
RESEARCH ARTICLE

MRPack: Multi-Algorithm Execution Using
Compute-Intensive Approach in MapReduce
Muhammad Idris1☯, Shujaat Hussain1☯, Muhammad Hameed Siddiqi1☯,
WaseemHassan2☯, Hafiz Syed Muhammad Bilal1☯, Sungyoung Lee1☯*

1Ubiquitous Computing Lab., Department of Computer Engineering, Kyung Hee University, Yongin-si,
Gyeonggi-do, Republic of Korea, 2 Haptics Lab., Department of Computer Engineering, Kyung Hee
University, Yongin-si, Gyeonggi-do, Republic of Korea

☯ These authors contributed equally to this work.
* sylee@oslab.khu.ac.kr

Abstract
Large quantities of data have been generated from multiple sources at exponential rates in

the last few years. These data are generated at high velocity as real time and streaming

data in variety of formats. These characteristics give rise to challenges in its modeling, com-

putation, and processing. Hadoop MapReduce (MR) is a well known data-intensive distrib-

uted processing framework using the distributed file system (DFS) for Big Data. Current

implementations of MR only support execution of a single algorithm in the entire Hadoop

cluster. In this paper, we propose MapReducePack (MRPack), a variation of MR that sup-

ports execution of a set of related algorithms in a single MR job. We exploit the computa-

tional capability of a cluster by increasing the compute-intensiveness of MapReduce while

maintaining its data-intensive approach. It uses the available computing resources by

dynamically managing the task assignment and intermediate data. Intermediate data from

multiple algorithms are managed using multi-key and skew mitigation strategies. The perfor-

mance study of the proposed system shows that it is time, I/O, and memory efficient com-

pared to the default MapReduce. The proposed approach reduces the execution time by

200% with an approximate 50% decrease in I/O cost. Complexity and qualitative results

analysis shows significant performance improvement.

Introduction
The exponential growth in the amount of data generated during the last few years have greatly
changed ideas about the value, management, and expertise of such data [1]. As of 2012, about
2.5 exabyte data are created each day, and this doubles about every three years. The current
amount of data generated each second is more than all of the collective data from the previous
20 years. In 2011, the human digital universe contained 1.7 Zbytes, and this dataset is expected
to increase by almost five times by 2015 (7.9 Zbytes) [2]. Similarly, the speed of data generation
is more important than its volume. Real-time or nearly real-time data streaming [3, 4] makes a
system more agile. Big Data sources generate data in various formats such as images, audio,

PLOSONE | DOI:10.1371/journal.pone.0136259 August 25, 2015 1 / 18

a11111

OPEN ACCESS

Citation: Idris M, Hussain S, Siddiqi MH, Hassan W,
Syed Muhammad Bilal H, Lee S (2015) MRPack:
Multi-Algorithm Execution Using Compute-Intensive
Approach in MapReduce. PLoS ONE 10(8):
e0136259. doi:10.1371/journal.pone.0136259

Editor: Christophe Antoniewski, CNRS UMR7622 &
University Paris 6 Pierre-et-Marie-Curie, FRANCE

Received: March 24, 2015

Accepted: August 3, 2015

Published: August 25, 2015

Copyright: © 2015 Idris et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Data were obtained
from third parties, and are available from the
Canadian government public dataset and Reuters
public dataset (also mentioned in the paper). The
URLs for the datasets are: 1. http://mldata.org/
repository/data/; 2. http://kdd.ics.uci.edu/summary.
data.type.html; 3. http://open.canada.ca/data/en/
dataset?keywords = census+of+population&catalog_
type=Data+%7C+Donnes.

Funding: This work was supported by the National
Research Foundation of Korea (NRF) grant funded
by the Korea government (MEST) (No. 2011-
0030823) and a grant from Kyung Hee University

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0136259&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://mldata.org/repository/data/
http://mldata.org/repository/data/
http://kdd.ics.uci.edu/summary.data.type.html
http://kdd.ics.uci.edu/summary.data.type.html
http://open.canada.ca/data/en/dataset?keywords�=�census+of+population&catalog_type=Data+%7C+Donnes
http://open.canada.ca/data/en/dataset?keywords�=�census+of+population&catalog_type=Data+%7C+Donnes
http://open.canada.ca/data/en/dataset?keywords�=�census+of+population&catalog_type=Data+%7C+Donnes


GPS signals, text, sensory data, and huge amount of social network information. Thus the con-
ventional storage, processing, and modeling technologies such as RDBMS, and linear program-
ming techniques are ill-suited for Big Data. Requirements for the hay stack of data processing
and management in effective time and computational cost have made the data-intensive
approach economical.

Data-intensive approaches tend to process the data “in-place” and broadcast the final or
intermediate results. Many data-intensive approaches exist for Big Data; but Apache Hadoop is
one of the best-known data-intensive frameworks. Hadoop is an open source implementation
of Google’s MapReduce [5], which processes data in the distributed file system (HDFS). The
MapReduce algorithm can write applications in a high level programming model and hide the
details of a working program in a cloud (which has many clusters) of commodity hardware. It
functions in two phases map and reduce. However, MapReduce has a limitation of running sin-
gle algorithm on distributed data in parallel [6] as a single job for data intensive [7] applica-
tions. Due to this limitation, the whole cluster is engaged in processing a single algorithm as a
batch process.

In compute-intensive applications, extensive computation on shared data and message pass-
ing between workers takes place in a highly coupled environment (e.g., image processing and
weather information processing using high performance computing (HPC)). Optimization
techniques in MapReduce try to maximize the use of computation resources and reduce I/O
operations. In an effort to combine data-intensive solutions with compute-intensive solutions,
we proposeMRPack. Our motivation is to execute multiple algorithms on the same distributed
data in a single MapReduce job rather than a single cluster. A motivational example would be
predictive analysis where the same dataset will be used to train multiple statistical models such
as the linear model (LM), generalized linear model (GLM), and auto-regressive integrated
moving average (ARIMA); different computations will be performed on the same dataset or
data split. This technique is time-, communication-, and memory-efficient.

The main contribution includes design and development of a variant of the MapReduce
algorithm while extending the generic MapReduce approach to incorporate compute-inten-
siveness with improved performance and efficiency. Compute-intensiveness is ramped up in
MapReduce by changing the implementation of mappers and reducers. In this approach, a sin-
gle map and reduce worker executes mappers and reducers of all included algorithms in a job.
To differentiate between intermediate data of various algorithms, a generic hierarchical and
composite key structure is defined. A data skew mitigation strategy is adapted to avoid data
skew and long-reducers processing. Prereducer sorting and combining is defined based on
algorithmic keys and each algorithm output is generated as the output of a separate reducer.

The proposed approach improves performance using the following factors: decreasing map
input (Read) by reading in a single main mapper function, and (Write) using a single main
reducer function, custom data partitioning, and algorithmic key-based skew mitigation. The
proposed solution shows (2x) performance improvement compared to Generic MapReduce in
I/O communication.

RelatedWork
Gartner espoused a view of Big Data as having three basic dimensions: volume, variety, and
velocity. The International Data Corporation (IDC) holds that “Big Data technologies describe
a new generation of technologies and architectures designed to economically extract value
from very large volumes of a wide variety of data, by enabling high-velocity, capture, discovery,
and/or analysis” [8]. Considering these and many other aspects such as veracity and complex-
ity of data, many Big Data processing frameworks have been developed and adapted [9, 10].

MRPack

PLOS ONE | DOI:10.1371/journal.pone.0136259 August 25, 2015 2 / 18

2013 (KHU-20130438). This work was also
supported by the Industrial Core Technology
Development Program (10049079, Development of
Mining core technology exploiting personal big data)
funded by the Ministry of Trade, Industry and Energy
(MOTIE, Korea).

Competing Interests: The authors have declared
that no competing interests exist.



Hadoop is a well-known open-source Big Data framework developed by Apache [5, 11]
inspired from Google’s File System (GFS) and initially adapted by Yahoo [12]. This framework
was designed to process large variety datasets (Big Data) and it used distributed file system
(HDFS) as storage layer and MapReduce as its processing layer. Hadoop is well-known for its
data-intensive approach of data processing using MapReduce.

In Big Data research, an operating environment consisting of homogeneous nodes, out-
performs a heterogeneous cluster unless a robust technique is developed to deal with node het-
erogeneity. Amazon Elastic Cloud (EC2) [13] is an example of a heterogeneous cluster that
consists of virtual machines with different configurations on possibly different physical
machines. Many solutions have been presented to improve Hadoop performance in heteroge-
neous environment [14–17]. Mechanisms have been designed for task scheduling in MapRe-
duce and parallel execution of map tasks and reduce tasks and sharing between individual
mappers running on separate machines. In [15], the authors introduced the distributed meta
data store (DMDS) to allow mappers of a job to share information. Chen et al. in [18], pre-
sented a task placement optimizer to dynamically identify failing tasks in a cluster. Similarly, in
an effort to optimize MapReduce performance, previous studies [19, 20] and [21] have
addressed the issues of local data execution on DataNodes in the cluster by executing map and
reduce tasks on local data.

In [22], the authors proposed a high-level declarative model and its run-time. This model
targets datasets that are inter-dependent and programs to monitor, compile, and execute on
these dependent datasets. Valvag et al. [23] have presented Cogset, which proposes tight-cou-
pling between distributed systems. It integrates a storage file system with its execution environ-
ment (i.e., tightly coupled). Oivos and Cogset do not target the same, homogeneous, and
independent datasets. In an attempt to introduce work-sharing across jobs in MapReduce,
MRShare has been proposed by Nykiel and Potamias et al. [21] to enable automatic and princi-
pled work-sharing by transforming a batch of queries into a new batch that can function as sin-
gle merged query.

Hadoop MapReduce version 2.0 (YARN) provides resource management to the job life-
cycle [24]. It separates the functions of scheduling and management, and provides sharing of a
cluster among various applications used by organizations. In YARN, each algorithm is exe-
cuted as a separate MapReduce job and cluster resources are managed accordingly. This frame-
work does not support concurrent algorithm execution in a single MapReduce job and its
performance compared to earlier versions of MapReduce is superior only in terms of jobs/
applications management. YARN also supports job chaining, where an iterative algorithm can
be executed as a chained job. The main limitation of YARN is that it does not support parallel
execution of algorithms on the same data; rather, it needs to write a separate job for each
algorithm.

Examining the literature reveals that most of the existing systems do not exploit vailable
resources and add extra cost in terms of time and communication. Extra communication cost
is incurred by input and output data movement for each algorithm and context switching
between jobs.

In all the above discussed Big Data processing frameworks and techniques, MapReduce is
the widely adopted framework. All of these approaches addressed MapReduce’s performance
improvements; however, these approaches only cater a single algorithm as a MapReduce job
incurring extra communication cost. These limitations lead us to proposeMRPack, a MapRe-
duce variant model to execute multiple algorithms in a single job. The goals of this work are to
pack multiple algorithms in a single job rather than a single cluster. We present multiple algo-
rithms execution in a single MapReduce job to incorporate compute-intensiveness which sig-
nificantly improves the performance as discussed in the results section.

MRPack

PLOS ONE | DOI:10.1371/journal.pone.0136259 August 25, 2015 3 / 18



Methodology
This section presents the main contribution of the paper: design and development ofMRPack,
a technique to bridge the compute-intensive and data-intensive approaches, improve the
MapReduce performance, and provide an algorithm suite in MapReduce. InMRPack, we
address limitations of the MapReduce framework and propose a MapReduce based technique
to process data in parallel using multiple algorithms. The main idea and motivation ofMRPack
are to reduce the MapReduce execution time of several sequential algorithms by implementing
them concurrently. In this model, users can write a single MapReduce job and execute multiple
algorithms that process the same data. Each algorithm is implemented in Map and Reduce
functions, thus extending the main Map and Reduce functions of the job. Data in HDFS are
read only once by Mapper of the main job and written back to HDFS by the Reducer of the
main job. Algorithms involved in job work as sub-jobs and intermediate data are differentiated
using a key mechanism specified following the polymorphism and object composition tech-
nique of objected oriented programming (OOP). The following sections formalize all the con-
cepts in detail. Part of the proposed work has been previously presented [25].

Preliminaries
In this section, we discuss some preliminary terms and concepts that need to be understood
before understanding the general concept ofMRPack.

• Intermediate Data: The data generated by mappers in (key, val) pairs and communicated
between DataNodes are known as intermediate data; such data i sgenerated by all algorithms
involved inMRPack. Therefore, each data needs to be correctly organized.

• Data Skew: This occurs in intermediate data, when the data belonging to a specific key or
algorithm with high frequency of high generation overthrow the average key distribution.
This data skew delays or increases the completion time of a job, which is a waste of resources
because the resources are waiting for the data.

• Composite Key: InMRPack, we propose a composite key structure to address the “one-key”
limitation of MapReduce. MapReduce uses only one key, so multiple algorithms cannot be
executed in it. In a hierarchical and composite key system, we design a generic base class for
all keys and extend it for specific algorithm key requirement. The detailed description is pre-
sented in following sections.

• Sub-Map: InMRPack, a mapper of each algorithm is executed as a sub-part of the main Map-
per. Consider, we have a set of algorithms A = a1,a2,a3,. . .,an to be executed, the Map func-
tion of each algorithm in A is invoked inside the only main Map function of job J. This linear
and concurrent aggregated functions are called sub-mappers.

• Sub-Reduce: Like sub-Map, this function is also designed to operate for reducers of all algo-
rithms (i.e., the Reduce function of each algorithm in A is implemented separately and
invoked in the only main Reduce function of J).

• Skew Mitigation: To avoid data skew created from a majority of similar Map output, the
comparator function filters intermediate data and schedules them to the Reduce tasks.

Architecture and Dataset Description
In this section, we initiate the description by In-Map and In-Reduce. Then, we describe the
dataset requirements and pre-processing related toMRPack followed by the filtering process of

MRPack

PLOS ONE | DOI:10.1371/journal.pone.0136259 August 25, 2015 4 / 18



intermediate data. In the filtration of intermediate data, we explain the introduction of skew
mitigation strategy to avoid large data skew resulting in job delay. We propose a composite key
structure to handle multi-algorithm data and skew mitigation. The base architecture of
MRPack is shown in Fig 1.

InMRPack, a MapReduce job is implemented and executed in such a way that it executes
multiple related algorithms as a single job. A good example of related algorithms include pro-
cessing text for natural language processing (NLP) as set, PageRank algorithms as a separate
set and machine learning clustering and regression algorithms as a set. All these types of algo-
rithms can process data with slight differences in structure under the same format of data such
as textual, or CSV, or tab-separated. The algorithmic dataset requirement and pre-processing,
intermediate data management strategy, output generation, and In-Map and In-Reduce algo-
rithm descriptions are discussed in the following sections.

Dataset Requirements. To function onMRPack, dataset D should be formatted according
to thebasic requirements of the algorithm. However, the type of data can be different; in
unstructured text; the type can be a CSV, tab-separated, or space-separated. Similarly, for each
algorithm, the dataset can be differentiated based on naming used for files in HDFS reposito-
ries. For example, when executing an InvertedIndex algorithm, its relevant dataset files in the
repository can contain a descriptor to simplify the job of the preprocessor. In chained jobs, the
output of one job is used as input of other jobs.

Data Preprocessor. As discussed above, the dataset forMRPack is filtered being processed
by the algorithms. We define a general preprocessor where the input data are preprocessed
according to each algorithm requirements. A typical scenario of involving such data processing
and filtering is described as below. In a given job J, each algorithm in A needs to process the
subset of data from dataset D(D = d1,d2,d3,. . .,dn). Details of the algorithm are discussed in the
next section. The preprocessed data are forwarded to the individual algorithmMap function
where the Map task output is generated.

Intermediate Data Management. Data communication plays a critical role in the perfor-
mance of MapReduce. Data communication occurs in three stages i.e., data read and write to
HDFS, fromMap task to Reduce task (intermediate data), and between DataNodes (no-local
data existence). These three data movements significantly affect the performance of the cluster.
Here we describe our method for handling intermediate data to efficient management and
processing.

Intermediate data generated by Map tasks belong to multiple algorithms in a job. These
data are differentiable by the keys used by each algorithm and are specified in our hierarchical
key scheme. InMRPack, custom comparator and partitioner functions are implemented to
manage intermediate data. In generic MapReduce, these functions are optional; however, they
are mandatory in our proposed scheme. The comparator function helps in algorithm specific
data filtration and the partitioner function helps with skew mitigation. Based on the keys of
each algorithm, we apply a skew mitigation strategy to avoid any delay in the job due to skewed
data. We mitigate the data skew by partitioning intermediate data and forwarding it to specific
Reducer. InMRPack, we use skew mitigation to generate separate output by each Reducer
through comparator and partitioner algorithms. The details of comparator and partitioner
algorithms are described in the algorithm description section.

Output Generation. Efficient management of intermediate data simplifies output genera-
tion. To separate the output of each algorithm, we customize “data writer” and “MultipleOut-
putFiles” of Hadoop MapReduce, and write all algorithm’s data to a separate file. The separate
outputs are necessary to differentiate between the results of each algorithm and reuse the data.
These data can be easily reused in iterative algorithms where job chaining is required. The fol-
lowing section describes the algorithms.

MRPack

PLOS ONE | DOI:10.1371/journal.pone.0136259 August 25, 2015 5 / 18



Fig 1. MRPack Architecture: The Map and Reduce functions are extended to In-Map and In-Reduce,
which function for each algorithm under the umbrella of a single job.

doi:10.1371/journal.pone.0136259.g001

MRPack

PLOS ONE | DOI:10.1371/journal.pone.0136259 August 25, 2015 6 / 18



Description of Algorithms
In this section, we describe theMRPack detailed algorithms with all its parameters and behav-
iors. Initially, the preprocessor part of the Map algorithm is described followed by the main
Map algorithm. Individual sub-Map and sub-Reduce functions specific to each algorithm in
the list A = a1,a2,. . .,an of job J are described. At the end of this section, we describe the com-
parator and partitioner algorithm with composite key approach.

Data Preprocessor Algorithm. The preliminary part ofMRPack algorithm is preproces-
sor. This part filters input data and differentiates between the subsets of data based on naming,
data types, and structures. At the start of job J, this algorithm reads input from HDFS. This
input data D is first parsed and processed in the preprocessor as shown in algorithm 1. This
algorithm involves the data chunk from D which needs to be parsed against the specifications S
of algorithms in set A(A = a1,a2,a3,. . .,an). If di in D conforms to si in S; then, this data chunk is
processed by that algorithm. Otherwise, it is skipped to parse the next data chunk. Each data
chunk is processed by at least one algorithm and at most by all algorithms. The returned identi-
fied sub datasets are processed by individual Mappers of algorithms. This algorithm is invoked
by main Mapper of job J.

MainMap Algorithm. The Map function is the basic function of job inMRPack. In this
function, the data preprocessor is first invoked to filter the data and return it to be processed by
specific sub-Map as shown in algorithm 2.

This algorithm shows Mapper of the main job which consists of sub-mappers. A data chunk
returned by the preprocessor is processed and key−value pairs are generated by one or many
algorithms as shown by the functionsMapperA lg1,. . .,MapperA lgn. These calling functions are
individual Mappers of algorithms inMRPack. The sp in the algorithm indicates specific key
configurations of each algorithm. For example, executing a machine learning algorithm such as
k-nearest neighbor (KNN) requires a text dataset that consists of either comma or tab-sepa-
rated fields. In this case, the preprocessor algorithm first identifies whether the data chunk is
process-able and determines the format with defined algorithm specifications. These data are
then processed by individual algorithm (e.g., kNN).
Algorithm 1: Preprocess Data (D = d1,d2,d3,. . .,dn)

Data: D = d1,d2,d3,. . .,dn: Input datasets belonging to algorithms in A
S = sp1,sp2,sp3,. . .,spn: algorithmic specifications;

Result: Algorithm specific labeled dataset
1 for 8 d 2 D do
2 /� check the data chunk �/;
3 if D.di = = spi then
4 if Compliant(D.di) then
5 /� Check data compliance �/;
6 D.di.sp = spi;
7 /� Filter the data for compliance �/;
8 D.di.sp = Filter(D.di); D.di = D.di+1;
9 else
10 /� Set to null if the data is not for spi �/;
11 D.di.sp = null; D.di = D.di+1;
12 return D.di /� Return filtered and identified sub dataset �/;
Algorithm 2: Map(D = d1,d2,d3,. . .,dn)

Data: D = d1,d2,d3,. . .,dn: Input data chunks from HDFS
S = sp1,sp2,sp3,. . .,spn: algorithmic specifications;

Result: Intermediate data: key-value pairs
1 for 8 d 2 D do
2 /� Preprocess the data before Mappers �/;
3 D.di.sp = Preprocess(D.di);
4 if D.di.sp = = sp1 then

MRPack

PLOS ONE | DOI:10.1371/journal.pone.0136259 August 25, 2015 7 / 18



5 /� Invoke individual algorithm Mappers from 1 to n �/;
6 Mapper_Alg1(D.di);
7 if D.di.sp = = sp2 then
8 Mapper_Alg2(D.di);
9 if D.di.sp = = sp3 then
10 Mapper_Alg3(D.di);
11 /� continue till all algorithms are done �/;
12 .
13 .
14 .
15 if D.di.sp = = spn then
16 Mapper_Algn(D.di);
17 D.di = D.di+1;

Main Reduce Algorithm. The Reduce is the primary Reduce function of MapReduce.
After pre-processing, Map output generation, and intermediate data shuffling and partitioning;
it aggregates the data based on keys using specific Reduce function. Unlike traditional Reduce
functions, this algorithm invokes a special function for a set of key-value pairs. The details are
shown in algorithm 3.
Algorithm 3: Reduce(key,List[values])

Data: Key−value pairs: Intermediate data key-value pairs
K = k1,k2,k3,. . .,kn: Key formats of all algorithms;

Result: Final aggregated result in Key-Value pairs
1 for 8 value 2 List do
2 /� Iterate over the incoming data �/;
3 key = value.key; if key = = k1 then
4 /� Invoke individual algorithm Reducer from 1 to n
5 Reducer_Alg1(value);
6 if key = = k2 then
7 Reducer_Alg2(value);
8 if key = = k3 then
9 Reducer_Alg3(value);
10 /� continue till all algorithms are done �/;
11 .
12 .
13 .
14 if key = = kn then
15 Reducer_Algn(value);
16 value = value.next();

In this algorithm, every time a Reducer receives a key−value list, it compares the key with
metadata (algorithm specification) of algorithms and invokes a specific Reduce function. For
example, the two algorithms in A, a1 and a2, have processed input data and generated Map out-
put in the form of key−value pairs. The main Reduce algorithm receives and verifies the data
with keys of all algorithms. If they belong to any algorithm, its Reduce function is invoked to
collect the data and process it.

Sub−Map Algorithm. The individual Map functions of each algorithm inMRPack func-
tion the same as those of generic MapReduce. However, unlike traditional MapReduce, sub-
mappers function on part of the whole job (as job has multiple algorithms). The general sketch
of a sub-Map is shown in the algorithm 4. Internal instruction set of each algorithm may vary;
so we only shown the ConstructKey and GenerateValue as the computation functions.
Algorithm 4: sub-Map(d 2 D)

Data: d 2 D data chunk: Data input preprocessed;
Result: Emit data as (Key,Value) pairs

1 /� Construct key from dataset d 2 D �/;
2 key = Construct(d);

MRPack

PLOS ONE | DOI:10.1371/journal.pone.0136259 August 25, 2015 8 / 18



3 /� Process the data according to algorithm specific requirement �/;
4 value = GenerateValue(d); /� emit the key and value as pairs �/;
5 emit(key,value);

Sub−Reduce Algorithm. Like sub-Map ofMRPack, sub-Reduce also operates as sub-part
of the main Reducer of anMRPack job and performs computation only on its own related
data. Generally in a Reduce function, the intermediate data are aggregated and collected as
shown in algorithm 5. However, in some special cases the data might require some computa-
tion such as kNN and K−Means requiringmean calculation and neighbors calculations in the
Reduce function when implemented as part of this paper.
Algorithm 5: sub-Reduce(key,List < values >)

Data: key−List < values > pairs: intermediate data;
Result: Emit aggregated result as (Key,Value) pairs

1 /� Aggregate values based on same keys k 2 K �/;
2 for 8 value 2 List do
3 /� Iterate over the incoming data �/;
4 if this.key = = key then
5 sum = sum + value;
6 /� Process data if needed �/;
7 vals = ComputeVals(sum); /� Write the results �/;
8 emit(key,vals);

Comparator and Partitioner Algorithm. This part of the job plays an important role in
many aspects such as intermediate data aggregation, sorting, partitioning, and data skew miti-
gation. The data are sorted by default by comparator based on keys. For partitioning and skew
mitigation, we propose algorithm 6, which provides a brief sketch of partitioner. In this algo-
rithm, the key is analyzed and then the value is forwarded to the appropriate Reducer. We set a
threshold called λ to identify the skew mitigation. Suppose, we have three algorithms with keys
as k1,k2, and k3. If k1 > 50%; then, the data of k1 are diverted to another Reducer. Because the
algorithm of k1 is generating more intermediate data, which in turn can result in data skew and
delay of the completion of the job. Selection of threshold value is based on experimentation.
This value can be changed according to the cluster environment and specifications.

Key Structure and Hierarchy. InMRPack, maintaining and managing different keys are
difficult tasks. Data aggregation, partitioning, and sorting are all based on keys. To efficiently
manage keys and overcome the challenge of skewed data, we design a hierarchical and compos-
ite key structure. In this scheme, the base class is a general abstract class, and for each algo-
rithm, we extend the base class to use it for special case. We apply polymorphism and
composition techniques to handle the keys. The general structure of the keys is shown in Fig 2.
The key for each algorithm depends on its specification and requirements.
Algorithm 6: Partitioner(key,value)

Data: key−List < values > pairs: intermediate data;
Result: Partition data and Reducer allocation

1 /� Analyze keys and assign the reducer �/;
2 keyFrequencyList = key; for i = 0ton do
3 /� Checks data skew if no skew, directly assign �/;
4 if key = = ki AND keyFrequencyList[key] < = λ then
5 return i%(numOfReducers);
6 if keyFrequencyList[key] > λ then
7 /� λ is a threshold set for maximum overloaded Reducer �/;
8 for j = 0ton do
9 /� In case of data skew, check for least used Reducer �/;
10 return leastIndexOf(keyFrequencyList[kj]) % (numOfReducers);

MRPack

PLOS ONE | DOI:10.1371/journal.pone.0136259 August 25, 2015 9 / 18



Case Study
In this case study, we explainMRPack with two brief and simple algorithms, InvertedIndex and
WordCount. We choose these algorithms because of their simplicity and ease of explanation.
The InvertedIndex algorithm generates mapping from contents (words) to locations (files), and
WordCount counts the number of words in a one or all documents. Generally these algorithms
can operate on same datasets such as text data, XML, etc. However, for the sake of explanation
and overview of the algorithm, we use two types of text data, CSV and tab-separated values.
The data structure can vary to any other textual data types such as HTML, JSON, and sensor
data. We assume thatWordCount and InvertedIndex both function on all data in order to gen-
erate counts and indexes respectively. The sample data are shown in section 1 of Fig 3.

At the start, the preprocessor processes the input data and verifies its compliance for the
Map step. It breaks the text into words and extracts file names etc. The data are then processed
in the Map task of each algorithm and key−value pairs are generated. Both algorithms use the
words as keys, so we need to define a key structure to differentiate between their data. We
define a class Key with two sub-classes ofWCKey and IIKey forWordCount and InvertedIndex

Fig 2. Composite Key Structure: This structure shows keysmodeling inMRPackwhere it is used to differentiate the algorithms.

doi:10.1371/journal.pone.0136259.g002

MRPack

PLOS ONE | DOI:10.1371/journal.pone.0136259 August 25, 2015 10 / 18



algorithms respectively. In the Map task, each algorithm generates key based on its keys class
and the index/count of word as value as shown in section 2 of Fig 3.

In the comparator and partitioner, all intermediate data are scanned and the key−value pair
are determined to belongs toWordCount, whether it is forwarded to Reducer1 (R1), or whether
it belongs to InvertedIndex. Then it is forwarded to Reducer2 (R2 section 3 of Fig 3). In this
example, we only define two reducers for the sake of simplicity. The intermediate data will be
the same in quantity because both algorithms emit all words as keys. However, in other cases, it
might not be necessary to emit each word as key. Some algorithms emit a larger number of
intermediate data than others, for which we would apply skew mitigation as discussed in the
previous sections.

In the last step, the intermediate data are received by the Reducers. Each Reducer can imple-
ment each algorithm, so it can process all the data. The partitioner differentiates the data for
each algorithm, sending the packets to the appropriate Reducer. Therefore, each Reducer has
the output of separate algorithms (see section 3 of Fig 3). Another way of separating the output
of each algorithm is the custom implementation of the datawriter andMultipleOutPutFormats.
In datawriter, based on the hierarchical key scheme, data can be differentiated.

In this example, the output of each algorithm in the Map step is differentiated by a key as
i is prefixed to the original word. Similarly, this key is used to partition and sort the data. The
comparator can be implemented to work as a sorter, and partial aggregator before sending
data to Reducer. This example very briefly explains the whole process. Another implementa-
tion contains execution of several clustering algorithms on some dataset such as executing
kNN,K−Means,Bayesian, or C4.5. In this case, set A has five algorithms and we need to define
five different keys for data differentiation and skew mitigation. In summary, when we increase

Fig 3. The basic data flow ofMRPack based on two algorithms, WordCount and InvertedIndex.

doi:10.1371/journal.pone.0136259.g003

MRPack

PLOS ONE | DOI:10.1371/journal.pone.0136259 August 25, 2015 11 / 18



the complexity of algorithms, number of algorithms, and volume of datasets, the performance
ofMRPack significantly improves and becomes superior to the MapReduce performance. the
experimental results aer discussed in section 4.

Description of Implementation
For implementation, a Hadoop cluster is setup and the algorithm is implemented in JAVA.
The cluster setup consists of eight DataNodes with four nodes on physical machines and four
on virtual machines (VMs). All VMs have same configuration, while the physical machines
have different specifications with respect to memory size and processing power. Each VM has
2GB RAM and minimum of 50GB HDD. Physical machines are used with 4GB RAM and
atleast 300GB HDD. Important elements from the implementation are presented as follows:

Algorithm Set: For this implementation, we select kNN, K-Means, WordCount, InvertedIn-
dex, and C4.5. All these algorithms are executed in a singleMRPack job. We intend to provide
a pack of algorithms as part ofMRPack in this proposed method, which can efficiently be exe-
cuted in a single MapReduce job.

Keys: For efficient data management, key structure is defined by following the object-oriented
programming concept of polymorphism, and individual keys are instances of that class.

Map Algorithm: The main Map algorithm is implemented for the whole job which first exe-
cutes the pre-process method and then the individual algorithmMappers are invoked to pro-
cess the data and generate Key-value pairs.

Partitioner: A custom partitioner partitions the data based on the algorithm and assigns it
to a specific reducer.

Reduce: A main Reduce algorithm aggregates the data belonging to a set of keys of an algo-
rithm and writes the output to the HDFS in the form of key-value pairs.

At the initial stage of starting the job, the user has the ability to select an algorithm for
chaining and selecting the re-usability of data from the previous job.

Time and Cost Complexity
This section discusses the time complexity ofMRPack. For three algorithms a1,a2, and a3 in
algorithm set A with different costs of complexities, then the complexity ofMRPack on a single
DataNode is the maximum of all three algorithms. The MapReduce algorithm sequentially per-
forms the Map task on a single DataNode. then the complexity of a single Map task becomes
the highest in overall job. In the following sections, we explain the computation and communi-
cation costs in detail.

Communication Cost. Elapsed communication costs consist of data movement from
Mappers (M) to Reducers (R) defined as in-memory data movement. Additional costs in a job
are often incurred as result of failing, straggling tasks and data movement between DataNodes.
The elapsed communication and additional costs for n andm number ofM and R respectively
is described as.

ElapsedCommCostðEcostÞ ¼
Xn

i¼0

Mi þ
Xm

j¼0

Rj ð1Þ

The total communication cost consists of elapsed, input-output, and additional cost. There-
fore,

Totalcomm:CostðTcomÞ ¼ Msize þ Ecost þ Rsize þ AdditionalCost ð2Þ

Tcom ¼ Msize þ
Xn

i¼0

Mi þ
Xm

j¼0

Rj þ Rszie þ p � lþ q � s ð3Þ

MRPack

PLOS ONE | DOI:10.1371/journal.pone.0136259 August 25, 2015 12 / 18



where λ represents the rate of rescheduled straggling tasks in the cluster and σ represents the
rate of rescheduled failing tasks with p and q representing their count respectively.

Computational Cost. In an approximate assumption, an algorithm has complexity C exe-
cuted over dataset D with a maximum number of Map tasksMn and Reduce tasks Rm on a
DataNode Di (maximum number of tasks among all nodes). InMRPack, the job is first divided
into Map and Reduce steps and then into individual algorithmMappers and Reducers. There-
fore, we estimate the computation cost as the maximum of the cost of Map i.e.,max(Map) and
Reduce i.e.,max(Reduce).

ComputationcostðComplexityCÞ ¼ maxðMapÞ � Cm þmaxðReduceÞ � CR ð4Þ
For example, ifmax(Map) andmax(Reduce) are O(n2) and O(nlogn) respectively, then

ComputationcostðComplexityCÞ ¼ Oðn2Þ ð5Þ

The total cost Tcost is finally given by the combination of communication and computation
costs as:

Tcost ¼ Tcom þ C ð6Þ

Tcost ¼ fMsize þ
Xn

i¼0

Mi þ
Xm

j¼0

Rj þ Rszie þ p � lþ q � sg þ fMn � Cm þ Rm � CRg ð7Þ

This cost remains the same as that of a single MapReduce job, which demonstrates the sig-
nificant improvement achieved through the use ofMRPack. The complexity ofMRPack for the
set of algorithms is the same as that of MapReduce for a single algorithm.

Experimental Evaluation
In this section, the characteristics and performance ofMRPack are evaluated and compared
with those of MapReduce. Real publicly available datasets are used, and artificial datasets are
generated for better understanding of the process. Many algorithms are implemented, and the
results are explained with weak, and strong points and differences. In all experiments, the time
calculation is estimated for I/O time, computation, and intermediate data communication.

Dataset Description
In the experimental evaluation, three publicly available text datasets and an artificially gener-
ated dataset are used. Source code for the experiments is available on [26] and the datasets are
described as below.

Canadian government dataset. The Canadian government dataset consists of data from
the government’s different services including financial and national geographic information
[27]. The data are released under the project name “Open Data”. We use the text and CSV for-
mat of the data from census of population category for our experimental purpose. This dataset
is helpful in extracting word-based statistics even though it is not the focus of this paper.

Reuters-21578 and CV1. This is the text dataset most widely used to measure the effec-
tiveness of different systems and applications [28]. It includes datasets related to text categori-
zation, corpus volume 1 (CV1) consisting of stories, and TREC-AP based on press articles. We
use text data from [28] and do not perform any type of special information extraction tech-
niques. However, to test the performance ofMRPack, we process this dataset using the imple-
mented algorithms and compare their performance to that of the generic MapReduce.

MRPack

PLOS ONE | DOI:10.1371/journal.pone.0136259 August 25, 2015 13 / 18



Machine learning dataset. This is a publicly available dataset consisting of data from vari-
ous fields including movies, songs, and companies [29]. This dataset is easily usable for
machine learning experiments. We use this dataset mainly for processing by the machine learn-
ing algorithms such as kNN and KMeans.

Artificial dataset. Volume is one of the foundations of the Big Data concept. Currently
existing open datasets do not fulfill this requirement because they are very small. An artificial
dataset is generated to fulfill the requirement of Big Data’s volume. Therefore, we generate
both textual data and machine learning data based on the specification from the publicly avail-
able datasets. We perform experiments on varying datasets to accomplish scalability and per-
formance analysis.

I/O and processing time analysis
In this subsection, we compareMRPack’s data loading time and processing time against those
of thewidely used generic MapReduce framework. The described dataset and deployment
structure are used for this evaluation.

Cluster-size based analysis. The results of the cluster size experiment are described in
Fig 4. The total computation time for each size of cluster is calculated by the NameNode of the
Hadoop cluster. The data size is maintained throughout the experiment, and nodes are added
and removed after each test. The effect of cluster size is also measured by changing the data vol-
ume. With a constant data size at a certain threshold, the performance of the cluster improves
by increasing the number of nodes as shown in Fig 4. In this case, when the data size is

Fig 4. Cluster-based analysis of MRPack performance compared to that of generic MapReduce.

doi:10.1371/journal.pone.0136259.g004

MRPack

PLOS ONE | DOI:10.1371/journal.pone.0136259 August 25, 2015 14 / 18



increased from 2GB to 8GB, the performance of the cluster improves with the addition of extra
nodes. Similarly, the data size and cluster size are proportional to each other (i.e., in large data-
sets, addition of nodes decreases the total time).

Data-size analysis. In this subsection, we evaluate the performance based on changing
data size with constant cluster size. BothMRPack and MapReduce are executed on varying
datasets and the same cluster consisting of eight nodes. In both cases, after certain threshold of
datasets, the performance improved, as shown in Fig 5. However, the generic MapReduce exe-
cutes a single algorithm in a single pass/job andMRPack executes multiple algorithms in a sin-
gle pass/job. Explicit comparison between both with regard to data size show significant
performance improvement forMRPack.

Algorithm-based analysis. We test the performance gain and loss when the number of
algorithms inMRPack varies. In this case, we particularly monitor the I/O communication dur-
ing job execution with HDFS. In MapReduce, each job requires to retrieve data from HDFS
and write it back; hence, it results in long running jobs with heavy I/O operations as shown in
Fig 6. However, inMRPack, the algorithms are executed as a single job and the I/O operations
are performed only once. Hence, the performance is significantly affected and improved com-
pared to that of MapReduce. In MapReduce, when we increase the number of algorithms, the
number of jobs to be separately executed also increases. InMRPack, increasing the number of
algorithms means changing the algorithms only in a single Job. By executing a single job,

Fig 5. Analysis based on changing data size w.r.t overall job execution time.

doi:10.1371/journal.pone.0136259.g005

MRPack

PLOS ONE | DOI:10.1371/journal.pone.0136259 August 25, 2015 15 / 18



significant performance improvement is achieved, as shown in Fig 6. However, there are some
memory-based limitations to this method, as discussed in the coming sections.

Memory stress analysis. Here, we analyze the memory requirements and performance
with respect toMRPack. Executing multiple algorithms in a single MapReduce job provides
significant performance gain in I/O operations, data size, computation, and context switching
between jobs. However, it also produces memory stress when the number of algorithms
increases a certain limit or the memory of DataNodes is not sufficient. This problem can arise
from frequently generated key-value pairs as intermediate data. This limitation can be solved
by executing Map and Reduce tasks in parallel, where Reduce tasks process the output of com-
pleted Map tasks. The memory stress compared to that of other operations has a low impact on
the overall job performance because of its in-memory data movement. I/O, computation, and
context switching involve disk read and writes, thus providing a very efficient solution. Scal-
ability of this approach depends on the memory architecture of the cluster. If machines in the
cluster hold enough memory contain the intermediate data, then the scalability is the same as
that of generic MapReduce. However, in other cases, the limitation of the number of algorithms
in the jobs needs to be monitored.

Conclusion and Future Work
In this paper, we presentedMRPack, a variant model of Hadoop MapReduce, to support con-
current execution of multiple algorithms in Hadoop.MRPack provides an end-to-end

Fig 6. Analysis based on number of algorithms in an MRPack job with respect to time execution time
in terms of I/O and network communication.

doi:10.1371/journal.pone.0136259.g006

MRPack

PLOS ONE | DOI:10.1371/journal.pone.0136259 August 25, 2015 16 / 18



MapReduce processing model where computational parallelism is supported with data-
parallelism. It provides better performance by processing a single variety dataset with multiple
algorithms in a single job through single read and write operations with HDFS. The variety
dataset is distributed among DataNodes and processed by at least one algorithm. Intermediate
data among various algorithms are differentiated by a novel key-structure. Optimization over
the intermediate data processing is performed by incorporating skew mitigation. The results of
each algorithm are written back to HDFS in separate files and formats, usable by chained and
other jobs. We have bench-markedMRPack with MapReduce over varying datasets and algo-
rithms. Our results showed thatMRPack achieves better performance in data loading, interme-
diate data management, and data writing. Our results also showed that implementing multiple
related algorithms as a single MapReduce job requires less efforts in programming and I/O
management. A single implementation of a job is sufficient for a set of related algorithms.
Compared to MapReduce,MRPack achieves two-fold times performance improvement. This
performance ratio varies and depends on the number of algorithms involved in a single
MRPack implementation.

MRPack is an initial step towards performance improvement and computation intensive-
ness in MapReduce. We intend to continue this research to produce a configurable tool that
can be used as software/service with currently available implemented algorithms. We have
started working for exploiting Big Data frameworks including MapReduce for real-time data
processing using multi-threading. Voluminous data generated every second in a variety of for-
mats requires robust techniques and platforms to receive, link, and manage in a scalable storage
system. With real-time data processing, stream data mining and stream data retrieval are the
most important aspects that mitigates batch processing systems. We plan to investigate these
initiatives and present their outcomes in future research.

Author Contributions
Conceived and designed the experiments: MI SH HSMB. Wrote the paper: MI WH. Designed
and implemented the MRPack on Hadoop: MI SHMHS. Contributed to design and finalized
the MRPack: MI SHWH SL. Contributed in reviewing the manuscript: SH MHS HSMB.

References
1. HuW.C. Big Data Management, Technologies, and Applications; IGI Global, 2013.

2. Mohanty Soumendra, Madhu Jagadeesh, and Harsha Srivatsa. “Big Data” in the Enterprise.” Big Data
Imperatives. Apress, 2013. 1–24.

3. Buhl H.U., R oglinger M., Moser D.K.F., Heidemann J. Big data. Wirtschaftsinformatik 2013, 55, 63–68.
doi: 10.1007/s11576-013-0350-x

4. McAfee Andrew, et al. “Big data.” The management revolution. Harvard Bus Rev 90.10 (2012): 61–67.

5. White T. Hadoop: the definitive guide; O’Reilly, 2012.

6. Lee Kyong-Ha, et al. “Parallel data processing with MapReduce: a survey.” AcM sIGMoD Record 40.4
(2012): 11–20. doi: 10.1145/2094114.2094118

7. Tansley Stewart, and Kristin Michele Tolle, eds. The fourth paradigm: data-intensive scientific discov-
ery. Vol. 1. Redmond, WA: Microsoft Research, 2009.

8. Howe Doug, et al. “Big data: The future of biocuration.” Nature 455.7209 (2008): 47–50. doi: 10.1038/
455047a PMID: 18769432

9. Kornacker, Marcel, and Justin Erickson. “Cloudera Impala: Real Time Queries in Apache Hadoop, For
Real.” http://blog.cloudera.com/blog/2012/10/cloudera-impala-real-time-queries-in-apache-hadoop-
for-real (2012).

10. Baldeschwieler, E. Hortonworks Manifesto, 2012.

11. Kaushik, Rini T., and Milind Bhandarkar. “Greenhdfs: towards an energy-conserving, storage-efficient,
hybrid hadoop compute cluster.” Proceedings of the USENIX Annual Technical Conference. 2010.

MRPack

PLOS ONE | DOI:10.1371/journal.pone.0136259 August 25, 2015 17 / 18

http://dx.doi.org/10.1007/s11576-013-0350-x
http://dx.doi.org/10.1145/2094114.2094118
http://dx.doi.org/10.1038/455047a
http://dx.doi.org/10.1038/455047a
http://www.ncbi.nlm.nih.gov/pubmed/18769432
http://blog.cloudera.com/blog/2012/10/cloudera-impala-real-time-queries-in-apache-hadoop-for-real
http://blog.cloudera.com/blog/2012/10/cloudera-impala-real-time-queries-in-apache-hadoop-for-real


12. Ghemawat Sanjay, Howard Gobioff, and Shun-Tak Leung. “The Google file system.” ACM SIGOPS
operating systems review. Vol. 37. No. 5. 29–43. ACM, 2003. doi: 10.1145/1165389.945450

13. AmazonEC2. “Amazon Elastic Computing Cloud.” AmazonWeb Services, Inc

14. Zaharia Matei, et al. “Improving MapReduce Performance in Heterogeneous Environments.”OSDI.
Vol. 8. No. 4. 2008.

15. Vernica Rares, et al. “Adaptive MapReduce using situation-aware mappers.” Proceedings of the 15th
International Conference on Extending Database Technology. ACM, 2012: 420–431

16. Prabhu Swathi, Anisha P. Rodrigues. “Hadoop MapReduce Job Scheduler Implementation and Analy-
sis in Heterogeneous Environment.” IJRCCT 4.3 (2015): 229–233.

17. Jung, Hyungjae, and Hidenori Nakazato. “Dynamic Scheduling for Speculative Execution to Improve
MapReduce Performance in Heterogeneous Environment.”

18. Chen, Quan, et al. “Samr: A self-adaptive mapreduce scheduling algorithm in heterogeneous environ-
ment.” Computer and Information Technology (CIT), 2010 IEEE 10th International Conference on.
IEEE, 2010: 2736–2743.

19. Zhang, Xiaohong, et al. “Improving data locality of MapReduce by scheduling in homogeneous comput-
ing environments.” Parallel and Distributed Processing with Applications (ISPA), 2011 IEEE 9th Inter-
national Symposium on. IEEE, 2011: 120–126.

20. Zhang, Xiaohong, et al. “An effective data locality aware task scheduling method for MapReduce frame-
work in heterogeneous environments.” Cloud and Service Computing (CSC), 2011 International Con-
ference on. IEEE, 2011: 235–242.

21. Nykiel, Tomasz, et al. “MRShare: sharing across multiple queries in MapReduce.” Proceedings of the
VLDB Endowment 3.1-2 (2010): 494–505.

22. Valvag, Steffen Viken, and Dag Johansen. “Oivos: Simple and efficient distributed data processing.”
High Performance Computing and Communications, 2008. HPCC’08. 10th IEEE International Confer-
ence on. IEEE, 2008: 113–122.

23. Valvåg, Steffen Viken, and Dag Johansen. “Cogset: A unified engine for reliable storage and parallel
processing.” Network and Parallel Computing, 2009. NPC’09. Sixth IFIP International Conference on.
IEEE, 2009: 174–181.

24. Vavilapalli, Vinod Kumar, et al. “Apache hadoop yarn: Yet another resource negotiator.” Proceedings of
the 4th annual Symposium on Cloud Computing. ACM, 2013.

25. Idris, Muhammad, Shiraz Hussain, and Sungyoung Lee. “In-Map/In-Reduce: Concurrent Job Execution
in MapReduce.” Trust, Security and Privacy in Computing and Communications (TrustCom), 2014
IEEE 13th International Conference on. IEEE, 2014: 763–768.

26. MRPack Source: https://github.com/idrismike/MRPack

27. government, C. Canadian open Dataset, URL: http://tinyurl.com/qbetuh2, last checked May 20,2015.

28. Soeren Sonnenburg. et al., Machine learning dataset, URL: http://mldata.org/repository/data/, last
checked May 20,2015.

29. Lewis, D.D. Reutors dataset, URL: http://kdd.ics.uci.edu/summary.data.type.html, last checked May
20,2015.

MRPack

PLOS ONE | DOI:10.1371/journal.pone.0136259 August 25, 2015 18 / 18

http://dx.doi.org/10.1145/1165389.945450
https://github.com/idrismike/MRPack
http://tinyurl.com/qbetuh2
http://mldata.org/repository/data/
http://kdd.ics.uci.edu/summary.data.type.html

