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ABSTRACT
Biomedical systems have been using ontology matching as a primary technique for heterogeneity
resolution. However, the natural intricacy and vastness of biomedical data have compelled
biomedical ontologies to become large-scale and complex; consequently, biomedical ontology
matching has become a computationally intensive task. Our parallel heterogeneity resolution
system, i.e., SPHeRe, is built to cater the performance needs of ontology matching by exploiting the
parallelism-enabled multicore nature of today’s desktop PC and cloud infrastructure. In this paper,
we present the execution and evaluation results of SPHeRe over large-scale biomedical ontologies.
We evaluate our system by integrating it with the interoperability engine of a clinical decision
support system (CDSS), which generates matching requests for large-scale NCI, FMA, and SNOMED-
CT biomedical ontologies. Results demonstrate that our methodology provides an impressive
performance speedup of 4.8 and 9.5 times over a quad-core desktop PC and a four virtual machine
(VM) cloud platform, respectively.
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1. INTRODUCTION

Over the recent years, semantic web technologies have
started penetrating in biomedical systems for greater
benefits. Among these technologies, ontologies are exten-
sively used in biomedical information systems [1]. This
usage is largely contributed for annotation of medical
records [2], standardization of medical data formats [3],
medical knowledge representation and sharing, clinical
guidelines (CG) management [4], clinical data integra-
tion, and medical decision-making [5]. These vast usages
of ontologies in the biomedical field have compelled
researchers to invest more in development of newer
ontologies and provide continuity to the already created
ones. Therefore, biomedical ontologies like the Gene
Ontology (GO) [6], the National Cancer Institute (NCI)
Thesaurus [7], the Foundation Model of Anatomy
(FMA) [8], and the Systemized Nomenclature of Medi-
cine (SNOMED-CT) [9] have emerged and maintained
over the years. There exist several service-oriented infra-
structures encouraging the development and usage of
ontologies in biomedicine including, BioPortal [10] and
OBO Foundry [11]. BioPortal currently hosts a reposi-
tory of 384 biomedical ontologies. The Open Biomedical
Ontologies (OBO) consortium worked on introducing
strategies for evolving ontologies [11]; however, the
design, development, and management of biomedical
ontologies become challenging due to continuous evolu-
tion of medical data. Consequently, biomedical

ontologies are becoming larger in size and their growing
use is making them increasingly available.

Large biomedical ontologies are complex in nature, con-
taining overlapping information. Utilization of this
information is necessary for the integration, aggregation,
and interoperability; for example, NCI ontology defines
the concept of “Myocardium” related to the concept
“Cardiac Muscle Tissue”, which describes the muscles
surrounding the human heart. Concept “Cardiac Muscle
Tissue” is defined in FMA ontology; therefore, a biomed-
ical system or a professional, integrating knowledge
regarding human heart, requires correspondence
between candidate ontologies FMA and NCI [1]. Like-
wise, finding correspondence between GO ontology and
FMA ontology can be used by molecular biologist in
understanding the outcome of proteomics and genomics
in a large-scale anatomic view [12]. Moreover, corre-
spondence between ontologies has also been used for
heterogeneity resolution among various health standard
[13]. This correspondence between candidate ontologies
is called mappings or alignments and the process of dis-
covering these mappings is termed as ontology matching.

The active research community has acknowledged the
importance of matching large-scale biomedical ontolo-
gies. Subsequently, initiatives like Unified Medical Lan-
guage system (UMLS) by National Library of Medicine
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[14] and Ontology Alignment Evaluation Initiative
(OAEI) [15] are now mainstream biomedical ontology
matching research campaigns. In complement to these
initiatives, our motivation also lies in the use of ontology
matching for the integration of biomedical information;
however, ontology matching over large-scale biomedical
ontologies is a computationally intensive task with
quadratic computational complexity [16]. Ontology
matching is a Cartesian product of two candidate ontolo-
gies, which requires resource-based element-level (string-
based, annotation-based, language-based, and label-based)
[17] and structural-level (child-based, graph-based, and
property-based) [17] matching algorithms to be executed
over candidate ontologies for the generation of the
required mappings. In our experiments, executing these
matching algorithms over large-scale biomedical ontolo-
gies, whole FMA with whole NCI has taken 3 days to
generate desirable results. This delay in mapping results
makes ontology matching of large-scale biomedical ontol-
ogies ineffective for biomedical systems and professionals
with in-time processing demands. Ontology matching
problem is formally defined as following:

For given two ontologies OS D CS;RS; IS;ASh i and
OT D CT;RT; IT;ATh i, different type of inter-ontology
relationships called mappings or alignments can be
defined. These mappings are derived by a set of matching
algorithms with a similarity degree d 2 0; 1½ #: A match-
ing is a quadruple m D id; xS; xT; dh i, xS, and xT
are aligned ontology terms, and d is the similarity degree
of m.

Over the years, ontology matching systems and techni-
ques have taken large-scale biomedical ontologies into
consideration and proposed various resolutions. How-
ever, these resolutions are matching effectiveness-centric,
i.e., accuracy of the matching algorithms. The perfor-
mance aspect of matching these ontologies is concen-
trated on optimization of the matching algorithms and
partitioning of larger ontologies into smaller chunks for
performance benefits [18]. Due to the trade-off between
performance and accuracy, optimizing the matching
algorithms can take the performance-gain in ontology-
matching only to a certain degree. Furthermore, the per-
formance improvement based on exploitation of newer
hardware technologies has greatly been missed. Among
these technologies are affordable parallelism-enabled sys-
tems, which are easily available as stand-alone (desktop)
and distributed platforms (cloud) [19].

Parallelism has long been associated with high perfor-
mance computing (HPC); however, with the advent of
virtualization over multicore processors, performance-

oriented computing environments are ubiquitously avail-
able as cloud platforms [20]. Moreover, cloud computing
with its limitless yet affordable computational power can
be exploited for applications with higher complexity
[21]. Our ontology matching system SPHeRe [22,23]
avails this opportunity and provides a performance-
based ontology matching resolution, which exploits mul-
ticore platforms, i.e., desktop and particularly cloud for
parallel ontology matching.

To contribute in the performance aspect of large-scale
biomedical ontology matching, we have enabled SPHeRe
to execute parallel matching over these complex and
comprehensive ontologies. Therefore, we have evaluated
the performance measures by incorporating it with the
interoperability engine of a clinical decision support sys-
tem (CDSS) and deploying it over a quad-core desktop
PC and four VM cloud platform. We have been able to
achieve an impressive performance speedup of 4.8 times
over the desktop and 9.5 times over the cloud platform
on matching requests for large-scale biomedical ontolo-
gies FMA, NCI, and SNOMED-CT. Furthermore, we
have compared this method with GOMMA’s parallel
matching techniques called inter- and intra-matching
[18] used for matching biomedical ontologies. Our
method outperforms inter- and intra-matching tech-
nique by 50% in performance speedup and 16% in scal-
ability over multi-node platform, proving this method to
be more performance efficient and effective in utilizing
available computational resources.

The rest of the paper is structured as follows. In Section 2,
we provide the methodology used by SPHeRe for match-
ing large-scale biomedical ontologies. Section 3 describes
the experimentation performed over the multicore desk-
top PC and the cloud platform, and discusses the results.
Section 4 briefly discusses the related work in the area of
biomedical ontology matching from the perspective of
performance. Section 5 concludes this paper.

2. METHODOLOGY OVERVIEW

This section provides the overview of the methodology
used by SPHeRe for large-scale biomedical ontology
matching. The intrinsic technical details of SPHeRe’s
implementation are already provided in [22]; further-
more, the finer details of the methodology are compre-
hensively covered in [24].

The primary goal of the methodology is to exploit paral-
lelism-enabled platforms for large-scale biomedical
ontology matching by distributing the matching process
of candidate ontologies, i.e., source ontology and target
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ontology over individual cores as independent matching
tasks. A matching task is the unit of matching process
defined as a single independent execution of matching
algorithm over a resource from source and target ontolo-
gies (e.g., matching the concept “Abdominal skin” from
NCI ontology with the concept “Skin of abdomen” from
FMA ontology by using an element-level synonym
matching algorithm is a single matching task).

The execution flow of our proposed methodology is
described in Figure 1. As illustrated in the figure, to com-
plete the whole matching process, a request is processed
through subset generation, parallel matching, and bridge
ontology generation stages. In subset generation stage,
candidate ontologies are divided into smaller and simpler
subsets based on the ontology matching algorithms. In
parallel matching stage, ontology subsets are distributed
as matching tasks among available computing resources.
In bridge ontology generation stage, matched results are
aggregated and transformed into a formal representation
for utilization. These stages are explained in following
subsections.

2.1 Subset generation

As illustrated in Figure 1, requests for matching large-
scale biomedical ontologies are submitted by providing
either the actual candidate ontologies or uniform
resource identifier (URI). The candidate ontologies
encapsulated by the matching request are fed to the sub-
set generation stage where preprocessing creates smaller,
simpler, and scalable subsets of these ontologies. There
are two primary motivations for the subset approach.
First, large biomedical ontologies are complex in nature
and are not scalable. On the other hand, subsets are built
on linear data structures (e.g., list, arrays) that can be eas-
ily partitioned among multiple threads for efficient scal-
ability. Second, these subsets are generated depending
upon the needs of the matching algorithms; for example,
an element-level synonym-based matcher for concept
names only require a linear data-structure of concepts
and an annotation-based matcher will only require con-
cepts names, their associated labels, and comments. By
this method, subsets of candidate ontologies become
independent of each other; thus, in parallel matching
stage, matching threads will only load those subsets that
required by the matching algorithm(s) they are going to
execute. Consequently, the memory stress during parallel
matching is reduced. In our experiments, we have
recorded as much as 8 times smaller memory footprint
during matching [22]. Furthermore, there is no inter-
thread communication during parallel matching due to
this method.

Parsing large-scale biomedical ontologies is an expen-
sive process, as it requires preprocessor to iterate over
every ontology resource. To preserve this parsing effort,
subsets are serialized to ontology repositories by the
preprocessor. This method facilitates our methodology
to avoid re-processing of processed ontologies for
future matching requests. Moreover, loading an ontol-
ogy subset is faster than loading a whole ontology due
to its simple data structures and smaller size. In our
experiments, we have recorded as much as four times
faster ontology loading from subsets than from a whole
ontology [22].

To facilitate parallel matching in a distributed environ-
ment like cloud, ontology subsets are replicated over par-
ticipating nodes. Furthermore, due to the dynamic and
ever-evolving nature of medical data, evolution in ontol-
ogies is inevitable. To support the continuous change,
instead of re-processing any updated ontology, prepro-
cessing only implements the updated instances in the
primary repository and propagates the changes across
the repositories in secondary nodes.Figure 1: Execution flow

M.B. AMIN ET AL.: EVALUATING LARGE-SCALE BIOMEDICAL ONTOLOGY MATCHING OVER PARALLEL PLATFORMS 417



2.2 Parallel matching

The goal of parallel matching stage is to distribute candi-
date ontology subsets as matching tasks over available
computing cores and invoke matching algorithms on
them. To achieve this goal, total numbers of matching
tasks are determined from serialized subsets of ontolo-
gies and size-based partitioning is performed. Multicore
and multi-node distribution is responsible for the distri-
bution of matching process over computational resour-
ces for invoking data parallelism on candidate ontologies
in parallel matching stage.

In case of multi-node distribution, primary node receives
the whole matching request and divides it among the
participating computing nodes as per their individual
computational resources. These matching requests are
further subdivided by individual nodes into matching
jobs such that each job on a node contains equal number
of matching tasks. Subsequently, a matching job is
assigned to execute over a processing core available on a
participating node. For multi-node matching request dis-
tribution, primary node requires the communication
information of all the secondary nodes. This information
is instantiated as socket objects containing information
of IP addresses and number of computing cores available
on all secondary nodes. These socket objects are persisted
in a configuration table called a socket table. Socket table
generation is a passive process done once per distributed
matching environment warm-up. Multi-node matching
request distribution receives the information regarding
the available computational resource of secondary nodes
from the socket table. Size-based partitioning strategy is
performed on the larger size ontology, resulting in deter-
mination of partitioning slab required for the distribu-
tion of equal number of matching tasks. Depending
upon this distribution, matching requests are created
and sent as control messages to the secondary nodes.

Control messages are received by multicore distribution
of secondary nodes. Matching requests extracted from
the control messages provide each node with the infor-
mation regarding their matching jobs, which include the
information about candidate ontologies and the portion
of matching tasks to be performed. Consequently, every
secondary node loads their respective candidate ontolo-
gies and creates matching jobs by assigning matching
request attributes with matching algorithms. Further-
more, each job is exploited as a thread over a core.

Multicore and multi-node distribution benefits the
matching methodology of SPHeRe by better scalability,
as each core is assigned with equal number of matching

tasks (no idle cores) and executes a single matching job
(single-thread per core). Furthermore, the independent
nature of matching tasks ensures that no communication
takes place among the cores during parallel matching,
thus contributing more in the matching performance.

Flowcharts from Figures 2 and 3 illustrate the multi-node
and multicore distribution algorithms. For explanation,
consider the example of a matching problem of two real-
world ontologies MA (2744 concepts) and NCI (3304
concepts) being matched over a distributed environment
of four nodes each with dual cores. For data parallel dis-
tribution, the essential computation is the derivation of
partitioning slab. This partition slab is calculated by first
taking the size of the bigger ontology, which in this case
is NCI with its 3304 concepts, and dividing it with the
total number of cores present in the distributed environ-
ment (3304/8 D 413). Partitioning slab enables the exe-
cution to determine the starting and ending indexes of
matching tasks for each matching request. For primary
node, two matching jobs are created with first 826 con-
cepts of NCI to be matched with all the concepts of MA.
In parallel, three matching requests are also created for
the three secondary nodes with rest of the 2478 concepts
of NCI i.e., [826, 1652), [1652, 2478), and [2478, 3304)
respectively. At node level, multicore distributor further
classifies each request into matching jobs. Each job is
assigned with their partitioning slab containing their
respective 413 concepts of NCI to be matched with all

Figure 2: Flowchart for multi-node distributor of matching tasks
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the concepts of MA ontology achieving equal distribu-
tion of matching tasks. Executions illustrated in Figures 2
and 3 work hand-in-hand to accomplish the complete
distribution of the ontology matching problem over
available computing resources.

Distribution process also provides an interface to
matcher library, which encapsulates biomedical ontology
matching algorithms with variety of complexity, accu-
racy measures. Instances of these matching algorithms
are assigned to the individual matching tasks during par-
allel matching stage.

2.3 Bridge ontology generation

The goal of bridge ontology generation is to aggregate
matched results from participating node(s) and generate
bridge ontology. Depending upon the deployment plat-
form (single- or multi-node), aggregation of primary
node accumulates matched results from local and remote
distributions, and creates a formal representation of
mappings called mediation bridge ontology [25,26]. This
bridge ontology can be of various patterns depending
upon their usage and biomedical client [26]. The final-
ized mediation bridge ontology is delivered to the
biomedical client as the matching response, and subse-
quently persisted in participating repositories for the
same requests in future.

3. EVALUATION AND DISCUSSION

In this section, we describe the evaluation performed on
SPHeRe by incorporating it with a running instance of a
CDSS [27]. To evaluate our system during this integrated

execution, three of the most complex and large-scale
real-world biomedical ontologies FMA (78,989 con-
cepts), NCI (66,724 concepts), and SNOMED-CT
(122,464 concepts) are used for experimentation. We
have executed a matcher library consisting upon two ele-
ment-level (string-based and annotation-based) and one
structural-level (child-based) [25,26] matching algo-
rithms provided to us by semantic web experts from bio-
medical field. The computational complexity of all these
matching algorithms is !O(n2). Similar to [24], our
matching methodology is evaluated over two widely
available parallel platforms, i.e., multicore desktops and
multi-node cloud platform. Our test scenarios execute
over: (1) a single-node quad-core desktop PC, equipped
with 3.4 Ghz Intel(R) Core i7(R) Hyper-Threaded (Intel
(R) HT Technology) [28] CPU (two threads/core) with
16 GB memory and (2) a medium-sized instance of a
multi-node cloud platform providing four virtual
machines (VM); each VM is provided with 4 GB mem-
ory and two cores. Hence, this cloud platform cumula-
tively provides a test-bed of eight cores and 16 GB of
distributed memory for our system’s evaluation.

3.1 Scenario I: multicore desktop PC

For the first scenario (illustrated in Figure 4), matching
requests are generated from the interoperability engine.
Candidate ontologies FMA (OS) and NCI (OT) are
requested for matching by the interoperability engine.
Subsets of these ontologies Os and Ot are loaded by pre-
processing and provided to multicore distribution. With
the knowledge of available computing resources (two
cores, eight threads) and ontology subsets (Os, Ot)
required by matching algorithms, multicore distributor
creates eight independent matching jobs {MJ1, MJ2, …
MJ8}. Each job is allocated with a set of equal numbers of
independent matching tasks (FMAclasses £ NCIclasses)/8.
As string- and annotation-based matching algorithms
execute on the same subsets of the respective ontologies
{Os, Ot}, multicore distributor assigns these algorithms
to every matching job. Subsequently, multicore distribu-
tor allocates each matching job to a single thread
(matcher thread) for the execution of the matching pro-
cess. All matcher threads are executed in parallel as inde-
pendent matching jobs. After completion of all jobs,
results from all matching threads {R1, R2, … R8} are
accumulated and an intermediate bridge ontology (Ob0)
is generated. Thereafter, preprocessing loads the subsets
of FMA and NCI required for child-based matching
algorithm {O0

s, O0
t} and follows the same procedure of

distribution and accumulation. After completion of
matching jobs executing child-based matching algo-
rithm, matching results are accumulated and another

Figure 3: Flowchart for multicore distributor of matching tasks
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intermediate bridge ontology (Ob1) is generated. Aggre-
gation combines the two intermediate ontologies (Ob1

and Ob2) and generates a formal mediation bridge ontol-
ogy (OB). This bridge ontology is finally delivered to the
interoperability engine of the CDSS. The same scenario
is repeated with FMA (OS) and SNOMED-CT (OT), and
NCI (OS) and SNOMED-CT (OT) ontologies.

3.2 Scenario II: multi-node cloud platform

For the second scenario (illustrated in Figure 5), primary
node receives the matching request for candidate ontolo-
gies, FMA (OS) and NCI (OT), from interoperability
engine. Subsets of candidate ontologies are loaded by
preprocessing of primary node, which consequently
invokes the multi-node distributor for distributed
matching. Socket table at the primary node provides the
multi-node distributor with socket objects for all second-
ary nodes. With the information on available computing
resources (four nodes, one primary and three secondary,
each with two cores available) and ontology subsets (Os,
Ot) required by matching algorithms, multi-node distri-
bution of primary node creates four independent yet
equal size matching requests. The local multicore distrib-
utor handles the first matching request and creates two
independent matching jobs with equal number of inde-
pendent matching tasks. In parallel, multi-node distribu-
tor sends control messages to all three secondary nodes
with their respective matching requests. At receiving
nodes, these matching requests are forwarded to their
local multicore distributors. All four participating nodes
load serialized subsets containing class names,

annotations and labels, and class relationships of FMA
{Os} and NCI {Ot} from their respective ontology reposi-
tories. Onwards, all the nodes execute in multicore exe-
cution mode until an intermediate bridge ontology is
generated by every node (Ob0, Ob1, Ob2, Ob3). These
intermediate bridge ontologies are accumulated by
aggregation at the primary node and finally delivered to
the interoperability engine of the CDSS as the formal
mediation bridge ontology (OB). The same scenario is
repeated with FMA (OS) and SNOMED-CT (OT), and
NCI (OS) and SNOMED-CT (OT) ontologies.

Results from both these scenarios are compared with
conventional sequential flow of the same matching
requests. These results are based on total matching time,
which includes loading time for serialized subsets of can-
didate ontologies, parallel matching time taken by all the
matching requests, and aggregation of matched results to
generate the bridge ontology. These results are discussed
in the following subsection.

3.3 Results and discussions

We have evaluated each scenario with three matching
requests. The first test is performed over a matching
request generated by the interoperability engine for the
whole FMA with whole NCI ontology. For the first sce-
nario, this request executes over quad-core desktop and
the results are described in Figure 6(a). The sequential
process takes a little over 8 h (8.17 h) to complete the
matching request; however, with the use of our data par-
allel methodology over multiple cores, total matching

Figure 4: Scenario I: parallel flow on a single-node quad-core (two threads/core) desktop PC
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time starts improving significantly as more cores are
introduced. With data parallel methodology, the match-
ing process is completed in less than 2 h (1.78 h) over
four cores (D 8 threads) with an performance speedup of
4.58. The same matching request is executed for the sec-
ond scenario over four-node cloud platform and the
results are described in Figure 6(b). The sequential pro-
cess takes over 10 h (10.52 h) to complete; however, by
using our methodology, this time starts improving as
more nodes are added. The time improves to 2.4 times
by executing the request over single node parallel (two
threads). This time further improves by scaling the
matching process over all four nodes. With data parallel
methodology, the matching process is completed in a

little over an hour (1.08 h) with an impressive perfor-
mance speedup of 9.74.

The second test is performed over a matching request
generated by the interoperability engine for the whole
FMA with a large fragment of SNOMED-CT ontology.
For the first scenario, the request executes over quad-
core desktop and the results are described in Figure 7(a).
The sequential process takes 16 h (16.09 h) to complete
the matching request. With our methodology, the
matching process over four cores is completed in 3 h
(3.13 h) with an performance speedup of 5.14. The same
matching request is executed for the second scenario
over four-node cloud platform and the results are

Figure 5: Scenario II: parallel flow on multi-node cloud platform
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described in Figure 7(b). The sequential process takes
over 18 h (18.91 h) to complete. With our data parallel
methodology, this time starts improving as more nodes
are added. The matching time improves to 2.5 times by
executing the request over dual-core single node. This
time further improves by scaling the matching process to
all four nodes. Our methodology completes the matching
process in less than 2 h (1.92 h) with an impressive per-
formance speedup of 9.84.

Third test is performed over a matching request gener-
ated by the interoperability engine for whole NCI with a
large fragment of SNOMED-CT ontology. Similar to the
previous two test runs, the first scenario is executed over
multicore desktop and its results are presented in
Figure 8(a). The sequential process takes over 8 h
(8.63 h) to complete; however, our methodology over
four cores completes the same matching process and
generates the bridge ontology in less than 2 h (1.16 h)
with an performance speedup of 4.76. The same match-
ing request is executed for the second scenario over four-
node cloud platform and the results are described in
Figure 8(b). The sequential process takes over 10 h
(10.55 h) to complete; however, our data parallel meth-
odology takes 4 h over a single node, which is 2.4 times
faster. When scaled over four nodes, our methodology
completes the matching process in a less than 2 h
(1.81 h) with an impressive performance speedup of
9.09. Table 1 summarizes the results from our six test
cases.

Figure 6: Whole FMA with NCI matching results. (a) Multicore
desktop scenario results; (b) multi-node cloud platform scenario
results

Figure 7: Whole FMA with SNOMED-CT matching results.
(a) Multicore desktop scenario results; (b) multi-node cloud plat-
form scenario results

Figure 8: Whole NCI with SNOMED-CT matching results.
(a) Multicore desktop scenario results; (b) multi-node cloud plat-
form scenario results

Table 1: Result summary

Test cases Platform Speedup

FMA £ NCI Quad-core desktop 4.58x
FMA £ NCI 4-node cloud 9.74x
FMA £ SNOMED-CT Quad-core desktop 5.14x
FMA £ SNOMED-CT 4-node cloud 9.84x
NCI £ SNOMED-CT Quad-core desktop 4.76x
NCI £ SNOMED-CT 4-node cloud 9.09x
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3.4 Parallelism efficiency

The execution of the SPHeRe is a three-stage process, i.e.,
preprocessing, parallel matching, and bridge ontology
generation stage. However, from the runtime perspec-
tive, parallel matching is the stage that takes most of the
execution time. Depending upon the type of ontology
matching problem, our results have recorded that
around 90% of the execution time is consumed by the
matching phase which SPHeRe has parallelized for per-
formance benefits. By using the Amadahl’s Law [29], we
can theoretically calculate the performance speedup of
very large-scale biomedical ontology matching problems
with computing cores beyond eight. For example, in case
of 16 cores, with 90% of total execution being in parallel,
the theoretical performance speedup is: 1

0:1C 0:9
16
D 6:41.

Similarly, in case of 24 and 32 cores, with 90% of total
execution being in parallel, the theoretical performance
speedup is 7.29£ and 7.8£, respectively.

4. RELATED WORK

In this section, we overview the related tools and techni-
ques built for matching biomedical ontologies. Some of
the discussed systems are particularly built for biomedi-
cal ontologies; however, few are generic ontology match-
ing systems with matching support for biomedical
ontologies.

SAMBO [30] is a pioneering system for aligning and
merging biomedical ontologies. Its implementation uses
WordNet [31], UMLS as meta-thesaurus, and PubMed
abstracts for higher accuracy in alignments. These third-
party thesauri and resources are slow in nature and
create performance bottlenecks while matching over mil-
lions of concepts. Besides that, SAMBO’s sequential
nature of execution limits its abilities to overcome its
performance bottlenecks with better and parallel plat-
forms. For SAMBO’s evaluation, the authors have used
very small subsets of biomedical ontologies GO (57 and
73 terms) with SigO (10 and 17 terms) [32] and MeSH
(15, 39, and 45 terms) [33] with MA (18, 77, and 112
terms) [34] and have not provided any benchmarks
regarding large-scale biomedical ontologies. However,
from the results of OAEI 2008 [35], SAMBO took 12 h
to complete the anatomy track of biomedical ontologies
NCI and MA.

ASMOV [36] is another ontology matching system with
the motivation of producing alignments for biomedical
ontologies. With its computational performance being
dependent on the comprehensiveness of its matching
algorithms, the authors of [36] acknowledged that, effort

is required to improve the computational complexity of
the system. Due to its sequential execution, ASMOV is
unable to avail any performance benefits from parallel
platforms. Evaluation of ASMOV over anatomy parts of
NCI (3304 classes) with Adult Mouse Anatomy (2744
classes) is provided in [36]. Even for such a small match-
ing task, ASMOV took 3 h to complete the matching
process.

ServOMap [37] is another ontology matching system
built particularly for matching large-scale biomedical
ontologies. ServOMap has been able to record a better
performance over large-scale biomedical ontologies
FMA, NCI, and SNOMED-CT; however, from [37], it is
understood that this performance gain is due to the
absence of third-party resources and thesauri. ServOMap
does not implement any performance gain techniques
that can exploit parallelism for the benefit of matching.

In current state-of-the-art generic ontology matching
systems, i.e., AgrMaker [38], LogMap [39], and
GOMMA [40], performance has been given a vital con-
sideration. Performance of AgrMaker depends upon the
iterative execution of matching algorithms. However,
with no parallelism at all, baseline performance of Agr-
Maker depends upon the complexity of the first iteration
of matching algorithms. From OAEI 2011.5 campaign,
AgrMaker scored the highest precision over matching
biomedical ontologies, but lagged over performance. It
did not take part in any further OAEI campaigns.

LogMap is a generic ontology matching system with a
step-by-step matching process. For performance reasons,
it uses highly optimized data structures for lexical and
structural indexing; however, similar to AgrMaker, the
whole matching process is sequential in nature.

Among the state-of-the-art ontology matching systems,
GOMMA is considered the most performance efficient
ontology-matching tool. The authors of GOMMA have
proposed inter- and intra-matcher parallelism techniques,
which uses parallel and distributed infrastructure for
ontology matching to achieve a better performance [40].
Inter-matcher parallelism processes independent matchers
on a parallel platform. However, as mentioned by the
authors of [18], due to its high memory requirements,
inter-matcher creates memory strains during execution.
On the other hand, intra-matcher parallelism deals with
decomposition of ontology resources into several finer
parts with limited complexity. However, the definition of
granularity has not been provided. Furthermore, neither
inter- nor intra-matcher guarantees the optimal computa-
tional resource utilization, and the ontologies used for
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their evaluation are far smaller in size, i.e., Adult Mouse
Anatomy MA (2737 concepts) with anatomical part of
NCI Thesaurus (3289 concepts) and two GO sub-ontolo-
gies Molecular Function (9395 concepts) with Biological
Processes (17,104 concepts). We have evaluated SPHeRe’s
methodology of matching biomedical ontologies by com-
paring the results with intra- and inter-matcher (Intra&-
Inter) technique. Although the evaluation setup used by
[18] is far superior to our commodity hardware and the
ontologies used are far smaller in size, SPHeRe has been
able to outperform Intra&Inter matcher in performance
speedup and scalability.

Performance speedup comparison between Intra&Inter
matcher and methodology of SPHeRe is described in
Table 2. Results have been drawn over eight cores single-
and multi-node configuration, where a single thread
exploits each core. Due to our explicit distribution of
matching request to independent matching jobs and
matching tasks over individual cores by thread-level par-
allelism, SPHeRe was able to outperform Intra&Inter
matcher, even with ontologies larger in size and platform
with weaker computation power. Due to the magnitude
of the large-scale biomedical ontology-matching problem,
it requires a distributed environment for performance-
based resolution; thus, efficiency of multi-node distribu-
tion is the key. As shown in Table 2, on a multi-node con-
figuration, our methodology’s performance speedup is far
ahead (50%) of Intra&Inter matcher. Therefore, SPHeRe
is more effective for parallel large-scale biomedical ontol-
ogy matching than Intra&Inter matcher.

Reduction score described in Table 3 measures the scal-
ability of both methodologies. Results are calculated by
using OAEI’s formula for reduction score, which is a
ratio between execution time on n cores and execution
time on a single core. For example, in case of four cores:

Rscore D
T4

T1
£100 j Tx ! execution time on x cores:

System with the best scalability will score around 25%.
Due to our distribution that ensures reduced chances of
idle cores, our methodology outperforms Intra&Inter
matcher again by scoring closer to 25%. This score shows
that SPHeRe’s methodology utilizes computational
resources far more efficiently than Intra&Inter matcher.

5. CONCLUSION

In this paper, we presented methodology of our ontol-
ogy-matching tool, i.e., SPHeRe for matching large-scale
biomedical ontologies equipped with parallel matching
for performance benefits. Ontology matching is a widely
used technique for integration and interoperability
among biomedical systems; however, size and complex-
ity of these ontologies require solutions that are built
from a performance aspect. With the availability of
affordable multicore platforms like desktop and cloud,
SPHeRe exploits their performance benefits by thread-
level parallelism for ontology matching. Its methodology
decomposes the large complex biomedical ontologies
into simple and scalable resource-based ontology subsets,
based on matching algorithms. These subsets are further
used by distribution components for parallel matching
over available computing nodes and their cores. Results
from parallel matching are aggregated from all comput-
ing resources and delivered as a bridge ontology map-
ping file. We have benchmarked our system by
incorporating it with an interoperability engine of a
CDSS. Its methodology has shown substantial perfor-
mance speedup over multicore platforms (desktop and
cloud) while matching large biomedical ontologies, i.e.,
FMA, NCI, and SNOMED-CT. It has also outperformed
Intra&Inter matcher technique in scalability and perfor-
mance speedup.

Our presented methodology benefits biomedical profes-
sionals, researchers, and systems, which rely on large-
scale biomedical ontologies for biomedical resource
annotation to provide integration, aggregation, and
interoperability. Due to the complex and increasing size
of these ontologies, a biomedical client either has to wait
or may acquire expensive computational platforms (e.g.,
high-end servers and HPC clusters) for in-time results.
Our methodology provides the resolution to these medi-
cal clients by taking care of large and complex biomedi-
cal ontologies and performs matching operations in
parallel over affordable platforms. The distribution
method is built to scale from multicore desktop PCs to
ubiquitous and affordable distributed multi-node plat-
forms like clouds for a better performance. For higher
accuracy, biomedical ontology matching algorithms may
require utilization of external thesauri like UMLS,

Table 2: Performance speedup comparison

Platform
Intra- and inter-matcher

speedup
SPHeRe
speedup Improvement

Single-node 4.5!5.0 4.5!5.1 2%
Multi-node 6.5 9.0!9.8 50%

Table 3: Reduction score comparison

Platform Intra- and inter-matcher (variation from 25%) SPHeRe

Single-node 30% (C5) 27% (C2)
Multi-node 31% (C6) 26% (C1)
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PubMed, and WordNet; however, these thesauri are slow
in performance due to their high complexity search algo-
rithms. Although SPHeRe cannot intervene in the inter-
nal implementation of these algorithms, nevertheless, it
can contribute in overcoming this slowness by perfor-
mance exploitation from parallel hardware.

In the current implementation of SPHeRe, multi-node
distribution presumes the distributed environment to be
homogenous. However, in case of heterogeneous distrib-
uted environment where different nodes have varying
computational abilities, current even distribution can lead
to idle cores. In future, this limitation can be resolved by
intelligent distribution of the matching tasks with consid-
eration of nodes’ computational abilities. Furthermore, we
plan on extending the implementation of SPHeRe from
an application to a platform with service-based access.
This extension will facilitate the biomedical experts to
integrate their own algorithms for matching large-scale
biomedical ontologies over a parallel platform.
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