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Abstract— This paper presents a robust foreground detection
method capable of adapting to different motion speeds in scenes.
A key contribution of this paper is the background estima-
tion using a proposed novel algorithm, neighbor-based intensity
correction (NIC), that identifies and modifies the motion pixels
from the difference of the background and the current frame.
Concretely, the first frame is considered as an initial background
that is updated with the pixel intensity from each new frame
based on the examination of neighborhood pixels. These pixels
are formed into windows generated from the background and
the current frame to identify whether a pixel belongs to the
background or the current frame. The intensity modification
procedure is based on the comparison of the standard deviation
values calculated from two pixel windows. The robustness of the
current background is further measured using pixel steadiness
as an additional condition for the updating process. Finally, the
foreground is detected by the background subtraction scheme
with an optimal threshold calculated by the Otsu method. This
method is benchmarked on several well-known data sets in
the object detection and tracking domain, such as CAVIAR
2004, AVSS 2007, PETS 2009, PETS 2014, and CDNET 2014.
We also compare the accuracy of the proposed method with
other state-of-the-art methods via standard quantitative metrics
under different parameter configurations. In the experiments,
NIC approach outperforms several advanced methods on
depressing the detected foreground confusions due to light arti-
fact, illumination change, and camera jitter in dynamic scenes.

Index Terms— Adaptive Otsu thresholding, background
subtraction, foreground detection, neighbor-based intensity
correction (NIC).

I. INTRODUCTION

DURING recent years, the low price of camera devices
has contributed to the popularity of video-based

surveillance systems. Despite the benefits in surveillance and
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security applications, an important challenge of such sys-
tems is accuracy [1]. Surveillance systems have to process
large amounts of data from multiple cameras at the same
time, which complicates their real-time application. In the
analysis of human or traffic flow, the efficiency of a sur-
veillance system significantly depends on its object detection
capability. The appearance of objects in a video sequence
can be detected using many techniques, which are generally
classified into three main categories: 1) frame difference [2];
2) optical flow [3]; and 3) background subtraction [4]. In the
frame difference technique, objects in the current frame are
detected by thresholding the difference of two adjacent frames.
However, differences might not be strong enough to fully
describe objects if they are moving slowly. The optical flow
technique builds on the velocity field which warps one image
into another. In this technique, the movement of pixels in a
frame sequence is detected by analyzing the change of pixel
intensity. Difficulties in calculating the true velocity and repre-
sentation of the moving information are the main limitations of
this approach. Finally, the background subtraction technique,
the most commonly used method for foreground detection,
determines objects by extracting the difference between the
current frame and the background. This technique consists of
two stages: 1) background estimation from the frame sequence
and 2) foreground extraction by subtracting the estimated
background.

Despite the widespread use of background subtraction tech-
niques, this class of approaches presents some crucial draw-
backs, including its performance in terms of computational
costs and the accuracy of the background estimation [5]. The
background is fundamentally defined as the reference frame,
in which pixel intensities appear with the highest probability.
Several existing estimation algorithms for foreground detec-
tion [6], such as the Gaussian mixture model (GMM) and
kernel density estimation (KDE), are susceptible to harsh con-
ditions such as luminance changes and repetitive movements.
Although these models can enhance their accuracy by using
more frames for the background estimation, they are ineffec-
tive in most practical situations because of their high com-
putational costs. Some developments have been considered to
overcome the problems; however, those options also increase
the complexity of the calculations [7]. Another problem in
background subtraction is thresholding the difference image
for foreground segmentation. The threshold value is identified
to separate the grayscale difference image into two parts:
1) the scene background with pixel intensity smaller than the
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TABLE I

TAXONOMY OF EXISTING BACKGROUND SUBTRACTION METHODS

threshold and 2) the foreground with pixel intensity greater
than the threshold. This value directly affects the detection
results: some objects may be neglected if this value is set too
high, but unexpected noise such as shadows or light artifacts
can be recognized as candidate objects if the value is set too
low.

In this paper, we propose an efficient background subtrac-
tion method based on a novel background estimation algo-
rithm, neighbor-based intensity correction (NIC), to enhance
foreground detection accuracy in dynamic scenes. The idea
comes from the consideration and comparison of two intensity
patterns generated from the background and the current frame
to modify the pixel intensity in the current background. First,
the algorithm detects motion pixels in the scene and filters
them with a steadiness factor. This factor, which measures the
steadiness of every pixel in the current background, is consec-
utively updated for each frame. As the main contribution, the
rule for intensity modification is then performed by comparing
the standard deviation results calculated from neighbor pixels
to decide whether a current pixel belongs to the background
or the current frame. By adjusting the window size, the
algorithm is flexible enough to detect multiple objects moving
at different speeds in a scene. The estimated background is
next provided to the background subtraction scheme to extract
the foreground with an optimal threshold identified by the Otsu
method. We benchmarked our proposed scheme on several
well-known data sets for object detection and tracking area
using standard statistical factors. Both qualitative and quantita-
tive assessments show the superiority of our proposed method
in dynamic environments. We also compare the foreground
detection accuracy of the proposed method with that of recent
state-of-the-art methods.

The remainder of this paper is organized as follows.
Section II reviews existing background estimation algorithms.
Section III describes the background subtraction scheme with
the NIC algorithm for modeling. We present our experimental
results in background estimation and foreground detection
with discussion and comparison with other state-of-the-art
algorithms in Section IV. The conclusion and suggestion for
future work are given in Section V.

II. RELATED WORK

In background subtraction techniques, an observed image is
compared with an estimated background image that does not
contain objects. This comparison process, called foreground
detection, separates an image into two sets: one contains
the object area, denoted by 1-b pixels, and another contains
the background of a scene, denoted by 0-b pixels. In the
background subtraction technique, the estimated background
has an important influence on the detection accuracy rate as
evidenced by many studies devoted to this issue. Taxonomy
of existing background subtraction methods is summarized
in Table I.

A simple scheme to model the background of a scene is
the statistical approach [8]–[12]. By observing several frames
from the input video sequence, these schemes determine each
pixel intensity using the highest probability. Thus, Li et al. [8]
incorporated the most significant and frequent features of each
pixel in the spatiotemporal dimension with a Bayesian network
to describe the background appearance. The scheme proposed
in [9] extended the work of [8] by replacing pixel-based
statistics with region-based statistics by merging and splitting
the dynamic background region. Akula et al. [11] generated
a reference background from an initial set of N frames by
taking the pixelwise median of each frame. The statistical
background model for each pixel of the input set of N frames
is constructed by calculating the weighted variance of the
image. The algorithms described in [13] and [14] exploited
color variance to dynamically retrieve the initial background
through a series of frames. The limitation of statistical methods
is that they may falsely combine foreground objects into the
background when objects remain still for a long time.

GMM, the most commonly used technique for background
estimation, was first introduced in [15] and [16]. In this
technique, each pixel value is estimated using a Gaussian
mixture and is continuously updated by an online approxi-
mation. The downside of the GMM derives from its assump-
tions that the background area is larger and more frequently
visible than the foreground area and that its variance is
small enough. Several improved versions [17]–[23] have
been proposed for object detection using the background
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subtraction technique. For example, Zivkovic [17] considered
an improved adaptive GMM (I-GMM), in which the para-
meters and components of the mixture model are constantly
computed for each adaptive pixel. Shimada et al. [19] focused
on an automatic mechanism to change the number of Gaussian
kernels in each pixel to reduce computational cost. Another
development of GMM [18] is to improve the convergence
rate of the estimation process. Elqursh and Elgammal [20]
modeled tracking content in a low-dimensional space by using
GMM for motion estimation in a moving camera environment.
To eliminate illumination changes and noise in intelligent
video-based surveillance systems, a novel GMM-based solu-
tion was proposed in [21]. The approach has three key
contents: 1) an explicit spectral reflection model analysis;
2) an online expectation-maximization algorithm; and
3) a two-stage foreground detection algorithm. Followed
by probabilistic regularization, a Dirichlet process-based
GMM [23] was proposed to estimate per-pixel background
distributions. For continuous update of scene changes in the
model, researchers have also developed some learning models
to improve performance in specific cases. To automatically
determine the parameters of the GMM algorithm, a parti-
cle swarm optimization method and an online self-adaptive
mechanism using an iterative log-moment estimation [42] have
also been considered. Although GMM-based improvements
have been proposed for difficult scenes, they still have general
limitations. First, the background sensitivity cannot be accu-
rately adjusted, so the model can miss the detection of some
low-speed objects. Second, parameter estimation is not an easy
task in noisy real-world environments, especially those with
variant features in the hardware implementation.

To avoid parameter tuning for the probabilistic model,
some researchers focus on nonparametric approaches for back-
ground modeling. A real-time algorithm first proposed in [24]
quantizes the background pixel values into codebooks that
describe a compressed background model for a number of
frames. Many approaches [25]–[28], [43] were proposed to
improve accuracy in poor conditions. To tolerate environmen-
tal changes such as dynamic backgrounds and sudden changes
of luminance, Lin et al. [27] described a single-layer code-
book model. Including parameters of frequency for accessing,
deleting, matching, and adding code words into the basic
model, Ilyas et al.’s method [25] shows significant improve-
ments in most settings. In another research, Guo et al. [26]
proposed a multilayer codebook model to remove most of
the nonstationary background and improve the processing
efficiency. Although they can obtain high performance in real-
time environments, the drawback of codebook approaches is
the long time required to construct the model and the high
amount of memory needed to store the code words.

Another nonparametric approach often used in background
subtraction is KDE [44]. This technique estimates the prob-
ability density function with a histogram to redefine the
values of current background pixels. Some authors have
used KDE to decide whether a pixel belongs to the back-
ground or foreground, Mittal and Paragios [5] estimated
density functions for foreground detection by integrating
the intensity information and optical flow content, and

Tang et al. [29] proposed weighted-KDE with a probability
map construction algorithm to automatically extract the fore-
ground. Li et al. [30] proposed a real-time moving object
detection scheme developed on KDE to eliminate noise,
remove shadow, and enhance the foreground contour. The
foreground-adaptive background subtraction method [31] con-
siders the KDE-based background model because of its sim-
plicity and high performance. Liu et al. [33] presented a hybrid
model integrating KDE and GMM to construct a probability
density function for the background and moving object model.
Although KDE-based methods can provide fast responses to
high-speed movement, their ability to handle concomitant
movement events at various speeds is restricted by their first-in
first-out updating manner.

Barnich and Van Droogenbroeck [34], [35] proposed the
visual background extraction (ViBE) background modeling
technique. It determines whether a pixel belongs to the back-
ground by randomly comparing its intensity within neigh-
borhoods. It then propagates the pixel intensity into the
background model as the neighboring pixel for the next
pixel examination. ViBE outperforms some state-of-the-art
methods in computational speed and estimated background
quality in experiments. The ViBE downscale version makes
the computational cost small enough for it to be embedded
into digital cameras at the expense of accuracy. Although
ViBE can provide satisfactory detection results compared with
existing approaches, it has issues under harsh conditions, such
as scenes with a dark background, shadows, and frequent
background changes.

In the sparse modeling domain, background subtraction
techniques use variants of principle component analysis and
matrix decomposition methods, in which the background is
estimated with an adaptive subspace. In another research,
Guyon et al. [45] addressed the spatial connections of the
foreground pixels by using a low-rank and block-sparse matrix
decomposition. For salient motion detection in a realistic
environment, Gao et al. [46] contributed dynamic estimation
to impose spatial coherence between regions in the foreground.
Compared with GMM-based approaches, a recursive algo-
rithm [47] based on the sigma-delta filter is an interesting
attempt because of its high-speed processing and very low
memory requirement. An improved version of the sigma-delta
algorithm was suggested in [36] to cope with slow motion
and objects that stop suddenly. It applies an intensity pixel
updating mechanism based on the confidence level and image
covariance at each pixel. In another study, Vargas et al. [37]
developed a basic algorithm to reduce the computational cost
of background modeling. To balance the computational cost
and background robustness, it used a confidence measurement
for each pixel in its selective background model updating
mechanism.

To minimize memory requirements, Gruenwedel et al. [48]
presented a dual-layer background model, one for
low-adaptation speed for the long-term background and
another for high adaptation speed for the short-term
background. Although it was developed as a low-complexity
algorithm to be used in real-time applications, parameter
selection is a challenging issue to retain sufficient quality
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Fig. 1. Overview of the foreground detection method using the NIC based
on the background subtraction scheme.

for the estimated background. Culibrk et al. [38] and
Maddalena and Petrosino [39] used neural networks to
model the background and temporally update it to reflect
its observed pixelwise statistics. References [40] and [41]
described the radial basis function as an unsupervised learning
process using artificial neural networks for multibackground
generation.

III. NEIGHBOR-BASED INTENSITY CORRECTION

FOR FOREGROUND DETECTION

A. Method Overview

In general, the proposed method based on the background
subtraction scheme includes two main phases: 1) background
estimation and 2) foreground extraction. Fig. 1 shows the
overview of the foreground detection method. For the back-
ground estimation stage, we propose the novel NIC algorithm
to model a robust background in a dynamic scene. For fore-
ground segmentation, we then use the background subtraction
scheme to extract the foreground with an optimal threshold
calculated by the Otsu algorithm.

B. Neighbor-Based Intensity Correction Algorithm

The NIC algorithm consecutively models and updates the
background from the motion information of the current frame
during foreground extraction. The workflow of the proposed
algorithm is concretely represented in Fig. 2 with the frame
sequence as input and the estimated background as output.
As the prior knowledge, the first frame from the input video
sequence is assumed to be the initial background

B1(x, y) = F1(x, y) (1)

where B1(x, y) and F1(x, y) are the intensity values of a pixel
at the coordinate (x, y) with x ≤ P and y ≤ Q in the initial
background and the first frame, where P and Q are the width
and height of the input frame.

For the i th frame (∀i ≥ 2), the background image Bi for
the background subtraction will be estimated from Bi−1.
In the first step, the difference between the current background
and the current frame, denoted by Di , is calculated through
the following equation for the grayscale image:

Di (x, y) = |Fi (x, y) − Bi−1(x, y)|; ∀i ≥ 2. (2)

The difference image Di contains information about moving
objects and noise; therefore, Di needs to be segmented into
the background and moving object areas by the threshold τ

Di (x, y) =
{

1; ∀Di (x, y) ≥ τ

0; ∀Di (x, y) < τ.
(3)

The binary image Di has 0-b pixels representing the non-
motion areas and 1-b pixels representing the motion areas.

In principle, moving objects have greater difference than noise
and shadow artifacts. A high value for τ eliminates the noise,
but some motion pixels can be unexpectedly misidentified.
In contrast, if τ is low, noise pixels are sometimes misclassified
as motion pixels. Therefore, τ , which clearly has an influence
on Di , needs to be carefully selected through experimental
evaluations.

Principally, the proposed algorithm will be applied for
motion pixels in a set of Di = 1; however, to reduce the
appearance of outliers as much as possible, we consider the
steadiness of each pixel for filtering. The steadiness factor,
denoted by S(x, y), is calculated based on the number of times
the intensity changes and is updated with each new frame.
If the intensity changes in two consecutive frames, the pixel is
less steady than that remains the same. The steadiness of each
pixel is computed and accumulated in a sequence of frames
by the following equation:

Si (x, y) =
{

Si−1(x, y) − 1; ∀Di (x, y) = 1

Si−1(x, y) + 1; ∀Di (x, y) = 0
(4)

where Si is the steady matrix at the i th frame. It is initialized
with a value of zero, i.e., S1(x, y) = 0. In accumulating frame
by frame, the steady value of a nonmotion pixel becomes
greater than the value of a motion pixel. For example, an
arbitrary pixel p is detected as the motion pixel for t1 frames
and as the nonmotion pixel for t2 frames after T = t1 + t2
frames. Calculated by (4), the steady value ST (x p, yp) =
(−1)t1 + (1)t2 is negative if t1 > t2, and positive if t1 < t2.

Extended from the pixel steadiness, the NIC algorithm can
evaluate the robustness of the current background. During
the estimation process, intensity modification might not be
necessary to reduce the computation if the current background
approaches the background truth. Concretely, the decision-
making is controlled as follows: if the minimal value of
the steadiness factor is greater than a steady threshold,
denoted by δ > 0, i.e., min(x,y)(Si (x, y)) ≥ δ, the algorithm
ignores the modification process. The current background
is therefore maintained for consideration of the next frame,
i.e., the Bi = Bi−1 for the (i + 1)th frame and then directly
entered to the foreground extraction stage. In the opposite case,
min(x,y)(Si (x, y)) < δ, the NIC algorithm modifies the current
background. The decision-making is briefed as follows:

Apply_NIC; if min
(x,y)

(Si (x, y)) < δ

No_update; if min
(x,y)

(Si (x, y)) ≥ δ (5)

where δ is set based on the density of moving objects in a
scene, i.e., a greater value for crowded scenes and vice versa.
Clearly, more frames are required for the estimation process
to reach to a robust background.

For the NIC algorithm, we consider the combination of
two conditions for selecting pixels to modify their intensity.

1) They belong to the current motion set Di (x, y) = 1.
2) They have a negative steadiness value Si (x, y) < 0.

We give this reidentification to reduce the computational
cost in processing the NIC algorithm for inappropriate points
generated from sudden light changes or artifacts. The pixels
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Fig. 2. Workflow of the foreground detection using the NIC algorithm for background estimation.

Fig. 3. Illustration of NIC operation in different cases of moving objects. First and second rows: the single-pixel shifting. Third row: the multipixel shifting.
Left to right: the background image, the current frame, the difference image, and the background and current frames with (3 × 3) and (5 × 5) windows
captured surrounding a motion pixel.

are filtered by two conditions

Pi = {(x, y)|[Di (x, y) = 1] ∩ [Si (x, y) < 0]} (6)

where Pi is a set of filtered pixels. The intensity correction
algorithm is executed for pixels in the set Pi . The main
idea of the algorithm is illustrated in Fig. 3. A first case
for the single-pixel shift is represented between the first row
of the background image in Fig. 3(a) and the current frame
in Fig. 3(b). The pixels belonging to the set P are shown
in Fig. 3(c). In this step, eight pixels in the set P need
to be modified to the correct value. Concretely, four pixels
on the left side should be adjusted to the values of the
corresponding pixels in the current frame and four pixels on
the right side should be adjusted to the background pixel value.
Accordingly, we construct two windows from the background
image and the current frame surrounding each pixel, denoted
by W B

(x,y) and W F
(x,y), respectively. For instance with pixel p1

in Fig. 3(c), two windows are identified in Fig. 3(d) and (e).
The intensity patterns of the two windows are different,
i.e., the ratio between the number of motion and nonmo-
tion pixels are dissimilar. This difference is exploited for
correction; consequently, we calculate the standard deviation
values of the samples in the two sets (known as pixels in
the windows). A small value indicates that the pixel values

tend to be closer to the average, and a greater value shows
that the pixel values are dispersedly spread. Fundamentally,
the standard deviation σ of a square window is generally
calculated by the following equation:

σ =
√√√√ 1

N

n∑
p=1

n∑
q=1

(I (p, q) − μ)2 (7)

where n is the size of a square window and N = n2 is the
number of pixels. The mean μ of the window is determined
from the pixel intensity in image I

μ = 1

N

n∑
p=1

n∑
q=1

I (p, q). (8)

For each pixel in Pi , we calculate two standard deviation
values, denoted by σ B

(x,y) and σ F
(x,y), from the two windows of

the current background and the current frame. The rule for the
correction algorithm is based on the result of the comparison
process between the two standard deviation values as follows:

Bi(x, y) =

⎧⎪⎨
⎪⎩

Bi−1(x, y); ∀(x, y) /∈ Pi

Bi−1(x, y); ∀(x, y) ∈ Pi
∣∣σ F

(x,y) ≥ σ B
(x,y)

Fi (x, y); ∀(x, y) ∈ Pi
∣∣σ F

(x,y) < σ B
(x,y).

(9)
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In the window construction, the size of (n × n) can be
adjusted based on the movement speed. To investigate the
influence of window size on the result of the intensity cor-
rection rule, we assume some particular values for particular
cases. Let n0 and n1 be the number of nonmotion and motion
pixels with the intensity g0 and g1, respectively. So the window
contains (n0 + n1) pixels. The mean of the pixel values is
calculated by (8) is

μ = g0n0 + g1n1

n0 + n1
. (10)

The standard deviation can be derived under the variant
developed from (7)

σ =
√

1

n0 + n1
[n0(g0 − μ)2 + n1(g1 − μ)2]

=
√

n0n1

n0 + n1
|g0 − g1|. (11)

Using (11) for the standard deviation calculation, the terms
|g0 − g1| and (n0 + n1) are constant components, so the result
is decided by the term (n0n1)

1/2, i.e., the standard deviation
value depends on the number of motion and nonmotion pixels.
Consider the first case represented in the first row of Fig. 3
with a window size of (3 × 3). The window W B

p1
captured from

the current background contains five nonmotion pixels and
four motion pixels in Fig. 3(d), and the window W F

p1
covers

seven nonmotion pixels and two motion pixels captured from
the current frame in Fig. 3(e). Because σ F

(x,y) < σ B
(x,y), the

p1’s intensity is modified from g1 to g0 by referring to (9).
In the next example shown in the second row of Fig. 3,

a problem occurs when the number of motion and that of
nonmotion pixels in two (3 × 3) windows, denoted by the
solid line boundary, established at the p2-pixel are antithetic.
That leads to an erroneous background correction, i.e., p2 will
be preserved by its intensity instead of being modified from
g1 to g0. This problem can be overcome by changing the
window size. In this example, we modify the size from (3 × 3)
to (5 × 5), denoted by the hashed line boundary. The third
case illustrates the multipixel shifting motion that usually
occurs in the practical environment, shown in Fig. 3(m).
The intensity modification for p3 is incorrect with a (3 × 3)
window. Similar to the second case, this drawback is solved if
the window size is changed to (5 × 5). The terms of (n0n1)

1/2

are recalculated to bring the correct modification. Since σ is
influenced by the number of motion and nonmotion pixels in
a window (11), the size of windows is an important impact
in NIC algorithm. Therefore, modifying this parameter is
needed to be adaptive with multimodal background scenes,
such as low-, medium-, and high-speed object movement.
Some experimental evaluations hereafter prove the influence
of the window size on performance in terms of background
estimation accuracy.

After the intensity correction process, the NIC algorithm
submits the estimated background to the foreground extraction
process as an input and stores it to continuously process
in (i + 1)th frame.

C. Foreground Extraction Using Background
Subtraction Scheme

In this stage, the foreground is detected based on the
background subtraction scheme with an adaptive threshold.
The difference is extracted from the current frame Fi and the
estimated background image Bi by reusing (2)

D∗
i (x, y) = |Fi (x, y) − Bi (x, y)|; ∀i ≥ 2. (12)

We then segment the foreground based on the difference
image D∗

i using an optimum value identified from the Otsu
method [49], which is fundamentally formulated to per-
form clustering-based image thresholding for segmentation
when two pixel classes (foreground pixels and background
pixels) are assumed to be sufficiently distinguishable. The
Otsu method thus calculates the optimal threshold to separate
an image into a background area, denoted by G0, and a
foreground area, denoted by G1. Through the minimization of
intra-class variance, the threshold can reduce the classification
error. The threshold, which is exhaustively sought, minimizes
the weighted sum of the variance of the two classes

σ 2
ω(g) = ωG0(g)σ 2

G0
(g) + ωG1(g)σ 2

G1
(g) (13)

where ωG0(g) and ωG0(g) are the class probabilities at the
intensity g. The two corresponding pixel classes σ 2

G0
and σ 2

G1
are the individual class variances. The formulas for element
calculation are defined in [49]. The threshold is defined as

τopt = arg min
g

(
σ 2

ω(g)
)
. (14)

The thresholding process is similar to (3) except that it
replaces τ with τopt

D∗
i (x, y) =

{
1; ∀D∗

i (x, y) ≥ τopt

0; ∀D∗
i (x, y) < τopt.

(15)

It is important to note that D∗
i is the grayscale inten-

sity image in this research after converting the outputs,
i.e., Fi and Bi , from RGB color space. The foreground
sometimes consists of disconnected edges caused by drastic
luminance changes in dynamic scenes. To fuse narrow breaks
and long thin gulfs, eliminate small holes, and fill gaps in the
contour, some morphological operations [49] should be used
during postprocessing.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setup

In the background subtraction technique, the estimated
background plays an important role in the accuracy of the
foreground detection. Therefore, we consider the performance
of the NIC algorithm in assessing the estimated background
quality. We performed all of our experiments on a desktop
PC operating Windows 7 with a 2.67-GHz Intel Core i5
CPU and 4-GB RAM. We used MATLAB R2013a for the
simulation. The foreground detection method is validated on
several video sequences from well-known benchmark data
sets: 1) CAVIAR [50]; 2) PETS 2009 [51]; 3) PETS 2014 [52];
4) AVSS 2007 [53]; and 5) CDNET 2014 [54]. These video
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sequences include indoor and outdoor scenes that represent
typical situations in video surveillance, and they are widely
used for evaluating object detection and tracking algorithms.

1) CAVIAR 2004 Data Set: We considered two sequences,
Walk2 with 1055 frames and Walk3 with 1379 frames cap-
tured at resolution of 384 × 288, to describe the walking
scenario from the CAVIAR-INRIA data set. In the sequences,
some persons come into a laboratory, walk around, and leave
under poor illuminance conditions with light artifacts and
camouflage.

2) PETS 2009 Data Set: The PETS 2009 data Sets are
multisensor sequences containing different crowd activities
captured by different cameras at various vision angles. For
experimental testing, we selected four sequences from the data
set S2_L1 (View_001, View_003, View_005, and View_006),
which are mostly used in tracking applications. These videos
have medium density crowds in overcast, bright sunshine, and
shadowed conditions. The set contains more than 3180 color
images under a resolution of 768 × 576.

3) PETS 2014 Data Set: The PETS 2014 data sets, sup-
ported by the EU project ARENA, are multisensor sequences
of different activities around a parked vehicle (PV) in a
parking lot. For object detection, we chose three sequences,
TRK_RGB_2, TRK_RGB_3, and ENV_RGB_3 from categories
01_01 and 01_02. They present a low degree of difficulty,
showing the various walking activities of a group of three
people. More than 3700 video frames sampled at 30 frames/s
are contained in the two categories with a resolution
of 1280 × 960 pixels.

4) AVSS 2007: The PV sequence in the AVSS 2007 shows
common challenges in video processing with dynamic motion
speed of objects, fast illumination change, and camera jitter in
a strong windy environment. The video contains 3748 frames
sampled at 25 frames/s with 720 × 576 pixels of resolution.

5) CDNET 2014: In the CDNET 2014 data set, two
video sequences are selected for testing, namely, Canoe from
dynamic background category and Badminton from camera
jitter class. The first sequence has 1189 frames at a resolution
of 320 × 240, while the second has 1150 frames with
resolution at 720 × 576.

B. Evaluation Metrics

For the evaluation of the background estimation per-
formance, we use the peak signal-to-noise ratio (PSNR),
a standard metric, to measure the quality of the estimated
background, i.e., the estimation accuracy when compared with
the background truth. PSNR is calculated as follows:

PSNR = 10log10

(
2552

mse

)
(16)

where mse is the mean square error. Moreover, two additional
quality measurement metrics, structural similarity (SSIM) and
color image quality measure (CQM) [55]–[57], are consid-
ered for a more comprehensive quantitative analysis. The
SSIM value is obtained as

SSIM = 1

K

K∑
t=1

SSIM_MAP(Bi , BT ) (17)

where K is the number of local windows in the image.
Bi and BT describe the estimated background and the back-
ground truth, respectively. The SSIM_MAP function [55]
is here defined as the product of the luminance, contrast,
and SSIM between two windows extracted from the original
background and the estimated background. The CQM value is
calculated as follows:

CQM = (PSNRY × RW ) +
(

PSNRU + PSNRV

2

)
× CW

(18)

where RW = 0.9449 and CW = 0.0551 are the weights
on the human perception of these cone and rod sensors; the
PSNR quality of each YUV channel is calculated separately.

Besides background estimation evaluation, we also perform
a quantitative assessment of the foreground detection and
compared our results with those of state-of-the-art meth-
ods using the receiver operating characteristic (ROC) dia-
gram to describe the relationship between true positive rate
(TPR) and false positive rate (FPR). They are calculated as
follows:

TPR = t p

tp + f n
(19)

FPR = f p

f p + tn
(20)

where t p is the total number of true positive pixels and
(t p + f n) represents the total number of objects in the ground
truth. f p is the total number of false positive pixels, and
( f p + tn) represents the total number of negative pixels in
the ground truth.

C. Background Estimation Assessment
We investigate the three key parameters of the NIC: 1) the

threshold τ ; 2) the steady threshold δ; and 3) the window size
based on the quality of the estimated backgrounds. The quan-
titative results of the estimated backgrounds for the View_001
sequence of PETS 2009 using PSNR, SSIM, and CQM metrics
are plotted in Fig. 4. These results are obtained by comparing
the estimated backgrounds with the true background image.
For verifying the influence of the threshold τ , we fix the
window size to (5 × 5) and δ to 5, and sweep the value of τ
from 5 to 50 as in Fig. 4(a), (d), and (g) corresponding to the
quantitative metrics. The background quality is improved in
increasing τ (from 5 to 20), and the highest quality background
is achieved at τ = 20. However, the results deteriorate when
the threshold is larger than 20. The average values (aPSNR,
aSSIM, and aCQM) for the whole sequence are further pro-
vided in Fig. 4. NIC algorithm is then benchmarked with the
window size WS = {3, 5, 7, 9, 11, 13} to validate its effect
on the estimation result when setting τ = 20 and δ = 5 as
constant parameters. From the results in Fig. 4(b), (e), and (h),
the larger the size of the window, the higher the background
quality attained by NIC. Although, the larger window size can
adapt to medium- and high-speed motion to deliver a greater
quality, it unfortunately requires a higher computational cost to
calculate σ (7). Compared with τ , the window size parameter
has a lower impact on background quality, 0.86 versus 2.56 dB
in PSNR metric. In the last parameter investigation, we change
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Fig. 4. Evaluating quality of estimated backgrounds on the sequence View_001 of PETS 2009 under different values of threshold τ , window size, and steady
threshold using the standard metrics. (a)–(c) PSNR. (d)–(f) SSIM. (g)–(i) CQM.

the values of steady threshold δ = {3, 5, 7, 10, 15, 20}. The
algorithm presents the same result for each quantitative metric
for different values of δ as shown in Fig. 4(c), (f), and (i). This
special behavior demonstrates the least importance of δ in the
proposed algorithm. It should be noted that obtaining a robust
background in the dynamic motion scene is difficult because
some background objects, such as flag, leaf, and ribbon, can
incessantly move by natural wind in the outdoor environment.
Therefore, δ can be omitted in the NIC parameter configuration
for outdoor cases. According to the obtained results, we
recommend to use 10 ≤ τ ≤ 30 and 5 ≤ WS ≤ 9 for a
good tradeoff between estimation accuracy and computational
cost.

D. Foreground Extraction Assessment

This section evaluates the foreground detection on 12 video
sequences by pixelwise accuracy assessment.

1) Qualitative Results: The visual results of foreground
detection are given in Fig. 5 including the original
frame (the first column), the ground truth (the second column),
and detected foreground (the last column), are obtained under
the best performing parameter configuration, i.e., τ = 20,
WS = 9, and δ = 5. For the two CAVIAR sequences,
we randomly selected frame #142 in Walk2 and frame #548
in Walk3 to validate and analyze the detection performance.
The left wall in the scene has glass windows with the
light radiated directly from outdoor. The illumination changes
of reflection and shade on the floor present challenges to
foreground extraction. Frames #398, #723, #399, and #715
selected from PETS 2009 sequences are then plotted in the
next four rows in Fig. 5. The scene, a small campus area
where some people walk at a medium speed, is recorded by
different cameras placed at various directions and distances.

The wind-blown motions of tree branches in View_003 and
the ribbon in View_001 explain the decrease of accuracy.
Furthermore, some object shapes in View_006 are wrongly
detected because of similar intensity between the background
and the object areas. Also, moving objects are sometimes
occluded by a fixed background object, which leads to shape
splitting in the detected objects, for example, for the sign pole
in View_003. Another objective challenge in this data set is
the overall chrominance in videos captured during different
parts of the day. Three sequences from PETS 2014 capture the
walking activity in a vehicle parking area for tracking eval-
uation. The foregrounds extracted from frames #630, #606,
and #206 corresponding to three sequences are shown in
the next three rows in Fig. 5. One problem in these videos
is the perspective projection, in which the objects become
smaller as their distance from the observer increases. Object
segmentation therefore becomes more difficult, especially
with objects far from the observer. Furthermore, the fore-
ground quality is degraded by the constant unpredictable
motions of plants in the scene. Foregrounds extracted from
frames #3349, #940, and #922 of PV_Medium, Canoe, and
Badminton sequences are, respectively, shown in the last rows.
Camera jitter, dynamic background, and homogeneous chroma
in these videos evidently become challenges for extracting a
desirable foreground.

2) Quantitative Results: The quantitative results are consid-
ered through the ROC curves plotted in Fig. 7. Each sample
in Fig. 5 is evaluated under various parameter configurations
and each configuration corresponds to a depicted curve point.
We fix δ = 5 in this experiment due to its insignificance.
The threshold τ varies from 10 to 30, and the window size
varies from 5 to 9 as suggested in the previous section. Batch
TPR and FPR results from frames #800 to #1150 of the
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Fig. 5. Foreground detection results with true positive (TP) pixel in white, true negative (TN) pixel in black, false positive (FP) pixel in red, and false
negative (FN) pixel in green on benchmarked sequences.

Badminton sequence are represented in Fig. 6. Using the same
window size WS = 5, τ = 20 provides higher TPR values in
most test frames than τ = 30, meanwhile, keeping the FPR

at a lower level. If the size of the window is increased to 9,
TPR might be increased with undesirable FPR increment and
higher computational requirement.
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Fig. 6. TPRs and FPRs of the proposed method for the Badminton sequence using different parameter configurations. (a)-(b) TPRs and FPRs with WS = 5.
(c)-(d) TPRs and FPRs with WS = 9.

Fig. 7. ROC curves of the proposed method with different parameter configurations and the state-of-the-art methods on the benchmarked data sets: (a)-(b)
CAVIAR 2004. (c)-(f) PETS 2009. (g)-(i) PETS 2014. (j) AVSS 2007. (k)-(l) CDNET.

E. Comparison With Existing Foreground Detection Methods
In this section, we compare the proposed method with

four of the best-known foreground detection methods: 1) the
I-GMM in [17]; 2) the original ViBE in [35]; 3) the spherical
K-means expectation-maximization method (spkmeansEM)

in [21]; and 4) the multilayer codebook model (MCBS) in [26].
All of the benchmarked algorithms are realized by our own
implementation.

The I-GMM algorithm is employed with the number of
components M = 4 and different threshold values cthr.
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TABLE II

COMPARISON OF PROCESSING SPEEDS EXPRESSED
IN FRAMES PER SECOND

In the ViBE algorithm, we fix the default values as per
recommendation in [35] comprising the time subsampling
factor φ = 16 and the cardinality of the set intersection
#min = 2, and vary the number of distances N = {5, 10, 20}
and the radius of the sphere R = {5, 10, 20}. We evalu-
ate the spkmeansEM algorithm with the following parame-
ters for the outdoor case: 1) Kmax = 5; 2) η = 0.005;
3) d = 2; 4) β = 10−6; 5) T ∈ [2, 5]; 6) THP = 0.1;
7) THI = 70; 8) THD ∈ [18, 20]; and 9) τ = 0.5. With MCBS
approach, the learning α and proportion of codeworks η are
varied {0.05, 0.1} and {0.5, 0.7, 0.9} in the background model
construction, while β = 1.25, γ = 0.7, and θcolor = 3
are fixed as recommendation in the pixel classification
stage [26]. Because the test sequences are rifle with objects
moving constantly, NIC algorithm is evaluated for different
parameter configurations including only τ = {10, 20, 30} and
WS = {5, 7, 9}.

Both quantitative and qualitative comparisons for all these
methods are presented in Figs. 5 and 7. The I-GMM method
constantly updates the parameters and simultaneously selects
the appropriate number of components for each pixel using
recursive equations. This method is weak under the strong light
changes of the CAVIAR data set and the dynamic backgrounds
in the PETS 2014 and CDNET data sets. Although I-GMM
can get quite high TPR results in some testing sequences,
its FPR values are also high. The ViBE method uses random
neighbor selection to correct pixel intensity and the lifespan
policy to update the background model over time. The back-
ground estimated by ViBE is more robust against noise than
GMM-based models. Based on a combination of spherical
K-means clustering and the expectation-maximization algo-
rithm, spkmeansEM is quite efficient in extracting fore-
ground from sequences that suffer from camera jittering and
dynamic backgrounds. In the MCBS approach, constructing
a multilayer codebook with various block sizes at the same
time brings satisfactory results. Compared with above fore-
ground detection schemes, NIC is the winner in most testing
sequences, except View_005 and View_006 in PETS 2009 and
TRK_RGB_3 in PETS 2014.

F. Computational Cost

In this section, we analyze and compare the processing
time of the proposed method and others in terms of frames

per second. Concretely, we use a profiling tool included in
MATLAB 2013a to measure the time required for back-
ground estimation and foreground detection. From the results
in Table II, it can be observed that larger frames generally
require more time for processing. The proposed method detects
the foreground faster than I-GMM for most of the sequences
and achieves a speed equivalent to that of spkmeansEM and
MCBS. NIC requires more time for calculating the standard
deviation instead of the Euclidean distance in ViBE. For
MCBS, it must be noted that the results do not involve the
codebook construction time.

V. CONCLUSION

In this paper, we propose an NIC algorithm for robust
background estimation. The NIC algorithm calculates the
standard deviations from two windows, respectively, extracts
the background and the current frame, and identifies the class
of the center pixel as background or object for intensity mod-
ification. The algorithm uses a steadiness factor to measure
the changeability of each pixel and assess the robustness
of the current background. This measurement reduces the
computational cost by reducing the number of pixels that
require intensity modification. Compared with existing back-
ground modeling algorithms, NIC is more flexible and adaptive
with medium- and high-speed motion because the window
size is adjustable. In the detection stage, the background
produced by NIC is taken as the input for the background
subtraction technique. We calculated an adaptive threshold
using the Otsu method to segment objects based on the frame
difference. The proposed method outperforms state-of-the-
art methods (I-GMM, ViBE, spkmeansEM, and MCBS) on
most of the test data sets by ROC curve comparisons. The
limitations of our method include poor detection performance
of repetitive motions and relatively high computational cost at
the estimation stage. In the future, we will focus on identifying
unexpected background motions for removal and optimizing
the method to make it adaptive in real-time environments.
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