
Sensors 2015, 15, 21294-21314; doi:10.3390/s150921294 
 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Knowledge-Based Query Construction Using the CDSS 
Knowledge Base for Efficient Evidence Retrieval 

Muhammad Afzal 1, Maqbool Hussain 1,†, Taqdir Ali 1,†, Jamil Hussain 1,†, Wajahat Ali Khan 1,†, 

Sungyoung Lee 1,* and Byeong Ho Kang 2,† 

1 Department of Computer Engineering, Kyung Hee University, Seocheon-dong, Giheung-gu 

Yongin-si, Gyeonggi-do 446-701, Korea; E-Mails: muhammad.afzal@oslab.khu.ac.kr (M.A.); 

maqbool.hussain@oslab.khu.ac.kr (M.H.); taqdir.ali@oslab.khu.ac.kr (T.A.); 

jamil@oslab.khu.ac.kr (J.H.); wajahat.alikhan@oslab.khu.ac.kr (W.A.K.) 
2 Department of Computing and Information Systems, University of Tasmania, Hobart 7001, 

Australia; E-Mail: byeong.kang@utas.adu.au 

† These authors contributed equally to this work. 

* Author to whom correspondence should be addressed; E-Mail: sylee@oslab.khu.ac.kr;  

Tel.: +82-312-012-514; Fax: +82-312-022-520. 

Academic Editors: Jesús Fontecha and Paul Mccullagh 

Received: 13 May 2015 / Accepted: 25 August 2015 / Published: 28 August 2015 

 

Abstract: Finding appropriate evidence to support clinical practices is always challenging, 

and the construction of a query to retrieve such evidence is a fundamental step. Typically, 

evidence is found using manual or semi-automatic methods, which are time-consuming and 

sometimes make it difficult to construct knowledge-based complex queries. To overcome the 

difficulty in constructing knowledge-based complex queries, we utilized the knowledge base 

(KB) of the clinical decision support system (CDSS), which has the potential to provide 

sufficient contextual information. To automatically construct knowledge-based complex 

queries, we designed methods to parse rule structure in KB of CDSS in order to determine 

an executable path and extract the terms by parsing the control structures and logic 

connectives used in the logic. The automatically constructed knowledge-based complex 

queries were executed on the PubMed search service to evaluate the results on the reduction 

of retrieved citations with high relevance. The average number of citations was reduced from 

56,249 citations to 330 citations with the knowledge-based query construction approach, and 

relevance increased from 1 term to 6 terms on average. The ability to automatically retrieve 

relevant evidence maximizes efficiency for clinicians in terms of time, based on feedback 
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collected from clinicians. This approach is generally useful in evidence-based medicine, 

especially in ambient assisted living environments where automation is highly important. 

Keywords: automated query construction; knowledge-based queries; CDSS; Arden Syntax; 

medical logic modules 

 

1. Background and Introduction 

Evidence-based practice [1,2] has a long history, but evidence indicates that many opportunities to 

use research to inform health decision-making are currently being missed [3–5]. For any evidence-based 

system to efficiently work in a domain, the context of that domain plays a critical role. Context provides 

the features for query generation in order to approach relevant information. A clinical decision support 

system (CDSS) can be considered one of the potential sources to be employed for automatic query 

construction to retrieve research evidence from online resources. CDSSs are widely used around the 

world [6,7], and “Meaningful Use” regulations for electronic health records (EHR) [8] considered CDSS 

an essential feature of EHR. Every CDSS has at least two core components: the knowledge base (KB) 

and inference engine, where the KB is built using multiple approaches ranging from data-driven to 

expert-driven approaches. The strength of the KB is not determined from the generating approach  

per se, but rather from the effectiveness of how it is developed [9]. Clinical information needs are 

considerable, and diagnostic knowledge in KB of CDSS cannot provide all necessary descriptive details, 

which need to be supported with research evidence found in external resources. External resources  

are abundant, with more than 750,000 biomedical articles published in MEDLINE in 2014 [10]. 

To access the MEDLINE databases, different search engines have been developed, such as  

PubMed [11] and HubMed [12]. These engines provide instant access to biomedical literature; however, 

the retrieval set includes a massive amount of citations [13]. Also, these engines require queries to be 

manually written. In manual query creation, users with varied experience create queries and retrieve the 

results. PubMed supports keyword-based search using Boolean operators [14]; however, information 

needs cannot always be expressed in simple keywords, and sometimes, a question format is superior. 

The query strength is subject to the expertise of the creator. Queries by expert clinicians differ from 

those designed by inexperienced clinicians. Moreover, the structure of a query varies from one user to 

the next, which affects the results. 

In the clinical domain, some advances in information mining include Infobuttons, first defined by 

Cimino as information retrieval tools that automatically generate queries to e-resources using contextual 

information [15] and patient data from electronic medical records (EMR) [16–20]. The main focus of 

the Infobutton approach is to establish context-specific links to health information e-resources. 

Infobuttons are based on topic-based linkages to the e-resource from within the context of an EMR. The 

query topics are pre-specified, and the user only needs to click on a specific Infobutton placed next to 

the topic. The query is then generated from the terms associated with the chosen topic, and potential 

external e-resources are returned, such as UpToDate [21], MedlinePlus [22], PubMed, and others. 

SmartQuery [23] extracts patient data from electronic patient records and builds a query to provide 

context-sensitive links to relevant medical knowledge sources. The issue with using electronic patient 
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records for query construction is the lack of relationships among chosen terms. Recently, CDAPubMed [13] 

has proposed an extension to a Mozilla Firefox browser that semi-automatically generates queries from 

EHR and filters with relevant terms including MeSH terms. This tool utilizes the HL7 clinical document 

architecture (CDA) to identify relevant terms from different sections and generate a query accordingly. 

Both InfoButtons and CDAPubMed use electronic patient records to generate queries that are then 

further refined by the users. 

We address this issue by utilizing the CDSS KB instead of the electronic patient record in order to 

minimize user involvement during query construction. The CDSS KB imparts knowledge about patients 

in the form of rules including conditions (If part) and results (Then part), which allow the creation of 

knowledge-based queries covering both patient context and user objectives. Unlike conventional CDSS 

KBs, we tested the methods on a standard knowledge base of Smart CDSS encoded in a medical logic 

module (MLM) with Arden Syntax language [24]. Arden Syntax provides the opportunity to build a KB 

consisting of a set of units known as MLMs, each of which contains sufficient logic for at least one 

medical decision [25]. Arden Syntax is a recognized standard for representing clinical knowledge that is 

both understandable by humans and interpretable by systems and is used for alerts and recommendations 

in clinical decision support. The Arden Syntax baseline was established in 1992 by the American Society 

for Testing and Materials and was adapted later in 1999 by HL7. It provides a standard base format that 

resembles natural language which make it easier to understand for non-experts [24]. 

Previously, we worked on evidence support for Smart CDSS [26] by designing KnowledgeButton [27], 

a model for evidence monitoring and adaptation from online knowledge resources in the context of 

CDSS. It is now integrated with Smart CDSS in the domain of head and neck cancer and includes four 

key components of query management, communication management, evidence management, and rule 

management. This paper focuses on the query management part of KnowledgeButton in order to generate 

knowledge-based queries from the knowledge slot of MLMs. 

This paper is organized as follows. Section 2 presents the role of evidence support in ambient assisted 

home care environment. Section 3 describes the methods for query construction. Section 4 presents the 

evidence-supported treatment recommendation scenario with experimental results and evaluation. 

Section 5 presents a case study of evidence-supported medication recommendation in ambient assisted 

home care environment. Section 6 discusses the findings and limitation of the work, and Section 7 

concludes the work. 

2. Evidence Support in Ambient Assisted Living 

Ambient intelligence and ubiquitous computing technologies are driving the swift evolution of 

concepts, principles, architectures and techniques in decision support environments [28]. Decisions are 

derived from situations, and situations require confidence in implementing decisions. The prime source 

for confidence in these critical situations is the availability of evidence at the point of decision.  

Evidence-support services help with ambient intelligence in smart environments for employing quality 

decision-making to improve the life care of the users. This includes resolving the challenges in the 

ambient assisted ubiquitous environments, which become a real challenge for the implementers due to 

consideration of multiple factors induced by the multi-model sensors with context-aware environment. 

As described in Figure 1, the caregiver (nurse) is taking care of chronic disease patients monitored 



Sensors 2015, 15 21297 

 

 

through sensors, and the recommendations are generated automatically by the CDSS. The 

recommendations are reviewed by the nurse and sent to the physicians for approval prior to action. The 

recommendations are supported with evidence retrieved from online credible resources triggered at  

two levels: 

• Caregiver fails to receive a response from physicians in a specific time period; he/she consults 

relevant evidence to make sure that the recommendations are appropriate in the current situation. 

• Physician monitors the evidence support related to a particular recommendation for confidence 

building and to consolidate the decision process. 

 

Figure 1. Evidence supported CDSS recommendation service for chronic disease patients in 

ambient assisted home care environment. 

Figure 1 shows the scenario for evidence support by implementing automated construction of 

knowledge-based complex queries using the patient information in knowledge-based rules. By 

knowledge-based complex queries we mean queries that consist of one or more concepts extracted from 

the knowledge rules of CDSS. We collected information of chronic disease patient that includes head 

and neck cancer and dementia. Two application scenarios are described in this paper based on these two 

types of chronic diseases; 

(1) Evidence-supported treatment recommendation service for chronic disease (head neck  

cancer patients) 

(2) Evidence-supported medication recommendation service for chronic disease  

(dementia patients) 

The empirical results of the proposed idea are based on the experiments performed using clinical rules 

and a gold standard corpus of annotated documents for the scenario of head and neck cancer. In the same 

way, the second scenario is described with a case study presenting a detailed workflow for integrating 

evidence support for managing medication of patient in a home health environment. 
  



Sensors 2015, 15 21298 

 

 

3. HL7 Arden Syntax and Medical Logic Module 

HL7 Arden Syntax is an open standard of medical knowledge representation where the medical 

knowledge is represented in the form of modular logic unit called a Medical Logic Module (MLMs) 

which is sharable across the organization [29]. HL7 Arden Syntax specifies the knowledge in the form 

of independent rules, formulas, or protocols in an amenable set of MLMs. An MLM is group of slots 

organized into three main categories and one optional category: maintenance, library, knowledge, and 

resources (optional). 

 

Figure 2. Sample MLM for oral cavity cancer with highlighted “logic” slot in the  

knowledge category. 

The “maintenance” category includes sub-slots used for maintenance and change control such as 

“MLM title”, “author”, “Arden Syntax version” and other related information. The “library” contains 

sub-slots that help in searching through the knowledge base of MLMs such as “purpose”, “keywords”, 

and “citations”. The “knowledge” specifies the intention of what the MLM does. Its sub-slots include a 

“data” slot, “evoke” slot, “logic” slot, and “action” slot. The “resource” is an optional category that 

contains a set of slots to support localize messages of recommendations in different languages. Detail 
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specifications with the current version 2.10 of HL7 Arden Syntax are available in the HL7 Arden Syntax 

working group repository [30]. 

Among MLM categories, the “knowledge” category is more relevant to this work. In the knowledge 

category, the more important slot is “logic” that provides sufficient knowledge to construct  

knowledge-based queries for evidentiary support. The general approach in the logic slot is to use the 

operators and expressions to manipulate the patient data obtained in the data slot in order to test for some 

condition in the patient. It mainly consists of control structures such as conditional structure  

“if-then, if-else-then, etc.”, selective structure “switch”, loop structure “for, while, etc.”, assignment 

statements, call statements and others. The information in the logic slot is connected through different 

operators such as comparison operators to compare a concept with its values. A sample MLM is partially 

depicted in Figure 2, where the logic slot of knowledge category is highlighted. In this sample MLM, 

some of the control structures such as “if-then”, “elseIf-then”, “if-else-then” are used. Also, there is a 

comparison operator “=” and call statement “call: submlm1”. In the Methods section, we described the 

process of parsing the control structures and operators. 

4. Methods 

The knowledge-based query construction proposed here and illustrated in Figure 3 uses CDSS 

knowledge rules. The process is activated when CDSS is triggered to generate some output, which is 

used as the input to the query construction process. The rule retrieval function retrieves all the rules 

(MLMs) that were used in the decision. The CDSS output message is used as the input to determine the 

exact location in the MLM logic slot at which parsing must begin. Parsing includes two functions, control 

structure parsing and operator parsing. The logic slot of an MLM has multiple alternative paths because 

it has different conditional structures as explained in Section 3; however, for a given decision, only one 

logical path should be utilized. 

 

Figure 3. Knowledge-based query construction using CDSS rules. 
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4.1. Structure Parsing 

In this step, the control structures used in the identified section are parsed. According to Arden Syntax, 

a number of variations of If-Then statements are used in the logic slot, such as Simple If-Then statement, 

If-Then-Else statement, If-Then-Elseif statement, Switch statement, Call statement, and others. Each of 

these statements is parsed according to the methods described below. 

• Simple If-Then statement: The parsing process divides such statements into two sentences, the 

If sentence and the Then sentence. The concepts found in the If sentence are recognized as 

condition concepts, and concepts in the Then part are recognized as decision concepts.  

(See parsing example in Table 1(A)); 

• If-Then-Else statement: Such statements are parsed into three sentences. If a condition is satisfied 

in the If part, then the parsing is like a Simple If-Then statement. However, if a recommendation 

is found in the Else part, then the associated concepts are considered to be decision concepts, 

while the condition concepts in the If part are negated. (See parsing example in Table 1(B)); 

• If-Then-Elseif statement: Unless it is a last Else part, such statements are treated similar to a 

simple If-Then statement, with Elseif similar to If. The last Else part is handled similar to an  

If-Then-Else statement by considering Elseif as similar to If. For simplicity and to avoid multiple 

negations due to more than one ElseIf statement, we scoped the parsing to include immediate 

Elseif only. (See parsing example in Table 1(C)); 

• Nested If-Then statements: Sometimes an If statement occurs inside another If statement. In such 

cases, we consider the inner and outer statements as two conditions. For example, if a Simple  

If-Then statement occurs in another Simple If-Then statement, it is parsed into three sentences, 

If, If, and Then. Concepts in both if sentences are included in condition concepts, while concepts 

of the then sentence are included in decision concepts. (See parsing example in Table 1(D)); 

• Switch statement: The only case involving recommendation is the required segment where the 

concept value of case is considered as a condition, while the concepts in the body of that case 

are considered decisions. (See parsing example in Table 1(E)); 

• Call statement: If a decision originates from the sub MLM, then the sub MLM is first parsed in 

reference to caller MLM through the ID. The executed paths of both caller and called MLMs are 

concatenated into one path, and the conditions are connected to each other accordingly. (See 

parsing example in Table 1(F)). 

Table 1. Control Structure Parsing Examples. 

Control Structure Parsing Examples 

A 

IF (C = “v1”) THEN 
Condition sentence: C = “v1” 

D = “d1” 
Output: “d1 is recommended” 

Decision sentence: D = “d1” 
END IF 
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Table 1. Cont. 

Control Structure Parsing Examples 

B 

IF (C = “v1”) THEN For CDSS output “d1 is recommended”: 
D = “d1” Condition sentence: C = “v1” 
Output: “d1 is recommended” Decision sentence: D = “d1” 
ELSE For CDSS output “d2 is recommended”: 
D = “d2” Condition sentence: C != “v1” 
Output = “d2 is recommended” Where “!” represents the negation (not). 
END IF Decision sentence: D: d2 

C 

IF (C = “vl”) THEN For CDSS output “d1 is recommended”: 
D = “d1” Condition sentence: C = “v1” 
Output: “d1 is recommended” Decision sentence: D = “d1” 
ELSEIF (C in (“v2”, “v3”)) THEN For CDSS output “d2 is recommended”: 
D = “d2” Condition sentence: C in (“v2”, “v3”) 
Output: “d2 is recommended” Decision sentence: D = “d2” 
ELSEIF (C = “v3”) THEN For CDSS Output “d3 is recommended” 
D = “d3” Condition sentence: C = “v3” 
Output = “d3 is recommended” Decision sentence: D = “d3” 
ELSE For CDSS output “d4 is recommended” 
D = “d4” Condition sentence: C != “v3” 
Output = “d4 is recommended” Decision sentence: D = “d4” 
END IF  

D 

IF (C1 = “v1”) THEN 
Condition sentence: C = “v1” AND C2 = “v2” IF (C2 != “v2”) THEN 

D = “d1” 
Output = “d1 is recommended” 

Decision sentence: D = “d1” END IF 
END IF 

E 

Switch C For CDSS output “d1” is recommended: 
case v1 Condition sentence: C = “v1” 
D = “d1” Decision sentence: D = “d1” 
Output = “d1 is recommended” For CDSS output “d2 is recommended: 
case v2 Condition sentence: C = “v2” 
D = “d2” Decision sentence: D = “d2” 
Output = “d2 is recommended”  
EndSwitch  

F 

IF (C1 = “v1”) THEN 

Condition sentence: C1 = “v1” AND C2 = “v2”
Call subMLM1 
END IF 
subMLM 
IF (C2 = “v2”) THEN 

Decision sentence: D = “d2” 
D = “d2” 
Output: “d2 is recommended” 
END IF 
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4.2. Operator Parsing and Concept Extraction 

Operator parsing is the next step after structure parsing. In Arden Syntax, there is a pool of operators. 

For this work, we only parse the commonly used operators such as “or,” “and,” “=,” “eq,” “is,” “is not 

equal,” “<>,” “ne,” “is in,” and “in.” The operators “=,” “eq,” and “is” are all parsed as equivalent to 

“=.” Similarly, “is not equal,” “<>,” and “ne” are parsed as equivalent to the “!=” operator. The binary 

operators “is in” and “in” are parsed by including OR among the operands. Finally, the logical operators 

“and,” “or,” and “not” are parsed in the same order in which they occurred. The logical operator “not” 

has a key role in excluding the undesired elements from the retrieval set. Based on operator parsing, 

concepts are extracted as operands of the parsed operators for query construction. 

4.3. Query Construction 

Structure parsing involves the use of two lists of concepts, condition concepts and decision concepts, 

which are interrelated based on the operators. Operator parsing tracks how the concepts are interrelated. 

In the extraction phase, the concepts are extracted along with location information with respect to 

operators and structures. Query construction utilizes this tracking to connect the concepts to each other 

in order to construct the final query. Three types of queries can be made from the final query:  

condition-based queries, decision-based queries, and combined queries. Condition queries are 

constructed from the condition concepts, decision queries consist of only decision concepts, and 

combined queries combine the condition and decision concepts. Each category has its own objective, 

with advantages and disadvantages. The scope of the proposed work in this paper is limited to combined 

query construction and evaluation as it involves more information than other two individual types. More 

formally, the query construction process can be described in Table 2. 

Table 2. Formal representation of query construction. 	 , , 	 	 , 	 ,  c ∶ 	 	Condition	(power	set	of	condition	concepts) d ∶ 	 	Decision	(power	set	of	decision	concepts)  q ∶ 	 	  decisionPath ∶ 	c	 → d			(decisionPath	is	function	of	mapping	condtion	concepts	into	decision	concepts) R = 	decisionPath	(Rule	R	is	the	set	of	decisionPath)  KB = 	R	(Knowledge	Base	KB	is	the	set	of	rules) er = 	R	(er	represents	the	set	of	executed	rules)	  executedDecisionPath ∶ decisionPath	 ( ℎ ℎ ℎ 	 ) 
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Table 2. Cont. er	 ⊂   ℎ		
: = ∶ ℎ;	∃ , 	 	|	( 	 ∪ 	 ) ↦ 	 ⇒		 = 	∅ ∧ 	 	⊂ 	 ( 	 ∪ 	 ) ∙	 = ( 	 ∪ 	 ) 	∧ ( 	 = 	 )  

	α	 ∷= 	 	〈 	 	 ℎ〉	|		〈 	 	 ℎ〉	 |〈 	 	 ℎ〉	 			 ∷= 	 	 	 ℎ = 	α	 	β  

4.4. Query Execution 

The constructed query is passed to a URL generator function to generate the URL according to Entrez 

API for the PubMed search service called Entrez Programming Utilities (eUtils) [31]. The eUtils provide 

a stable interface to the Entrez query and database system, including 23 databases on a variety of 

biomedical data. To access these data, a piece of software first posts the eUtils URL to the database in 

order to retrieve the results. Using eUtils, we build a PubMed URL consisting of a “Base URL” and user 

query. We also employ the automatic term mapping (ATM) process provided by PubMed [32]. ATM 

uses translation via MeSH for indexing and searching of the MEDLINE database of journal citations. A 

neglected term in the query is added to the MeSH term of the original query in order to access the MeSH 

field of MEDLINE documents. We implement three server functions of eUtils: ePost, eSearch, and 

eFetch. Using an ePost method, we create our own data set on the PubMed database. The eSearch method 

searches the relevant documents from the data set. Finally, using eFetch, the meta-information of each 

retrieved document is extracted, including title, author, journal name, publication year, identifier, and 

the link to the source document. These functions work in a sequence by using the output of one function 

as the input for another function. Figure 4 describes the step by step process of different functions 

involved in the query execution method in the form of asequence diagram. 

5. Treatment Recommendation Service Scenario: Results and Evaluation 

The proposed method was tested by applying the knowledge base of Smart CDSS [26,33] to the oral 

cavity site within the head and neck cancer domain. The knowledge base for the oral cavity site 

considered for this consists of four MLMs based on a calling mechanism consisting of a sub-MLM 

approach invoked by the Root MLM. The structure of these MLMs with embodied logic slots is shown 

in Figure 5 and starts with the Root MLM, followed by “subMLM1,” “subMLM2,” and “subMLM3.” 

Based on the methodology described in Section 3, the query is constructed from the concepts in the 

executed logic slot in MLM. Parsing the structure of MLMs according to potential output, 9 outputs 

were extracted, the structures of which are highlighted in red in Figure 5. Based on these outputs, 

corresponding queries are generated as shown in Table 3. The queries consists of concepts (highlighted 

bold in Figure 5) extracted from MLMs and are connected with logical operators according to the logic 

in the executed path. 
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Figure 4. Sequence diagram of eUtils API functions (ePost, eSearch, and eFetch) used as a 

part of the query execution function for creation of meta-data associated with evidence. 

 

Figure 5. Selected MLMs for the oral cavity site of head and neck cancer embodied with 

Logic Slots. 

Query
Construction

PubMed
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EvidenceSummary

eSearchRequest

eFetchRequest

LocalDatabase

ePostRequest
createePostRequest(PMIDs) :
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runePost(ePostRequestObj)
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searchEvidence(query)
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runeSearch(eSRequestObj)
:eSResultObj
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runeFetch(dFRequestObj) :
eFResultObj

createEvidenceSummary() :evidenceSummaryObj

prepareEvidenceSummary(eFResultObj)

persistEvidenceSummary(evidenceSummaryObj)
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From the constructed set of queries, we performed experiments on five queries from Table 3 (Q2, Q3, 

Q4, Q6, and Q8), executed them on a PubMed browser with default setting. We noted a considerable 

reduction in the resulting citations for knowledge-based constructed queries compared to simple queries, 

as shown in Figure 6. Simple queries consist of the terms that are used in CDSS output. For instance in 

Q3 of Table 2, “Surgery” and “Radiotherapy” are the two terms to use in the formation of a simple query. 

The retrieval set was reduced on average from 56,249 citations to 330 citations. The logical operator 

“NOT” used in Q9 (Table 3) is derived from SubMLM3 (Figure 5) and has reduced the retrieval set of 

1616 documents to just 26 documents by excluding all undesired documents, which indicates its role is 

crucial to consider while generating the automated query. 

Table 3. Contents of queries constructed from the executed paths in KB of CDSS outputs. 

No CDSS Output 
MLM 

Reference 
Constructed Queries 

Q1 Radiotherapy RootMLM Palliative AND Radiotherapy 

Q2 
Induction 

chemotherapy 
RootMLM Radical and Induction Chemotherapy 

Q3 
Surgery, 

radiotherapy 
SubMLM1 

Radical AND Chemotherapy AND ((T1 OR T2) AND (N1)) AND 
Surgery AND Radiotherapy  

Q4 
Surgery, combined 

chemotherapy 
radiation therapy 

SubMLM1 
Radical AND Chemotherapy AND ((T1 OR T2) AND (N1)) AND 
Combined chemotherapy radiation therapy 

Q5 Surgery SubMLM2 
Radical AND Chemotherapy AND ((T1 OR T2) AND (N0))  
AND Surgery 

Q6 
Radiotherapy, 

follow-up 
SubMLM2 

Radical AND Chemotherapy AND ((T1 OR T2) AND (N0)) AND 
Clinical stage I and Radiotherapy and follow up 

Q7 Radiotherapy SubMLM2 
Radical AND Chemotherapy AND ((T1 OR T2) AND (N0)) AND 
Clinical stage II and Radiotherapy 

Q8 
Combined 

chemotherapy 
radiation therapy 

SubMLM3 

Radical AND Chemotherapy AND (T3 AND N1 ) OR ((T1 OR T2) 
AND (N2 OR N3 )) OR (T3 AND (N1 OR N2 OR N3)) OR (T4) 
AND (Squamous cell carcinoma OR Small cell carcinoma OR 
Carcinoma, no subtype) AND Combined chemotherapy  
radiation therapy 

Q9 
Surgery, 

radiotherapy 
SubMLM3 

Radical AND Chemotherapy AND (T3 AND N1 ) OR ((T1 OR T2) 
AND (N2 OR N3 )) OR (T3 AND (N1 OR N2 OR N3) ) OR (T4) 
AND (Adenocarcinoma, no subtype OR Adenoid cystic carcinoma 
OR Basal cell carcinoma OR Pleomorphic adenoma OR Spindle 
cell carcinoma OR Ameloblastoma, malignant) NOT (Squamous 
cell carcinoma OR Small cell carcinoma OR Carcinoma, no 
subtype) AND Surgery AND Radiotherapy 
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Figure 6. Retrieval set reduction with knowledge-based constructed query compared to 

simple query. 

The results in Figure 7 shows the terms used in the initial query retrieval set of citations at the upper 

part. The knowledge-based Query Manager of KnowledgeButton adds more terms extracted from the 

knowledge rules involved in the CDSS decision. The final knowledge-based queries reduced the retrieval 

set considerably as shown in the lower part of Figure 7. 

 

Figure 7. Number of citations is reduced with increased relevance using a knowledge-based 

query construction mechanism. 

The same set of queries used in Figure 7 is counted for relevancy with gold standard documents in 

order to find the number of documents correctly identified or erroneously omitted by the system. We 
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collected a document set of 131 documents as a gold standard corpus in the head and neck cancer domain 

with the support of two resident doctors. The gold standard documents are generally related to the head 

and neck cancer domain without any further classification. We ran the two set queries, simple queries 

and knowledge-based complex queries, on PubMed search service and matched the results with gold 

standard documents. The results are evaluated based on the following criteria: =	 ( 	 ∩ 	 )	 ( )  

=	 ( 	 ∩ 	 )
 1	 = 2 × ×+  

As shown in Table 4, precision for knowledge-based queries out-performed the simple queries, but 

recall for simple queries is shown to be slightly higher than for knowledge-based queries. In terms of 

overall results, as evident from the F1 score values, the knowledge-based queries showed improved 

performance and presented the lowest number of documents with a slight compromise on not retrieving 

some of the relevant documents. On average, the precision of knowledge-based queries is improved by 

98.01% at the cost of decreasing recall by only 48.51%. The recall value can be improved by selecting 

the gold standard set against each query precisely. Also, it can be increased by expansion strategies such 

as synonyms and variants. We have presented some of these methods in our paper [34]. 

Table 4. Recall, precision, and F1 measure for knowledge-based queries in comparison to 

simple queries. 

Query No. Query Type Recall (%) Precision (%) F1 Measure (%) 

Q2 
Simple Query 27.48 0.13 0.38 

Knowledge-based 18.32 3.44 10.33 

Q3 
Simple Query 41.22 0.04 0.13 

Knowledge-based 18.32 4.94 14.81 

Q4 
Simple Query 26.72 0.12 0.37 

Knowledge-based 17.56 9.62 28.87 

Q6 
Simple Query 41.22 0.10 0.31 

Knowledge-based 19.08 4.36 13.07 

Q8 
Simple Query 42.75 0.11 0.32 

Knowledge-based 19.08 2.67 8.02 

The proposed method was implemented as a part of Smart CDSS integrated with in-house build 

hospital information system [35] for testing, and the user interface is as described in Figure 8 for users 

to access the retrieved citations and appraise them as evidence. The documents are then ranked, and the 

system generates meta-information on ranked documents to store them locally according to knowledge 

rules. In the future, if the same output from CDSS is generated, the system populates the meta-information 

from the local repository and retrieves new evidence from the last search. This integrated environment 

reduces clinical practice time spent unnecessarily on searching in dis-integrated environments. 
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Figure 8. Query result integration with Smart CDSS through KnowledgeButton. 

Automatic query construction saved considerable time compared to manual query construction. An 

expert clinician can write an average query in around 1 to 2 min excluding the switching time. To 

measure the time quantitatively, we performed experiments to determine the time needed to manually 

write three types of queries with simple (consisting of <3 terms), average (consisting of between 4 and 

8 terms), and complex (consisting of >8 terms) queries. The experiment was performed with two kinds 

of users, expert and average. An expert has good domain knowledge and adequate skill in typing, while 

an average user possesses average domain knowledge and adequate typing skill. We executed the 

experiment by printing the corresponding queries on paper, opened the PubMed browser to design the 

query, and recorded the time spent. As shown in Figure 9, the average expert user spent 1.3 min on query 

construction, while the average user spent 1.5 min. During the experiment, we ignored the mistakes made 

during writing. The proposed automated query generation has improved performance time by 45.24%. 

A short user satisfaction survey was administered to assess the usability of the proposed approach. 

The survey included three elements: (i) usefulness of integrated approach; (ii) query content; and  

(iii) relevance. The tasks are evaluated from five clinicians (one consultant, two resident doctors, and 

two nurses in the oncology domain). The usefulness of an integrated approach was evaluated in 

comparison to the PubMed browser. Query content was evaluated based on the terms and operators 

included in the query, and relevance was measured based on the results returned by executing the queries. 

The impression criterion was rated from very negative to very positive and scored from 1 to 5, 

respectively, as shown in Table 5. 
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Figure 9. Manual query writing time in minutes for expert and average users. 

Table 5. User satisfaction based on overall impression for each task with the proposed 

approach (1= very negative, 5 = very positive). 

Task Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 

Usefulness of approach 4 5 3 5 4 
Query content 5 4 4 3 4 

Relevance of results 4 3 2 4 5 

6. Evidence Support Services in Ambient Assisted Ubiquitous Environment: A Case Study 

To elaborate the utilization of evidence support services in smart environments, we redesigned the 

workflows in our previous work [26] to support patient medication management in a multi-model sensor 

home environment for dementia disease patients. In existing work, Smart CDSS was integrated  

as a recommendation service in a smart home environment where patients are monitored using  

different sensors. 

As shown in Figure 10, the workflow is categorized into different pools such as home health care, 

patient activities, care giver environment, recommendation, and physician setup. We enhanced the pool 

set by adding two additional pools, i.e., evidence support and online resources, in addition to partial 

changes in existing pools such as physician setup and caregiver environment (changed/enhanced parts 

are shown in light green color in Figure 10). The detailed descriptions of existing pools are provided  

in [26]; here we explain only the changed/extended parts with respect to evidence support that involves 

the process of automatic query construction. 

Case 1: 

• When the caregiver receives the recommendation generated by Smart CDSS, he/she forwards 

the information to physicians for approval. 

• In normal scenarios, physicians either approve or do not approve the decision made by the 

system. The caregiver follows the instructions provided by the physician accordingly. 

• Sometimes the physician fails to provide any response within a specific time. In such a case, the 

caregiver checks the criticality of recommended medication and seeks to retrieve evidence that 
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supports the current clinical situation by activating the KButton (KnowledgeButton) Adapter in 

the evidence support pool. 

• In the evidence support pool, the knowledge-based query manager creates a query automatically 

from the terms/concepts used in the rules involved in generating the recommendation. 

• The query is passed to the evidence manger to retrieve relevant evidence from online resources 

through the use of the PubMed eUtils API. 

• The retrieved evidence is presented to the caregiver for to build confidence in deciding  

on mediation. 

 

Figure 10. Evidence-supported medication recommendation service workflow represented in 

Business Process Model and Notation process model where the set of activities is represented 

as a pool using Enterprise Architect. 

Case 2: 

• When the recommendation is sent for approval, the physician usually makes a decision based on 

his or her knowledge and experience; however, sometimes physicians need to verify their 

knowledge with the work of other experts and researchers. 

• In such a case, the physician also activates the KButton (KnowledgeButton) Adapter in the 

evidence support pool. 

• The physician examines the evidence (if any) and then proceeds with approval of the 

recommendation or may suggest alternatives. 
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7. Discussion 

This work is performed in the context of CDSS to provide clinicians with facility of retrieving relevant 

evidences from external resources. We particularly focused on automatic construction of queries using 

the complex structure of MLM in Arden Syntax. Clinicians who evaluated the prototype were 

enthusiastic, but they highlighted an important aspect of such a system regarding consistency in retrieval 

efficiency in terms of relevancy. The approach proposed in this paper is different from existing 

approaches [13,23,36,37] with regard to the source from which the query is constructed. Some of the 

existing systems utilize documents as a training set for query construction, and others use patient records. 

For instance, Infobuttons operates on pre-specified query topics associated with important terms in the 

electronic medical record. In our approach, the query is automatically created from the terms used  

in knowledge rules that participate in the CDSS decision. We utilized the standard but complex  

structure of MLM to automatically construct queries. This work improves the effectiveness of clinical  

knowledge-based systems by coupling with external resources. 

The proposed work introduced a novel approach to knowledge-based complex query construction 

using the diagnostic knowledge in CDSS to retrieve research-based evidence from online resources. 

Diagnostic knowledge alone is not sufficient to satisfy CDSS users, who expect ample details to support 

a decision. For example, a clinical-stage attribute used in a condition part of the rule together with other 

condition attributes produces a decision, but details such as tumors and nodes may be missing. Our 

hypothesis is that fine-grained details of the missing attributes might be found in credible external 

resources. If such resources are used as support for the rules used in diagnostic knowledge, practitioners 

will be able to retrieve detailed, readily available knowledge. 

The proposed work has a few limitations, e.g., the “structure parsing” method is unable to parse all 

the control structures, such as the “loop control structure”. It also does not parse all the operators of HL7 

Arden Syntax such as “string operators” or “aggregate operators” for query construction. We included 

the most important and usable logical operators, but as an extension of this work it would be necessary 

to investigate other operators as well as control structures of Arden Syntax. The overall impression of 

users was recorded on initial implementation and needs to be re-evaluated after using the system in 

multiple sessions to satisfy different clinical questions. 

8. Conclusions 

Automatic construction of knowledge-based complex queries is an important task needed to reduce 

clinical time in the context of evidence-based practice. The proposed work describes the methodology 

of automatic query construction using the control structure and operator parsing of Arden Syntax medical 

logic modules. Adding context from knowledge rules maximizes the relevance while reducing the 

number of retrieved citations as inferred from the experiments. Our results show higher precision and 

F1 score for all tested queries. On average, the F1 measure of knowledge-based queries is improved by 

97.01%. Similarly, the proposed work of automated query generation has improved time performance 

by 45.2%. The proposed work bridges the gap in clinical practice by integrating the diagnostic 

knowledge of the clinical decision support system with research evidence through automation of the 

construction of knowledge-based queries. 
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Our plan for future study is to improve retrieval performance by including semantic similarity 

methods and concrete appraisal of retrieved documents. Also, we will focus on enhancing the parsing of 

Arden Syntax control structures and operators for query generation. 
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