 0.882
Wdbc 0.947 0.909 0.853 0.899
Heart 0.775 0.762 0.745 0.745
Diabetes 0.767 0.757 0.710 0.715
Breast 0.958 0.952 0.878 0.899
Cardio 0.974 0.955 0.883 0.918
Acute1 0.914 0.917 0.839 0.870
Acute2 0.940 0.943 0.873 0.898
Ave. 0.875 0.863 0.807 0.832
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‘‘+1’’, the worst one is assigned ‘‘�1’’. This metric can reflect the
robustness of each method on various datasets.

As shown in Table 9, in MF variants, MFMF is the best one in
terms of accuracy and the second best one in terms of robustness.
MF1 is also good. But MFCF could not improve the performance. It is
the worst one among MF variants.

Table 10 shows that CF1 make significant improvement on CF in
terms of both accuracy and robustness. For CFMF , for the first three
datasets, its improvement on CF is obvious; for the other six data-
sets, the improvement is little. The worst method among CF vari-
ants is CFCF .

From above experimental analysis, we can make the following
conclusions:

(1) Among our proposed MF variants, MFMF and MF1 can make
consistently improvement on MF. The best one is MFMF .

(2) Among our proposed CF variants, CFMF and CF1 can make
consistently improvement on CF. The best one is CF1.

(3) The improvements of these proposed variants become more
significant when the number of mislabeled samples
increase. As the examples, we show the improvements of
MFMF and CF1 on different noise ratios in Tables 11 and 12.
It clearly shows that the improvement is highly correlated
to the noise ratio.

The above experiments have verified the good performances of
MFMF and CF1. With the same datasets and experimental configura-
tions, we further compare them with edited nearest neighbors
(ENN) [10], a well-known k-nearest neighbor based mislabeled
detection method. Two ENN methods, ENN1 (k = 1) and ENN3
(k = 3) are used. The results in Table 13 indicate that the perfor-
mances of MFMF and CF1 are significantly better than ENN methods.
Table 11
The improvements of MFMF on different noise ratios.

Data Noise ratios

10% 20% 30% 40%

Improvement of MFMF on MF
Parkinson 0.045 0.008 0.069 ⁄
Iris 0.001 0.003 0.024 0.011
Wdbc 0 0.010 0.014 0.097
Heart 0.004 0.011 0.014 0.021
Diabetes 0.003 0.016 0.011 0.018
Breast 0.002 0.004 0.007 0.029
Cardio �0.001 0.004 0.006 0.026
Acute1 0.002 0.007 0.036 0.004
Acute2 0.005 0.008 0.003 0.018
Ave. 0.007 0.008 0.020 0.028
5.3. Discussions

We have conducted the mathematical analysis for the proposed
methods in previous section. The experimental results are consis-
tent with the mathematical analysis. Both of them show that
MFMF and CFMF could improve the performance of conventional
MF and CF. Three new observations from experimental results
include (1) CF1 could provide significant improvement on CF; (2)
the performances of CFCF is quite poor; (3) the performances of
MFCF is quite poor.

To analysis above observations, we choose one dataset to ana-
lyze the reasons. The random selected dataset is Breast cancer. This
dataset consists of 683 samples. Referring to the experimental
setup in Section 5.2, we use 3-cross validation method. In each
time of validation, the training data consists of 455 samples
(683⁄2/3). We will set the noise ratio to 40%, therefore, around
182 mislabeled samples. This experiment is conducted for five
times. The average error made by each type of noise detection
method is shown in Table 14.

(1) Analysis why CF1 provide significant improvement on CF.
As we analyzed in last section, compared to CF, CF1 will
reduce the number of one type of error and increase the
number of the other type of error. Mathematically,
Table 14
Number of errors made by each noise detection method.

Methods Error number

E1 E2

MF 38 24
MFCF 5 65
CF 4 89
CF1 12 31
CFCF 1 149
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PðE1CFÞ < PðE1CF1 Þ; PðE2CF1 Þ < PðE2CFÞ. Shown in Table 14, CF
makes 4 type I errors and 89 type II errors. CF1 makes 12
type I errors and 31 type II errors. Obviously the gain on type
II error is much more than the lose on type I error. Therefore,
the performance of CF1 is better than CF.

(2) Analysis why CFCF provide the poor performance.
Mathematically, PðE2CFÞ < PðE2CFCF Þ; PðE1CFCF Þ < PðE1CFÞ.
Shown in Table 14, CF makes 4 errors in type I and 89 errors
in type II. CFCF only makes 1 error in type I. But meanwhile, it
makes 149 type II errors. Obviously the lose on type II error
is much more than the gain on type I error. Therefore, the
performance of CFCF is worse than CF.

(3) Analysis why MFCF provide the poor performance.
Mathematically, PðE1MFCF Þ < PðE1MFÞ; PðE2MF < PðE2MFCF Þ.
Shown in Table 14, MF makes 38 errors in type I and 24
errors in type II. MFCF only makes 5 errors in type I. But
meanwhile, it makes 65 type II errors. Obviously the lose
on type II error is much more than the gain on type I error.
Therefore, the performance of MFCF is worse than MF.

6. Conclusions and future works

In bioinformatic applications, the mislabeling of training exam-
ples is a serious problem which can degrade of the performance of
data analysis. The main technical contribution of this work is
pointing out the limitation of traditional single-voting scheme
and proposing a multiple-voting scheme to solve the problem. Sin-
gle-voting consists of two steps: data partitioning and mislabel
detecting. The main limitation of single-voting scheme is its unre-
liability due to the influence of data partitioning. To address this
issue, our proposed multiple-voting scheme runs single-voting
for multiple times and then combine their detection results by pro-
posed fusion strategies, which include one vote veto, majority vot-
ing, and consensus voting.

According to the proposed multiple-voting scheme, conven-
tional single-voting based methods including MF and CF have been
extended into several new variants. Through mathematical and
experimental analysis, some variants have shown promising per-
formances which are superior to original MF and CF. These variants
include MFMF (combining the decisions of multiple MF detectors by
majority voting) and CF1 (combining the decisions of multiple CF
detectors by one vote veto).

Other variants, including MF1, MFCF , and CFCF , cannot improve
the mislabeling detection performance in terms of classification
accuracy. However, they are useful for the mislabeling detection
applications wherein the costs of making an E1 and E2 error are
different. For example, if the cost of tagging a noise-free instance
as mislabeled instance (E1 error) is significantly higher than tag-
ging a mislabeled instance as noise-free instance (E2 error), then
MFCF and CFCF are the good candidates. Conversely if the cost of
E2 error is significantly higher than E1 error, then MF1 is the good
candidate.

There are several advantages with multiple-voting scheme. It is
straightforward to understand and implement. All the single-vot-
ing based methods can be easily extended to multiple-voting
scheme. There are few parameters involved in these new variants.
In addition, the efficiency of the proposed multiple-voting can be
easily improved by parallelizing each individual detectors. Finally,
it is easy to see that the proposed multiple-voting scheme is a gen-
eral method. In this work, it is proposed to handle the bioinfor-
matic mislabeling problem. But in essence, it can handle
mislabeling from any domains.
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