
Reflective Middleware for Location-Aware Application
Adaptation*

Uzair Ahmad1, Mahrin Iqbal2, Uzma Nasir2, Arshad Ali2, Sung Young Lee1

Mudeem Iqbal3, Young-Koo Lee1

1Computer Engineering Dept. Kyung Hee University, 449-701 Suwon, Republic of Korea
2NUST Institute of Information Technology, 3FAST, Pakistan

1{uzair, sylee, yklee}@oslab.khu.ac.kr,
2{54mahrin, 54uzma,arshad.ali}@niit.edu.pk

Abstract. Today mobile computing is pervasively taking over the traditional
desktop computing. Mobile devices are characterized by abrupt and un-
announced changes in execution context. The applications running on these de-
vices need to be autonomous and thus dynamically adapt according to the
changing context. Existing middleware support for the typical distributed appli-
cations is strictly based on component technology. Future mobile applications
require highly dynamic and adaptive services from the middleware components
i.e. context-aware autonomic adaptation. Traditional middleware do not address
this emerging need of wide ranges of mobile applications mainly because of
their monolithic and inflexible nature. It is hypothesized that such application
adaptation can be achieved through meta-level protocols that can reflectively
change the state and behaviors of the system. We integrate Component Tech-
nology with our active Meta Object Protocols for enabling mobile applications
to become adaptive for different contexts. This paper implements the applica-
tion adaptation service of this middleware. It specialize the concept of Meta
Object Protocols for autonomic adaptation of mobile applications. ActiveMOP
provide robust and highly flexible framework for autonomic component devel-
opment for mobile applications. It proved to be a very simple and powerful way
to programmatically develop location-driven applications based on autonomic
components.

1 Introduction

Adaptivity is a distinguishing characteristic of emerging Ubiquitous Computing envi-
ronments that clearly separates it from desktop computing. Software are supposed to
be adaptive towards changing environments, ad hoc networks, multitude of commu-
nication protocols and most importantly user’s current context.

* This research was supported by the MIC(Ministry of Information and Communication), Korea, under
the ITRC(Information Technology Research Center) support program supervised by the IITA(Institute of
Information Technology Assessment)

Desktop computing is no longer sufficient to meet the ever-increasing information
needs of the highly mobile world. Future computing environments promise to free the
user from the constraints of this stationary desktop Computing. But mobile devices
are characterized by abrupt and un-announced changes in execution context. The
applications running on these devices need to be autonomous and thus dynamically
reconfigure according to the changing context [1].

The conventional Middleware do not provide appropriate support for dealing with
the dynamic aspects of this new mobile computational infrastructure. Due to this
reason today the research focus is shifting from Static Design time services to run-
time adaptive services. [2], [3], [4] and [5]. Application adaptation can be achieved
through meta-level protocols that can reflect internal state and behaviors of the sys-
tem.

1.1 Application Adaptation and Meta Object Protocols

Reflection is a discipline to achieve inspection and adaptability [4], [6], [5] and the
protocols designed to achieve reflection are known as the “Meta Object Protocols”.
MOPs can enable software to change itself e.g. alter its behaviors, reconfigure its
settings, recover the damages, optimize its structures, and install new security mecha-
nisms. As shown in Fig. 1, the meta object can be changed at runtime to get adaptive
services.

Fig. 1. MOPs at work

Meta Object Protocols are an abstraction of the computational process where the
protocols governing the execution of the program are exposed. A Meta Object is
bound to the base object and controls the execution of the object. The method calls
going to base object are intercepted and diverted to the Meta Object. By changing the
implementation of the Meta Object the object's execution can be adjusted in a princi-
pled way.

1.2 A Middleware using MOPs

A major advantage of using middleware to develop software is that it hides the details
of the underlying layers and operating system specific interfaces. Developers of dis-
tributed applications can write code that looks similar to code for centralized applica-

tions; the middleware takes care of networking, method dispatching, scheduling etc.
The code running on top of the middleware is easily portable and the programmer
need not to worry about the internals of the operating system and of the middleware.
System and application code may use meta-interfaces to inspect the internal configu-
ration of the middleware and when needed, reconfigure it to adapt to changes in the
environment. Hence it becomes possible to choose networking protocols, security
policies, encoding algorithms [3], and various other components to provide personal-
ized service for different contexts and locations.
Our focus is on building a fully dynamic middleware thus providing development
APIs for the development of Location-Driven applications so that at runtime behavior
adaptive services can be provided depending upon the location of the mobile client.
This research specializes the concept of Meta Object Protocols and introduces Ac-
tiveMOP that has been used in our Location Driven Adaptive Middleware (LDAM)
for robust highly flexible application adaptation.

2 Existing work

Dynamic TAO [7] is an extension of the C++ TAO ORB [8], enabling runtime recon-
figuration of the ORB internal engine and of applications running on top of it. But
being built on top of the static code of TAO it does not provide much flexibility for
offering adaptability. The Open ORB project [9] aims at the design of highly config-
urable and dynamically reconfigurable middleware platforms to support applications
with dynamic requirements. It is built using components, component frameworks and
reflection. But using many component frameworks increases the size of the middle-
ware implementation; extra management functionality for managing reconfiguration
exhausts the constrained resources of the mobile device. Moreover these existing
systems like Dynamic TAO and Open ORB are built for application domains, such as
multimedia and real-time only and do not address many other issues related to mid-
dleware in mobile computing. [5] Identifies that the key property in supporting mo-
bile computing is the ability to seamlessly interoperate with the range of ubiquitous
devices that are encountered by the mobile device as it changes location. Therefore,
the Universal Interoperable Core (UIC) [5] has been developed; this reflective mid-
dleware is loosely based on the reconfiguration techniques of Dynamic TAO. The
platform can change between different middleware personalities. But the implementa-
tion of UIC concentrates on synchronous middleware styles and does not implement
all paradigm types that could be encountered in a ubiquitous environment. [10]

ReMMoC [10] also examines the use of reflection and component technology to
overcome the problems of heterogeneous middleware technology in the mobile envi-
ronment as in OpenORB. But, ReMMoC consists of two key component frameworks:
(1) a binding framework for interoperation with mobile services implemented upon
different middleware types, and (2) a service discovery framework for discovering
services advertised by a range of service discovery protocols [10]. Hence it over
comes the problem of exhaustion of the mobile devices resources. It uses OpenCOM
[2] as its underlying component technology. OpenCOM uses a subset of Microsoft
COM technology, hence is not an open source middleware. It needs an Active Space

(a physical space where mobile devices communicate via certain set mechanisms)
called Gia for its execution.

To our best knowledge MOP are not used to specifically address the Location-
driven Adaptation of applications for handheld devices and mobile clients. This prob-
lem faces a number of challenges in order to be operative for really interactive mobile
applications. There is a need to extend component technology to take the benefit of
MOP in order to support rich behavior adaptation. They should be supporting hetero-
geneous client handheld devices and independent of a particular wireless operating
environment. Furthermore unlike existing MOP implementations, it should be self
managing to support autonomic component development.
We propose a design pattern called the Autonomist Design Pattern that can be used to
design Meta Object Protocols for dynamic adaptation of mobile applications. Ac-
tiveMOP has been built using Autonomist DP that supports behavior as well as appli-
cation adaptation. Location Driven Adaptive Middleware (LDAM) is a middleware
that implements ActiveMOP to provide development as well as run time adaptive
services to location driven mobile applications across different environments in a
principled manner.

3 Autonomist DP

As part of this research we have developed a design pattern, known as the Autono-
mist DP that supports design of Meta Object Protocols for application adaptation and
construction of components that are Autonomic in nature. The design pattern offers
adaptation at the behavioral as well as the application level. Its participants are shown
in Fig 2. The Autonomic Component is at the base level, while the Autonomic Ser-
vice and Service Template are at the meta level. The Meta Controller acts as a media-
tor between the base and the meta level and intercepts all the calls coming to the base
level, sets the meta level with new behaviors and calls the base level that experiences
new changed behaviors.

Fig. 2. Autonomist DP Participants

4 ActiveMOP

To show the strength of Autonomist DP, ActiveMOP was constructed. Fig. 3 shows
ActiveMOP working. When a mobile client invokes the base level, the Meta Control-
ler intercepts this call. The Meta Controller registers this client with the location ser-
vice (which is peer research involving location sensing MOPs). After registration the
Meta Controller is constantly updated about the clients location and sets the Auto-
nomic Service with each update. In turn the Autonomic Service sets the Behavior
Template based on the location value. Since location updation and behavior switching

is done actively, that is why this MOP is called the ActiveMOP.
Fig. 3. ActiveMOP working

5 LDAM

Location Driven Adaptive Middleware (LDAM) is a middleware that provides devel-
opment as well as run time adaptive services for location driven mobile applications
across different environments. ActiveMOP has been used to make LDAM capable of
behavior level as well as application level adaptation specifically based on changing
location.

5.1 System Architecture of LDAM

In the LDAM architecture the behavior adaptive services are realized through the
components of ActiveMOP. All the components are part of a centralized Container
that pools different components for instant execution.

• Container.
Container is the main holder of all the components. It controls all the activity of the
reflective middleware. When the container is started up, it initializes all the Auto-
nomic Components in a pool. It also initializes a Meta space that contains a pool of
various template behaviors, the autonomic service object pool and the location ser-
vice object pool.

Fig. 4. (a) Descriptor defines LDAM container; (b) Dedicated Meta Controller for each

mobile client

At the time of arrival of a client, the container fetches a behavior adaptive service
(Autonomic Service) object and a location service object from the respective pools
and binds it with a dedicated Meta Controller.
• Meta Controller
The Meta Controller acts as a mediator and interceptor of calls coming to the base
level. It sets up the Meta level based upon the current location of the client and calls
the base level method to execute the new behavior. The Meta Controller offers net-
work transparency and hides the implementation details from the client.
• Autonomic Component
The Autonomic Component is a representative of the client application. It is the base
level component containing an Autonomic Method, the execution of which is con-
trolled by the Meta Controller.
• Behavioral Templates.
The behavioral templates are different template applications that are actually the
adaptive behaviors for each particular location. Service Template is an interface that
defines these behavior templates. These different BTs are the multiple implementa-
tions identifying a complete working component present against each Autonomic
Component.
• Autonomic Service.
Autonomic service is setup by the Meta controller for each client. The location attrib-
ute is passed to the autonomic service by the Meta controller whenever behavior
adaptation is required. The task of the Autonomic Service is to match the behavior
with its corresponding Location. The resulting Template Behavior is set for execution

a b

in the service residing in the Autonomic Component. The Meta Controller invokes
the Autonomic Method to execute the new template behavior through this service.
• Location Service.
The second part of this research is to provide Meta Object Protocols (MOPs) for
location monitoring, acquisition and updation. It facilitates the development of loca-
tion sensitive applications by providing standard vocabulary in the form of APIs that
encapsulate in them the description of location awareness thus shielding the pro-
grammer from many tedious and error prone aspects of location determination of an
object representing a mobile device.

7 Implementation Results

The initial size of the client is very small, but without behavior adaptation the in-
crease in behaviors causes a drastic increase in client size.

Fig. 5. Behavior Adaptation (BA) service size comparison

Through behavior adaptation in LDAM though, no code for the behavioral templates
is present on the client. For as many behaviors there is no change in client size. This
is shown in Fig.5.

Pooling was incorporated in LDAM after seeing the remarkable results found for
component loading when they were already pooled. These results have been shown in
Fig. 6. As the number of components increases the time for initializing them increases
rapidly.

Fig. 6. Pooling vs. no pooling

The startup time for the client was noted to vary between 2ms to 20ms. This was the
case when the Container initializes the Meta Controller by fetching components from
each pool. Incase there is no pooling the components have to be instantiated each
time a new client comes. This was noted to vary in range of 20 to 37 milliseconds.

Fig. 7. Behavior switching time comparison

Pooling also resulted in fast execution of behavior adaptation process. At location
change time the behavior switching was transparent for the client, i.e. it took the Meta
controller nearly 0 ms to change the behavior. Whereas without pooling, when each
time instantiation of components is required, it took 15 to 64 ms to switch a behavior.
Pooled components save both startup as well as execution time of the client.

Fig. 8. Shows ActiveMOP comparison with OpenCOM for, the number of null
method (method with no code) invocations possible in one millisecond. Through

ActiveMOP 4.219 calls can be made in one millisecond while in OpenCOM only
0.78 calls can be made in one millisecond.

Fig. 8. ActiveMOP comparison with OpenCOM

All the tests for LDAM were conducted on Pentium III 800 M-Hz machine with
256MB RAM. The tests for OpenCOM had been performed on Dell Precision 410MT
workstation with 256Mb RAM and Intel Pentium III processor 550Mhz. The operat-
ing system was Microsoft’s Windows2000.

8 Conclusion

In this paper a generic architecture for a behavioral adaptive middleware targeting
location driven applications is presented where emphasis has been laid upon dynamic
behavior adaptation of the client device keeping in view the fact that mobile devices
have a small memory footprint and the behavior adaptive services need to be light-
weight and flexible. This middleware was named LDAM, Location-Driven Adaptive
Middleware. It is a combination of component technology and Meta object protocols
to be capable of providing adaptive services to the mobile client.

The Autonomist Design Pattern opens up new avenues for application program-
mers who want to design systems to implement adaptation at different granularity
levels i.e. application, behaviors. ActiveMOP provides complete supports for loca-
tion-based adaptation at the behavior level as well as the application level. This adap-
tation is transparent for the client since pooling the components makes behavior-
switching time reduce to being negligible. The LDAM client enjoys a vast range of
behavioral services with no burden on the memory.

References

1. Research.IBM.com/autonomous (2002)
2. Clarke, M., Blair, G., Coulson, G. and Parlavantzas, N. “An Efficient Component Model for

the Construction of Adaptive Middleware”. In Proceedings of Middleware 2001, Heidelberg,
Germany (November 2001)

3. Fabio Kon et al, The case for reflective middleware Communications of the ACM Volume
45, Issue 6 (June 2002)

4. L. Capra et al "Exploiting Reflection in Mobile Computing Middleware". In ACM,
SIGMOBILE Mobile Computing and Communications Review.

5. Roman, M., Kon, F. and Campbell, R. H. “Reflective Middleware: From Your Desk to Your
Hand”. IEEE DS Online, Special Issue on Reflective Middleware, 2001.

6. Thomas Ledoux. OpenCORBA: A Reflective Open Broker. In Proceedings of Reflection’99,
number 1616 in LNCS, pages 197–214, St. Malo, France, July 1999. Springer Verlar.

7. Fabio Kon, Manuel Rom´an, Ping Liu, Jina Mao, Tomonori Yamane, Luiz Claudio Magal-
haes, and Roy H. Campbell. Monitoring, Security, and Dynamic Configuration with the dy-
namicTAO Reflective ORB. In Proceedings of the IFIP/ACM International Conference on
Distributed Systems Platforms and Open Distributed Processing (Middleware’2000), num-
ber 1795 in LNCS, pages 121–143, New York, April 2000. Springer-Verlag.

8. Douglas C. Schmidt and Chris Cleeland. Applying Patterns to Develop Extensible ORB
Middleware. IEEE Communications Magazine Special Issue on De-sign Patterns, 37(4):54–
63, May 1999.

9. Gordon S. Blair, Geoff Coulson, An-ders Andersen, Lynne Blair, Michael Clarke, F´abio
Costa, Hector Duran-Limon, Tom Fitzpatrick, Lee Johnston, Rui Moreira, Nikos Parlavant-
zas, and Katia Saikoski. The Design and Implementation of Open ORB 2. IEEE Distributed
Systems Online, 2(6), 2001.

10. Paul Grace, Gordon S. Blair and Sam Samuel. Interoperating with Services in a Mobile
Environment. Distributed Multimedia Research Group, Computing Department. Lancaster
University, Lancaster, LA1 4YR, UK., Global Wireless Systems Research, Bell Laborato-
ries, Lucent Technologies, Quadrant, Stonehill Green, Westlea, Swindon, SN5 7DJ.
lsamuel@lucent.com, p.grace@lancaster.ac.uk, gordon@comp.lancs.ac.uk

