
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Adaptive Replication Management in HDFS
based on Supervised Learning

Dinh-Mao Bui, Shujaat Hussain, Eui-Nam Huh, Sungyoung Lee

Abstract—The number of applications based on Apache Hadoop is dramatically increasing due to the robustness and dynamic
features of this system. At the heart of Apache Hadoop, the Hadoop Distributed File System (HDFS) provides the reliability and high
availability for computation by applying a static replication by default. However, because of the characteristics of parallel operations on
the application layer, the access rate for each data file in HDFS is completely different. Consequently, maintaining the same replication
mechanism for every data file leads to detrimental effects on the performance. By rigorously considering the drawbacks of the HDFS
replication, this paper proposes an approach to dynamically replicate the data file based on the predictive analysis. With the help of
probability theory, the utilization of each data file can be predicted to create a corresponding replication strategy. Eventually, the
popular files can be subsequently replicated according to their own access potentials. For the remaining low potential files, an erasure
code is applied to maintain the reliability. Hence, our approach simultaneously improves the availability while keeping the reliability in
comparison to the default scheme. Furthermore, the complexity reduction is applied to enhance the effectiveness of the prediction
when dealing with Big Data.

Index Terms—Replication, HDFS, Proactive Prediction, Optimization, Bayesian Learning, Gaussian Process.

F

1 INTRODUCTION

THE evolution of big data has created a phenomenon
in application and solution development to extract,

process and store useful information as it emerges to deal
with new challenges. In this area, Apache Hadoop is one
of the most renowned parallel frameworks. Not only is it
used to achieve high availability, Apache Hadoop is also de-
signed to detect and handle the failures as well as maintain
the data consistency. Coming along with the development
of Apache Hadoop, the Hadoop Distributed File System
(HDFS) has been introduced to provide the reliability and
high-throughput access for data-centric applications. Grad-
ually, HDFS has become a suitable storage framework for
parallel and distributed computing, especially for MapRe-
duce engine, which was originally developed by Google to
cope with the indexing problems on big data.

To improve the reliability, HDFS is initially equipped
with a mechanism that uniformly replicates three copies of
every data file. This strategy is to maintain the requirements
of fault tolerance. Reasonably, keeping at least three copies
makes the data more reliable and more robust when toler-
ating the failures. However, this default replication strategy
still remains a critical drawback with regards to the perfor-
mance aspect. Intuitively, the purpose of inventing Apache
Hadoop was to achieve better performance in data manipu-
lation and processing [1]. Therefore, this purpose should be
carefully studied at every component. In the performance
perspective, based on the well-known research of delay
scheduling [2], if the task is placed closer to the required

D. Bui is with the Computer Engineering Department, Kyung Hee University,
Suwon 446-701, Korea (e-mail: mao.bui@khu.ac.kr).
S. Hussain is with the Computer Engineering Department, Kyung Hee
University, Suwon 446-701, Korea (e-mail: shujaat.hussain@oslab.khu.ac.kr).
E. Huh is with the Computer Engineering Department, Kyung Hee Univer-
sity, Suwon 446-701, Korea (e-mail: johnhuh@khu.ac.kr).
S. Lee is with the Computer Engineering Department, Kyung Hee University,
Suwon 446-701, Korea (e-mail: sylee@oslab.khu.ac.kr).

data source, the system can achieves faster computation
and better availability. The metric measures the distance
between the task and the corresponding data source can be
referred to as the data locality metric. The main reason for
the improvement is twofold. First, the network overhead
can be reduced on runtime due to the availability of the
local data, and so no inter-communication is needed to
transfer the required data from the remote nodes. Second,
it is clear that the computation can start immediately on the
input data which is locally available, and so no extra task-
scheduling effort is consumed. Consequently, it is meaning-
ful to say that improving the data locality would immensely
enhance the system performance in terms of availability and
calculation time.

Although there are some studies on this subject matter,
very few proactive solutions are proposed that rigorously
consider the nature of the job workload. Due to the fact
that workload in Apache Hadoop consists of short and
long tasks together, these tasks should be handled fairly
to accelerate the computation. Typically, the Fair scheduler
and delay scheduling algorithm [2] provide the optimal data
locality when the system is filled with head-of-line jobs and
short tasks. However, the long tasks, if they are present
would not be treated appropriately and thus make the sys-
tem imbalanced. One solution is to pro-actively prepare the
potential replications before scheduling the tasks in order to
redirect and balance the computation. To do that, we aim to
improve the data locality metric by changing the replication
scheme adaptively with regards to the popularity of the data
file. Not only is the nature of the access rate taken into ac-
count, but the replica placement is also carefully considered.
Note that the access rate is defined as the number of accesses
in a given unit of time. Subsequently, the data files in HDFS
are replicated based on their own access potential as well
as the overall status of the system. By definition, the access

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

potential is recognized as how frequently the specific file
might be read in the next time epoch. For example, say
a file has an access potential of 32 within the period of 5
seconds: this means that the file might be accessed 32 times
in the next 5 seconds. Additionally, the anticipated results
and access patterns are cached in the knowledge base in
order to instantly match and quickly fire the suitable action
without having to re-calculate a similar input. Occasionally,
each data file can be efficiently replicated by a different
but appropriate strategy. Further, in order to maintain the
fault tolerance for less frequently accessed data files, an
open source erasure code [3] is modified and applied to
protect the system from the effects of failures. Finally, by
implementing this framework, the task execution time and
storage cost can be improved benefiting the productivity of
big data systems.

In summary, the main contributions of this research are
as follows.

• We designed an adaptive replication management
(ARM) system to provide high availability for the
data in HDFS via enhancing the data locality metric.
As a result, the highly local available data improves
the performance of the Hadoop system. It is worth
noting that the erasure code is applied to maintain
the reliability.

• We proposed a complexity reduction method for
the prediction technique in both hyper-parameter
learning and training phases. This proposed method
significantly increases the performance in terms of
reaction rate for the replication strategy while still
keeping the accuracy of the prediction.

• We implemented ARM in HDFS and did an evalua-
tion in order to practically verify the effectiveness of
the proposed method as compared with the state of
the art method.

The remainder of this paper is organized as follows. In
Section 2, related works relevant to the topic are provided.
Section 3 discusses the methodology in detail. Section 4
presents an architectural overview of the proposed ap-
proach while Section 5 includes the detail of the prediction
mechanism. In Section 6, the performance evaluation is
discussed. Conclusions and future work are summarized in
Section 7.

2 RELATED WORKS

In the replication area, there are two main methods: the
proactive approach and the reactive one. For the proactive
approach, the Scarlett solution [4] implements the proba-
bility as an observation and then calculates the replication
scheme for each data file. The storage budget-limitation is
also considered as a factor when distributing the replicas.
Although this solution follows a proactive approach instead
of using thresholds, the access rate of the data file as
well as the suitable placement for replicas is not discussed
thoroughly.

Likewise in OPTIMIS [5], an interesting solution for an-
ticipating the data file status has been proposed. In this ap-
proach, the data file is classified and engaged in the limited
replication scenarios based on the algorithmic prediction of

the demand for data file utilization. However, the Fourier
series analysis algorithm [6], which is usually used in the
field of ’signal processing’, is chosen for prediction without
a compelling proof of the efficacy. As a consequence, this
inappropriate choice may result in poor prediction.

For the reactive approach, the cost-effective dynamic
replication management (CDRM) method [7] is a cost-
effective framework for replication in a cloud storage sys-
tem. When the workload changes, CDRM calculates the
popularity of the data file and determines the location in
the cloud environment. However, this technique follows
a reactive model. As a result, by using threshold values,
CDRM cannot adapt well to the rapid evolution of large-
scale systems.

Similarly, DARE [8] is another reactive model of repli-
cation for HDFS. In this model, the authors declare that the
probabilistic sampling and competitive aging algorithms are
used independently on each node to choose a replication
scheme for each data file, as well as to decide the suitable
location for each replica. However, there are two issues
in this approach. First, the problem of long tasks, which
exists in a realistic system, is not considered carefully. In
fact, the existence of this issue makes the system unstable.
Second, the placement of the replication is judged without
considering the file access pattern and system capacity of
the destination nodes. For these reasons, DARE might not
provide the expected effectiveness on some systems.

The elastic replication management system (ERMS) [9]
takes into account an active/standby model for data storage
in the HDFS cluster by implementing the complex event
processing method to classify the data types. The advantage
of ERMS as compared with CDRM and DARE is that it
dynamically changes the thresholds for metrics based on
the status of the HDFS cluster system. In addition, ERMS
is equipped with the erasure code to determine and erase
unpopular replicas so as to save the storage.

Nevertheless, although CDRM, DARE and ERMS are
developed in different ways, all of them encounter the same
problems and limitations. Concretely, these solutions try
to classify and implement various replicating scenarios for
each type of data files by extracting and processing the ob-
solete information. For that reason, these approaches cannot
generate an optimal replication strategy for parallel systems.
The detail of this claim is that when some actions are chosen
to handle the ’hot’ data files, due to high latency and delay,
these files may not be ’hot’ anymore by the time the actions
are engaged. As a consequence, the replicating decision
cannot reflect the trends of the data utilization. Additionally,
in the ERMS approach, the erasure code configuration is not
clearly specified. For that reason, the storage-reliability of
this approach is still not verified.

Discussions on erasure code are interesting. Commonly,
it is accepted that not only the performance, but also the
reliability is the mandatory aspect of HDFS. To fulfill this
requirement, the replication and the erasure code are two
types of fault tolerance techniques trying to obtain the same
goal. While the replication is suitable for enhancing read
operation, it suffers from a large storage overhead of up
to 200% [10]. Even with the rapid decline in the cost for
the storage facility, this overhead has still become the major
problem; this is because the volume and velocity of Big Data

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

dramatically increase at a rate faster than the infrastructure,
and are required not only for the storage resources but
also for the computation and network utilization [11]. As
a result, many corporations including Facebook, Microsoft
and Google think of the erasure coding approach as an
alternative technique for saving the repository storage space
while keeping the same level of reliability. In addition, the
erasure coding approach has a long history of development
in peer-to-peer systems to ensure the optimal fault tolerance
with a low cost of storage [12]. The latest result of erasure
coding is the applications to the Microsoft Azure Storage
[13] as well as the new version of the Google File System
along with some modules of HDFS.

Recently, Facebook has started using an open source
erasure code, namely HDFS-RAID [14]. The HDFS-RAID
uses the famous Reed-Solomon (RS) code, which is derived
from the maximum distance separable (MDS) method [15],
in order to ensure the reliability. The configuration for this
method is RS (10,4), which stands for a group of 10 stripes
and 4 parity blocks for each data file. By using this con-
figuration, HDFS-RAID can survive during 4 block failures
and creates only 40% overhead for the storage. In terms of
system perspective, this method can be seen as robust and
storage efficient in comparison to many other replication
approaches.

Other methods employed in erasure coding are Pyra-
mid codes [16] and HDFS-Xorbas [10], which follow the
approaches of the local reconstruction code (LRC) [17] and
the locally repairable codes (LRCs) [10], respectively. Unlike
the MDS coding family, Pyramid codes (which are applied
in Microsoft Azure Storage [13]) and HDFS-Xorbas offer
better repairable features in terms of network bandwidth
and disk I/O. However, the disadvantage of these methods
is the higher magnitude of storage overhead as compared
with HDFS-RAID.

We discuss one more erasure coding solution, the stor-
ageCore [3], which is based on HDFS-RAID. In this solution,
the authors combine the standard erasure code and RAID-
4-like parity to establish the redundancy. By applying this
combination, the solution offers an impressive improve-
ment in repairability and read performance. Additionally,
the authors also provide the complete source code with
specification and simulation as an open source project. This
decision makes storageCore suitable for ready integration
with other methods in HDFS. However, the disadvantage of
storageCore is an increase in storage overhead of up to 20%
in comparison to HDFS-RAID.

According to a number of studies on erasure code, it
is clear to see that this branch of fault tolerance possesses
an important role in maintaining the reliability for Big
Data system. However, by containing only one copy of
each data block, the erasure coding approaches have to
reunify the data blocks remotely. Even when HDFS reads
the erasure coded blocks in parallel, the processing time
is still lengthened by the unavailable computing node. To
solve this issue, most of the approaches choose to utilize the
degraded reading, which actually mitigates the unavoidable
drawback. However, this point of design actually reduces
the throughput and indirectly increases the computation
time.

By examining the related works, we have come to the

conclusion that although the research on replication and
erasure code exists, not many researchers have thoroughly
attempted to balance the data locality and the reliability
within a reasonable cost of storage resource. Furthermore,
since Hadoop is gradually a complex ecosystem, a faster and
more adaptive replication mechanism must be developed.

3 METHODOLOGY

3.1 Motivation

In many parallel and distributed systems equipped with
MapReduce engine, the processing jobs usually comprise
a series of consecutive phases, namely map, shuffle and re-
duce. In the beginning, map phase reads the input from disk
and prepares the intermediate data for other phases. Unless
the system includes an expensively infinite band of network
capacity, which only exists on very large scale computing,
the bottleneck between computing nodes is unavoidable.
Due to this fact, it would be optimal if the system can co-
locate map tasks along with the desired data, especially
when the data size is large. Unfortunately, MapReduce
scheduler is unable to always satisfy this requirement. Repli-
cating uniformly or increasing the replication factor is not
the key to accelerate the computation as well as reduce
the slot contention and hot-spot issue. Note that the slot
contention happens when the number of concurrent tasks
accessing the data file surpasses the number of replicas.
Consequently, the tasks with no locally available data have
to request for remote access or wait for the next available
turns on the same data. Obviously, this issue dramatically
decreases the system performance. In the other hand, the
hot-spot issue, which is recognized as the attractive nodes
to many tasks, makes the system imbalanced and wastes the
idle computational capability. These issues must be solved
to fulfill the capability of big data system, especially.

To minimize the effect of slot contention and hot-spot
issue, many approaches choose to improve the data locality
and conduct the load balancing as seen in the Related Works
section. Nevertheless, as mentioned above, most of these
methods are either maladaptive or inaccurate to provide
the suitable replication strategies coping with various data
access patterns. It is worth noting that beside the growth
in storage cost, the diversity of data access patterns is more
critical affecting the performance, the replica management
and the balance of the system. However, the characteristic
of the data access is inadequately studied in the previous
works. Thus, this reason motivates us to design a predictive
approach (ARM) to truly enhance the data locality with
regard to the system utilization and reliability. By proposing
ARM, we expect that our study can be useful to any orga-
nizations or companies, which are interested in optimizing
the performance within an affordable cost.

3.2 Approach analysis

As discussed in the Related Works section, the high data
locality is critical to the performance and the availability of
HDFS. Theoretically, our prediction technique intends to im-
prove the data locality by creating the individual replication
scheme for each data file based on its own access potential.
Naturally, some popular data files may have more replicas

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

than others because these files possess more potential to be
utilized by various tasks. The percentage of high potential
files can be measured in less than 10% [18]. On the other
hand, over 90% of data files might have a minimum access
potential [18]. As a consequence, the replication for this
large percentage of data files should be limited, as they are
clearly not necessary to perform the prediction. A suitable
strategy in this situation is to leave these low access po-
tential files with only one replica. This strategy might save
some space as well as reduce the computation, but it also
reduces the reliability and puts the whole system in danger
if any failure happens.

In order to maintain the reliability, the idea is to partially
integrate the erasure coding solution so as to take care of
the low access potential files. For reference, the storageCore
[3] is chosen because of the efficiency in terms of network
bandwidth and computation costs. The details of the entire
erasure coding process are not the focus of this research and
can be found in the original paper [3]. As time progresses,
the data files are divided into two sets: the replication set
and the erasure set. Only the files in the replication set have
their access potentials calculated and replicated over to the
system. When the access potential of a file decreases and
thus results in its replica quantity being less than or equal
to the minimum number of replicas, the status of the file is
marked as restricted for replicating and this file is moved
to the erasure set. As soon as the file transfer is finished,
the erasure coding process begins, encoding this file at the
block level. Even though the replication process is fully
postponed for the erasure coded file, the minimum replicas
of the file are still kept so they can provide access without
inducing degradation on the reading. Specially, the erasure
coded file still has a chance to return to the replication
set if there is any remote access firing for its remaining
replicas. When this occurs, the restriction on the original file
is simply lifted, enabling replication once more. To deal with
any potential failures, the modified HDFS would search the
replication set first. If there is no functional copy of the file,
the erasure coding reconstruction process is triggered to fix
the problem. Due to the nature of the proposed method, it
could be considered as a hybrid solution of erasure code
and replication.

3.3 Domain analysis

As stated previously, the purpose of this research focuses
on pro-actively improving the data locality based on the
prediction method. For that reason, it is necessary to discuss
the properties of input and output. Intuitively, the predictive
computation mostly relies on the heartbeat (the periodic
information generated by the computing nodes to indicate
their operational status), which is collected by the HDFS
logging component. This heartbeat is periodic, noise-free
and consists of access rate as well as access type with
regards to the time epoch. Basically, there are two kinds of
access types: remote access and local access. Local access
is dispatched from the tasks on the local machine, while
remote access comes from the other servers in the same rack
or from the servers located on the different racks, and is
also known as the inter-communication access. Since each
type of access possesses a very different data transmission

rate, it is necessary to consider this rate as a penalty factor
that encourages the localization. This factor is introduced
later in the Prediction Model section. After the prediction,
the result, which comprises the access potential as well as
the access pattern, is used for the replication management
process.

3.4 Cost analysis

The replication and the data locality are not in a linear
relationship [19], only the storage space consumption, the
network bandwidth and the disk I/O are linearly related
to the replication factor. In other words, the quantitative
changes in the replication factors affect the storage cost and
the communication bandwidth, which might subsequently
degrade the currently running tasks. Unfortunately, this is
an unavoidable issue for any solution attempting to improve
the data locality and/or the reliability. Frankly, there is no
ideal solution to achieve the best functionality without such
a trade-off, especially when compared with the state of
the art solution. Because of that, our goal is to design an
architecture that improves the metric of interest (the data
locality) but still maintains the same level of reliability at
a reasonable price. For the reliability, as discussed above,
the maintenance is held on two sets: the replication set
and the erasure set. In fact, the reliability of the replication
set is not a problem. First, due to the over replication, the
redundancy of this set is kept at a high level as compared
with the default scheme. Second, because the replication set
occupies less than 10% of total data files [18], the space
and transferring cost for this set is much less than that of
the triple replication approach. For over 90% of data files
which belong to the erasure set, it is proved in the original
paper [3] that the reliability of this set is also maintained
at a much cheaper cost than the default replication scheme.
Given the fact that 80% of data accesses go toward less than
10% of stored bytes, our proposed architecture attempts to
identify and replicate this small potential replication set to
serve the major aforementioned percentage of data accesses.
In this case, a maximum of 10% of data files get replicated
with the adaptive factors, which consequently cuts down
on the resources used and produces less contention on the
currently running tasks as compared with other solutions.

For the configuration of erasure coding component, we
decide to use the coding parameter set (n=14, k=12, t=5)
where n, k and t stand for the number of stripes in a
group, the parity block and the object in the CORE ma-
trix, respectively. Note that the CORE matrix is used to
represent the available and the failed nodes of the system.
This configuration produces only 20% storage overhead as
compared with HDFS-RAID, but consumes 50% less band-
width and improves up to 76% faster speed for repairing
[3]. Later in the Performance Evaluation section, in the
TeraSort experiment, given that the input data and the block
size are 1TB and 128MB, respectively, the total number of
blocks is around 7813. Among this number, only 10% of
blocks (approximately 781 blocks) are replicated with the
peak replication factor (which is 5.6 in the experiment).
The remaining 7032 blocks, which belong to erasure set,
are kept with the minimum factor equals to 1. By simple
calculation, the total number of replicas is 11406 blocks. In

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

HDFS Logging

System

Monitoring

System

Predictor

Heuristic

Detector

Replication

Management

Knowledge Base

NodeNode Node NodeNodeNodeNodeNode Node

Replicating

Non-replicating

Access Potential/

Training Data

Access

Potential

Pattern

Data

New

Pattern

Replicated NodesBlocking NodesTarget Nodes

1 2 3

Non-replicating

Training Data

1. Access rate

2. Access type

HDFS

Monitoring Data

1. Server status

2. Network status

Heartbeat

Fig. 1: Architecture of Adaptive Replication Management (ARM) system.

addition, the erasure set roughly creates 4219 blocks (which
are 60% of erasure set). It means the storage cost of our
approach is 15625 blocks compared with 23439 blocks of
default replication scheme (34% less overhead for the stor-
age). This advantage significantly mitigates the overhead on
the network bandwidth, the disk operation and the storage
resource.

4 PROPOSED ARCHITECTURE

4.1 System description
The main function of the proposed architecture is to dy-
namically scale the replication factors as well as to effi-
ciently schedule the placement of replicas based on the
access potential of each data file. Additionally, to reduce
the calculation time, the knowledge base and heuristic
technique are implemented to detect the similarity in the
access pattern between in-processing files and the predicted
ones. By definition, the access pattern is actually a set of
eigenvectors describing the feature properties of processed
data. Two files with similar access behaviors are treated
with the same replication strategy. However, because these
techniques are minor parts and popularly used in various
systems, discussing them is not within the scope of this
paper. Constructed as a component of HDFS, the proposed
approach (ARM) takes responsibility in managing the repli-
cation over the HDFS nodes. Intuitively, an overview of
ARM is described in Figure 1. In this architecture, the
traditional physical servers as well as the cloud virtual
machines can be used as and referred to as nodes. For this
system configuration, ARM can be considered as a replica-
tion scheduler which can collaborate with any MapReduce
job scheduler. In fact, ARM helps the Fair scheduler and
delay scheduling algorithm [2] to overcome the drawback

of long tasks. Following is the description explaining the
operation of ARM.

To begin with, the system starts by periodically collect-
ing the heartbeat. After that, this heartbeat is sent to the
heuristic detector as the training data. This training data
is compared with the access patterns, which are extracted
from the predictor component and stored at the knowledge
base. If there is a match, the access potential is then retrieved
from the pattern and directly passed to the predictor com-
ponent without any computation. Otherwise, the training
data is continuously sent instead as described in Figure 2.
In that case, most of the computation belongs to the hyper-
parameter learning and training phases of the prediction. To
solve this issue, the hyper generator is constructed to reduce
the computational complexity of the hyper-parameter learn-
ing phase. After that, the training phase can start to estimate
the access potential. Finally, the access potential of the target
file is passed on to the replication management component.
In addition, a new pattern is also extracted and stored at the
knowledge base for the next evaluation.

4.2 Replication management

The purpose of this section is to describe how the replication
management chooses the placement for the replica. Theo-
retically, by placing the potential replicas on low utilization
nodes (low blocking rate nodes), the replication manage-
ment helps to redirect the tasks to these idle nodes and bal-
ance the computation. The blocking rate is calculated based
on the information provided by the monitoring system.
Based on Ganglia framework [20], the monitoring system is
simple, robust and easy to configure for monitoring most of
the required metrics. After plugging into the HDFS nodes,
the monitoring system can collect statistics via Ganglia API.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

2 1 12

Hyper

Generator

2

Training phase

AP forwarder

Replication

Management

1

Incoming data

Training data

Access potential

Predictor
2

1

Access potential

Hyper-parameters

Training data
1 1

Knowledge Base

1 2 2

Fig. 2: Working mechanism of Predictor component.

Because Ganglia receives most of the metrics provided by
HDFS, there is almost no difference between this statistic
and the heartbeat. The only extra information is the system
statistic, which consists of CPU utilization, RAM utilization,
disk I/O and network bandwidth. This design helps to unify
the data sources for computational convenience, especially
for blocking rate calculation.

In order to complete the replication management, we
assume that the replication management component collects
all the ingredients and generates the replication strategies.
From this assumption, the access potential is used to scale
the number of file copies. Then, the only issue remain-
ing is related to choose the placement of the replicas. As
mentioned above, this duty is mainly based on the statis-
tics retrieved from the monitoring system to calculate the
blocking rate and assign the replicas. Using the parallel and
distributed system theory [21], only a few critical factors
can be considered to judge the blocking rate of the server.
These factors include the network bandwidth, the number
of concurrent accesses and the capability of the server.
Following is the mechanism to calculate the blocking rate.

By denoting the limited number of slots of node Si as
ci, Si might reach a high blocking rate if all of the slots
tend to be occupied by the map tasks. It is worth noting
that the improvement of data locality only benefits the map
phase, not the shuffle and reduce phases. Therefore, the
blocking rate calculation is applied only to the map tasks.
The probability of node Si being fully occupied by the map
tasks defines the blocking rate of Si, which is represented
by BR(Si). Because the arrival rate λi of the map tasks
coming to node Si follows the Poisson distribution, the
service process of Si is considered to be of the M/M/c
queuing model. By definition, the M/M/c Markov chain
model is a stochastic process in which the first M stands
for the Poisson arrival rate of customers, the second M is
the exponential service rate of the servers and c generally

represents the capacity of each computing node (in this case,
c represents the slot capacity). As a result, the blocking rate
of Si follows the Poisson arrival see time averages (PASTA)
theory [22] as below:

BR(Si) =
(λiτi)

ci

ci!

[ci∑
k=0

(λiτi)
k

k!

]−1
(1)

where τi is the average mapping time of the aforementioned
tasks in Si. Thereafter, by evaluating the blocking rate, it is
easy for the replication management component to select a
location to assign the replicas. As described in Figure 1, only
the computing node satisfying two conditions is chosen as
the destination. The first condition is low-blocking rate and
the second one is to not store the desired replicas in advance.

5 PREDICTION MODEL

5.1 Background
The objective of prediction in the proposed approach (ARM)
is to anticipate the access potential of the data file. To obtain
this target, the Bayesian learning and Gaussian process
are employed as the inference technique and probability
framework, respectively. These techniques are supposed to
perform on the access rate to create the access potential. For
the access type, because of the different impacts between
the local access and remote access to the transmission rate,
a weighted access scheme should be engaged to benefit the
localization.

Wi =
∑
j

ηr
(i)
j

ψjai
(2)

where Wi is the weighted factor corresponding to the access
potential of the file i, η = ψmax/ψmin is the ratio of the
largest to the smallest transmission rate, ai is the total
number of accesses to the file i, r(i)j is the number of remote

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

accesses coming from the connection j to the file i, and ψj
is the transmission rate of that connection. The idea of the
weighted access scheme is that it reflects the viewpoint that
the data files possessing higher remote access rate should
have a higher potential to be replicated than the others. By
using this factor, not only the access rate, but also the access
type can contribute to scale the access potential.

For the access rate, the information provided by this data
keeps the critical role in the prediction process. In fact, the
access rate actually acts as the input for the whole compu-
tation. Basically, this data is comprised of a time location
x = [x1, x2, x3, · · ·xn] and a finite set of random variables
y = [y1, y2, y3, · · · yn] that represent the corresponding joint
Gaussian distribution of the access rate with regards to the
time order. This set of time constraints forms the Gaussian
process as follows.

f(y|x) ∼ GP
(
m(x), k(x, x′)

)
(3)

with
m(x) = E

(
f(x)

)
(4)

k(x, x′) = E
((
f(x)−m(x)

)(
f(x′)−m(x′)

))
(5)

where m(x) is the mean function evaluated at the time
location variable x and k(x, x′) is the positive-definite co-
variance function [23]. Usually, the square-exponential (SE)
kernel, also known as the radial basis function (RBF) kernel,
which is chosen to be the covariance function as follows.

kSE(x, x′) = σ2
f exp

(
− (x− x′)2

2l2

)
(6)

where σf is an output-scale amplitude and l is a time-scale
of the variable x from one moment to the next. Further, l also
plays the role of judgment for automatic relevance detection
(ARD) to discard the irrelevant input.

By denoting the incoming value of the input data as x∗,
the joint distribution of the training output as y, and the test
output as y∗, then the posterior distribution of the Gaussian
process is evaluated as follows.

p

([
y

y∗

])
= GP

([
m(x)

m(x∗)

]
,

[
K(x, x′) K(x, x∗)

K(x∗, x) K(x∗, x∗)

])
(7)

Here, K(x∗, x∗) = k(x∗, x∗) and K(x, x∗) is the column
vector made from k(x1, x∗), k(x2, x∗) · · · , k(xn, x∗). In ad-
dition, K(x∗, x) = K(x, x∗)

> is the transpose of K(x, x∗). Af-
ter that, the posterior distribution over y∗ can be evaluated
with the below mean m∗ and covariance C∗:

m∗ = m(x∗) + K(x∗, x)K(x, x′)−1(y −m(x)) (8)

C∗ = K(x∗, x∗)−K(x∗, x)K(x, x′)−1K(x, x∗) (9)

and so
p(y∗) ∼ GP(m∗, C∗) (10)

The best estimation for the predictive access potential y∗
is the mean of this posterior Gaussian distribution, given by

y∗ = K(x∗, x)K(x, x′)−1y (11)

Also, the uncertainty of the estimation is captured in the
variance of the distribution as follows.

var(y∗) = K(x∗, x∗)−K(x∗, x)K(x, x′)−1K(x, x∗) (12)

Theoretically, the predictive access potential retrieved
from the Gaussian process regression (GPR) is highly ac-
curate compared to other regression methods [24]. How-
ever, the standard implementation of GPR costs O(n3) for
computational complexity andO(n2) for storage complexity
when calculating n training points of the dataset [25]. Most
of the complexity comes from calculating the matrix inverse
and log determinant in both hyper-parameter learning and
training phases, which are two main phases of GPR. This
can be seen as the drawback of GPR, which prevents the pre-
diction from being quickly calculated on a large dataset. To
solve this problem, we introduce the complexity reduction
and optimization technique to each phase of the prediction
process.

5.2 Hyper-parameter learning phase

Algorithm 1: Hyper-parameter learning phase
Data: Access array. This is the latest history of access

rate of each data file with regards to time step.
Result: Hyper-parameters array θ(∗) = [l(∗), σ

(∗)
f]

1 Initialize value for θ(0) = [l0, σ0
f], ω, εRMSE ;

33 /* Fast Fourier Transform of input data

*/
4 ŷ= nufft1d1(y);
5 for k=1 to sizeof(ŷ) do
77 /* step_size is equivalent to α in

the Equation (22) and (23) */
8 step size=decay function(k);
9 j=random(1,sizeof (ŷ));

1111 /* partial derivative of FrMLL w.r.t
l */

12 ∇l = partial l(ŷ[j], ω[j], l
(k−1), σ

(k−1)
f);

1414 /* partial derivative of FrMLL w.r.t
σf */

15 ∇σf = partial σf (ŷ[j], ω[j], l
(k−1), σ

(k−1)
f);

1717 /* update hyper-parameters */
18 l(k) = l(k−1)+step size*∇l;
19 σ

(k)
f = σ

(k−1)
f +step size*∇σf ;

20 Compute F (k)
rMLL(θ(k));

21 Compute RMSE(k) = RMSE(F (k)
rMLL);

22 if (RMSE(k) ≤ εRMSE) then
23 break();
24 end
25 end
26 return θ(∗) = [l(∗), σ

(∗)
f];

Before proceeding with the prediction of the access po-
tential, the GPR model requires the determination of the
hyper-parameters as a prerequisite. By definition, hyper-
parameters, which can be found in the covariance func-
tion, are the free parameters making the adaptations to the
prediction process if the dataset at runtime. Finding hyper-
parameters is one of the most expensive steps in construct-
ing the aforementioned prediction model. However, not
much progress has been made in terms of performance im-
provement, especially in dealing with a large dataset. In this
section, we introduce a method that significantly reduces

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

the complexity of hyper-parameters learning phase, based
on a combination of the fast Fourier transform (FFT), the
law of log determinant and the stochastic gradient descent
(SGD). This enhancement is the first of a two-step process
to actualize the possibility of using GPR in predicting the
access potentials. Following is the step-by-step explanation
of our method.

Denoting the set of hyper-parameters of the covariance
function in Equation (6) as θ = [σf , l], this set is supposed
to be evaluated through the marginalization process. First,
rewrite Equation (10) by using Bayes’ rule, as shown below:

p(y∗|y) =

∫
p(y∗|y, θ)p(y|θ)p(θ)dθ∫

p(y|θ)p(θ) dθ
(13)

In this equation, the marginal likelihood p(y) =∫
p(y|θ)p(θ)dθ is the main point of interest for identifying

θ. So far, the estimation of this hyper-parameter set θ can
be obtained when p(θ|y) reaches its maximum [26]. Accord-
ing to Bayes’ rule, p(θ|y) is known to be proportional to
p(y|θ). Then, the estimation step only involves maximizing
log p(y|θ) or minimizing the negative of log p(y|θ) [27],
which is shown below:

− log p(y|θ) =
1

2
yTK−1y +

1

2
log |K|+ n

2
log(2π) (14)

Due to the high complexity of this calculation, repre-
sented by the matrix inverse K−1, finding an alternative
method for the hyper-parameter learning process is neces-
sary. Instead of putting effort into minimizing Equation (14),
the heavy-load-job can be done more quickly by approxi-
mately minimizing the upper bound of this term. Analyti-
cally, the dominant computation arising from Equation (14)
are focused on two terms: the data-fit term [24] denoted by
yTK−1y and the log determinant log |K|. These terms can be
simplified to reduce the complexity. To do that, the law of
log determinant [28] is firstly used. Initially, by calculating
the log determinant L̂ of the sample covariance matrix K̂,
Equation (14) is simplified to

− log p(y|θ) =
1

2
yTK−1y +

1

2
L̂ +

n

2
log(2π) (15)

After a number of calculations, the term L̂ converges
to a constant. This convergence leads to the conclusion
that minimizing the negative log marginal likelihood in
this domain might only involve minimizing the following
reduced negative marginal log likelihood (rMLL).

− log p(y|θ)rMLL =
1

2
yTK−1y (16)

Traditionally, dealing with this task concerns finding the
inverse of the covariance matrix K, which is very com-
putationally expensive. To mitigate this issue, a Fourier
transform can be applied. As mentioned before, because
the covariance function is positive-definite, it is possible to
do the transformation by using the Fourier transform to
bring the computation from the spatial-temporal domain
into the periodic domain. Consequently, the cost reduces
to O(nlogn) when calculating n training points of dataset.
Obviously, this cost is much more preferred and faster than
the traditional computation.

In order to achieve the above improvement, the squared
exponential kernel kSE(x, x′) in Equation (6) needs to be

re-written in the Fourier transform representation [29] as
shown below:

FSE(ω) = lσ2
f

√
2πexp(−2π2ω2l2) (17)

where, ω is the frequency representation of the time location
x in the periodic domain. Assume that Φ is the function that
generates K̃ = K−1. Under the periodic domain, the Parse-
val theorem [30] is applied to derive the Fourier transform
for Equation (16) as follows.

FrMLL(θ) = F
(
− log p(y|θ)rMLL

)
=

1

2n
ŷT Φ̂ ∗ y◦ (18)

where the ’hat’ sign above ŷ denotes the Fourier transform
of y, and y◦ denotes the data vector in the periodic domain.
In the next step, by continuously applying the convolution
theorem with regards to the constraint ΦFSE ≡ 1, the
Fourier transform of rMLL can be represented as follows.

FrMLL(θ) =
1

2n

∑
i

Φ̂i ∗ ŷ2i =
1

2n

∑
i

ŷ2i
FSE(ωi)

(19)

With this form of Equation (19), the set of hyper-
parameters θ can be estimated by using gradient-based
techniques. In this research, the stochastic gradient descent
(SGD) is chosen because of its features of fast convergence
and less sensitive to the local minima [31]. To integrate
the SGD, the partial derivatives of the Equation (19) are
required for each hyper-parameter. These equations are
given by

∂

∂l
FrMLL = ŷ2i exp (2π2l2ω2)

(
2
√

2π3/2ω2

σ2
f

− 1√
2πl2σ2

f

)
(20)

and

∂

∂σf
FrMLL = −

√
2
π ŷ

2
i exp (2π2l2ω2)

lσ3
f

(21)

After that, an updating scheme is issued to update the
hyper-parameters to the convergent point. This scheme is as
follows.

l(k) ← l(k−1) + α(k)
∂

∂l(k−1)
FrMLL (22)

σ
(k)
f ← σ

(k−1)
f + α(k)

∂

∂σ
(k−1)
f

FrMLL (23)

where α(k) = 1/(k + 1) is the Robbins-Monroe decay func-
tion with regards to the kth iteration. This function is chosen
instead of the exact line search or the backtracking line
search [31], mainly because of the performance issue.

To govern the number of iterations, an error function
is defined based on the root mean square error (RMSE)
method to measure the convergence. Note that the RMSE
method is stricter than the popularly-used mean square
error (MSE) method. By using this error function, the gap
between the current iteration value and the previous one
can be evaluated as follows.

RMSE =

√∑n
i=1 F

(k)
i −F (k−1)

i

n
(24)

where, F (k)
i and F (k−1)

i stand for the values of rMLL at
the target location i in the kth and (k − 1)th iterations,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

TABLE 1: Computation cost of proposed method

Direct Method Conjugate Gradient Proposed Method
Hyper-parameters learning O(n3) O(n2) O(nlogn)
Training O(n3) O(n2) O(n)

respectively. Theoretically, the RMSE threshold is limited
to 10−11 which produces a solution close to the real one.
From this moment, the computation can be done without
doing the matrix inverse. By the end of this hyper-parameter
learning phase, the set of hyper-parameters is ready for the
training phase of the predictor. The algorithm of the hyper-
parameter learning phase can be found in Algorithm 1.

5.3 Training phase

After having the hyper-parameters, the predictor can start
finding the access potential via estimating the mean value
of the Equation (11). This step is called as the training
phase of the prediction. In this step, once again the matrix
inverse represented by K(x, x′)−1 becomes the main obsta-
cle. Although the FFT is still effective in this case, a more
appropriate technique is applied for better performance.

At first, the Equation (11) can be re-written as follows.

y∗ = K(x∗, x)ξ (25)

in which
ξ = K(x, x′)−1y (26)

multiplying both sides of Equation (26) by K(x, x′), we have

y = K(x, x′)ξ (27)

Since the matrix K(x, x) is symmetric and positive-
definite, the conjugate gradient [32] iterative method is en-
gaged. The definition of this method is to choose a starting
point and make a series of iterative steps that converge upon
the approximate solution ξi, which is adjacent to the real
solution ξ. The best solution for this process can be given by
the inequality below:

‖ξ − ξi‖K

‖ξ − ξ0‖K
≤ 2

(√
κ− 1√
κ+ 1

)2i

(28)

where the constant κ = λmax/λmin is the ratio of the largest
and the smallest eigenvalues of the matrix K, and the K −
norm is calculated as ‖z‖K = zTKz where z is any arbitrary
vector. The tolerance parameter ζ is also given such that
0 < ζ < 1. This parameter ζ acts as a bound for the practical
conjugate-gradient scheme as follows.

‖y −Kξi‖2
‖y −Kξ0‖2

≤ ζ (29)

Note that, at the end of the ith iteration, ‖y − Kξi‖2 is
obtained as the residual in the Euclidean−norm.

The complexity of the conjugate gradient method is
O(in2), in which i is the number of iterations and n is the
number of training points. Usually, the system works on
an enormous number of training sets, and so the quadratic
complexity algorithm might rapidly deteriorate the overall
performance. Therefore, the conjugate gradient needs to be
coupled with the improved fast Gauss transform (IFGT)

method [33] [34] to achieve faster calculation. The IFGT
technique is actually derived from the fast Gauss transform
(FGT) [35] [36] which is an ε−exact approximate algorithm.
To do this integration, in the jth step of the conjugate gra-
dient, the FGT is used to expands the jth conjugacy G(xj)
into a plane-wave expansion of the previous SE kernel as
shown below:

G(xj) =
N∑
i=1

qi exp(−‖xj − xi‖
2

2l2
) (30)

where m is the number of target points and n is the
number of source points, xj is the target point with {xj ∈
R2}j=1,...,m, qi is the source weight with {qi ∈ R}i=1,...,n,
xi is the source point with {xi ∈ R2}i=1,...,n, and l is the
bandwidth with {l ∈ R+}. This Gaussian-type expansion
might be calculated approximately by using the discrete
Fourier transform [36] [37] as follows.

G(xj) ≈
∑
|α|≤p

F(α)wα exp(
iαL(xj − xi)√

2pl
) (31)

with F(α) and wα are given by

F(α) =
1

23
√
π

exp(−L
2|α|2

4p2
) (32)

wα =

(
L

p

)2 ∑
y∈U

f(y) exp(
iαL(cU − y)√

2pl
) (33)

where α = (α1, α2) is a multi-dimensional index set, p is the
number of plane-wave coefficient required per dimension
to obtain the desired precision ε, and L is the truncation
error term (the detail configurations of p and L can be
found in [37]). Assuming that the domain Ω is a unit square
[0, 1]2 (if the value stays out of this range, shifting and
rescaling have to be performed), by partitioning the domain
Ω into a number of uniform squares U of size

√
2l, the FGT

can compute the desired result in three steps: S2W, W2L
and L2T. Before explaining these terms, the definition of
’interaction list’ should be stated. Briefly, this list is denoted
by I[U] which describes a specific set of a neighborhood
of U . Basically, this set supports the kernel at the center
of U . At the beginning, the FGT algorithm starts with the
S2W step. This step sequentially calculates the Equation (31)
for each square U . After that, the plane-wave expansion,
which is created in S2W, now propagates to all elements V
of I[U] as a ’local’ expansion. Intuitively, the visualization
of propagation steps can be found in Figure 3. In this
propagation, the step W2L plays the role of modifying the
below expansion:

w∗α = wα exp(
iαL(cV − cU)√

2pl
) (34)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

In the last step, L2T, the conjugacy G(xj) is computed at
xj by using the ’local’ expansion from the box containing it.

G(xj) =
∑
|α|≤p

F(α)w∗α exp(
iαL(x− cV)√

2pl
) (35)

Fig. 3: The ’local’ expansion step S2W is calculated directly
in the green layer. Other layers in the interaction list I[U]
are calculated by the propagation. The direction and the
order of the propagation are shown in red arrow and the
light magnitude of blue color, respectively.

As mentioned above, the FGT helps to nicely reduce
the computational cost to O(mn) where m is the number
of target points and n is the number of source points.
However, this technique has a reduction in accuracy as a
side effect. It is mainly related to the ε parameter, which also
critically influences the parameters p and L. To overcome
this drawback, the IFGT [34] is proposed as a strategy to
adaptively select this ε parameter without a loss of accuracy
as follows.

εi ≤
δ

n

‖y −Kξ0‖
‖ři−1‖

(36)

where δ is the bound of the difference between the residual
of the ith iteration and the corresponding residual of the
approximate matrix-vector product: ‖ři − ri‖ ≤ δ, and n is
the number of training points. With this improvement, the
complexity in the training phase drops to O(n) [34].

Although it is suitable for the training phase to adopt
the IFGT coupling with conjugate gradient (IFGT-CG), this
combination technique is difficult to apply in the hyper-
parameter learning phase. The IFGT, which is derived from
the FGT technique, works properly only if the objective
function can be represented in a Gaussian type form, which
is impossible for rMLL in Equation (16). In this case, the
standalone conjugate gradient solves the matrix inverse
within a computational complexity of O(n2). This improve-
ment is actually worse than the O(nlogn) of the proposed
technique introduced in the previous section. The compar-
ison of the complexity between the proposed method and
the others can be found in Table 1.

6 PERFORMANCE EVALUATION

6.1 Experiments

Two experiments are used to evaluate the performance of
the proposed approach (ARM). The first experiment is con-
ducted on the Facebook cluster traces, namely the Statistical
Workload Injector for MapReduce (SWIM) [38] [18]. By

TABLE 2: System Configuration

Configuration
Computing
Nodes 01 Name Node, 16 Data Nodes

Platform 64bit

CPU
Intel®Core™ Xeon E5520 2.3GHz
4 cores

Storage
4x1TB for Name Node
4x1TB for each Data Node

Memory
16GB for Name Node
12GB for each Data Node

Network Gigabit Ethernet Controller

OS
CentOS 6.5 (final)
Kernel: 2.6.32-431.el6.x86 64

Software Apache Hadoop 0.20-append

sampling the historical MapReduce cluster traces, the SWIM
provides an efficient method to measure the effectiveness
of the solution, which is intended to improve the HDFS
replication on the realistic dataset. Two sets of synthesized
day-long workloads, namely Facebook trace 01 (FB-2009)
and Facebook trace 02 (FB-2010) are studied. Each set con-
tains 24 historical traces sampled on a 600-machines cluster.
It is worth noting that these workload replay scripts are
modified to generate the real-life workloads. In other words,
the data access patterns in these sets of traces are adjusted
to follow the Zipf-like distribution, i.e., over 90% of data
accesses focus on less than 10% of data files as mentioned in
the Cost analysis section. The distribution of the file access
rate can be found in Figure 4a. The second experiment is
the famous TeraSort stress test released by Yahoo!. This is a
benchmark program written in MapReduce and included in
the Hadoop distribution by default. Basically, the TeraSort
stress test builds a sample key structure by selecting the
subsets from the input before submitting the job and push-
ing this key structure into HDFS. In this experiment, the
TeraSort is performed on 1TB input data. Additionally, the
Hadoop version used in the experiments is also modified to
accept the dynamic replication factor as well as the flexible
placement decision which is made by the ARM system.
Finally, the configuration of the experimental cluster used
for the experiments can be found in Table 2.

6.2 Implementation

Since there is no way to directly trigger the operations on
files in HDFS, an indirect heartbeat analysis is chosen as the
alternative technique to collect the read/write operations.
To do that, a log parsing script is implemented in Java
by using the socket listener to manipulate the log file.
Basically, the needed information consists of access time,
access IP, target file, file operation and user authority who
issues the operation. For the comparison purpose, the de-
fault replication mechanism, ERMS [9] and OPTIMIS [5] are
implemented to compare with the proposed ARM. All these
approaches are implemented along with the Fair scheduler.
Note that the delay scheduling algorithm is not engaged to
avoid confusing the experiment result. Separately, the delay
scheduling is subsequently compared with ARM via the test
on various durations of task, which is described in Figure
4g. At the prediction level, the proposed prediction method

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

File rank by descending access count

F
ile

 a
c
c
e

s
s
 c

o
u

n
t

(a) Access rate vs rank.

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

Sampling time (minute)

M
e

a
n

 q
u

a
n

ti
ty

 o
f

re
p

lic
a

ti
o

n
 f

a
c
to

r

OPTIMIS

ERMS

ARM

default scheme

(b) Data redundancy metric evaluation (lower is bet-
ter).

2 4 6 8 10 12 14 16
Replication factor

OPTIMIS

ERMS

ARM

default scheme

(c) Distribution (pdf) of each method.

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

Sampling time (second)

N
e

tw
o

rk
 t

ra
ff

ic
 (

M
b

/s
)

OPTIMIS

ERMS

ARM

default scheme

(d) Network traffic evaluation (lower is better).

Facebook_trace_01 Facebook_trace_02 TeraSort
0

10

20

30

40

50

60

70

80

90

100

Experiments

L
o

c
a

l
a

c
c
e

s
s
 p

e
rc

e
n

ta
g

e

default scheme

ARM

ERMS

OPTIMIS

(e) Data locality metric evaluation (higher is better).

All tasks Map Shuffle Reduce
0

1000

2000

3000

4000

5000

6000

7000

Task type

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

default scheme

ARM

ERMS

OPTIMIS

(f) Execution time benchmark in the TeraSort stress test
(lower is better).

10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Map task duration (second)

D
a

ta
 l
o

c
a

lit
y
 (

p
e

rc
e

n
ta

g
e

)

Delay Scheduling

ARM

(g) ARM vs delay scheduling in the data locality test
over various task durations.

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Sampling time (second)

M
e

a
n

 d
u

ra
ti
o

n
 (

s
e

c
o

n
d

)

Knowledge base disabled

Knowledge base enabled

(h) Evaluation on mean duration of creating the access
potential (lower is better).

Fig. 4: Performance evaluation of proposed method at system level.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

is compared with the conjugate gradient (CG) and the direct
method (Gauss-Jordan elimination).

6.3 Metrics
ARM is measured at two levels: the prediction level and the
system level. At the prediction level, the metrics of interest
are the completion time and the accuracy of prediction.
Meanwhile, at the system level, the data redundancy and
the availability (measured by the data locality) are the
metrics of interest. In addition, some relevant factors such as
network traffic, execution time and utilization of knowledge
base are also considered. For the data locality evaluation, the
metric is calculated in percentage as follows.

Mdl =
Accesslocal
Accesstotal

(37)

where Mdl is the data locality metric of the target file
estimated by the fraction of the local access Accesslocal
and the total access Accesstotal. In the other hand, the data
redundancy metric is evaluated via the mean quantity of
replicas and the shape of replication factor distributions.

6.4 Results
System level - data redundancy: this metric is measured in
the modified SWIM experiment. By running the modified
SWIM for 315 minutes and calculating the mean quantity
of the replication factors (Figure 4b), it can be seen that the
average replication factor (1.22) of ARM is even better than
the default scheme (3.0). This fact happens because only the
files from the replication set (which possesses less than 10%
of data files) are gradually assigned the replication schemes.
Theoretically, the replication set creates a small number but
elite replicas to serve the data access. In the other hand, the
remaining low potential files are handled by the erasure set.
It is worth noting that the effect and the configuration of
the erasure coding part can be found in the previous Cost
analysis section. Besides, the improvement of ARM can be
seen also in the replication factor distributions (Figure 4c). In
this measurement, the variances of ERMS and OPTIMIS are
narrow. It means that the difference between the high and
low access potential files is not clearly distinguished. As a
consequence, without the knowledge of access pattern, the
issue of high network utilization (39.96% higher than ARM)
happens to ERMS in effort to improve the data locality
metric by declining the thresholds (Figure 4d). In the other
hand, although OPTIMIS does not have the problem of high
network traffic because of better access pattern utilization,
this approach faces the problem of inaccuracy of predicting
technique [5]. This critical issue leads to the dysfunctional
replication process which then limits the data locality.

System level - availability (data locality): by averaging
the results from both Facebook trace tests, ARM scores
approximately 2.84 times better than the default scheme,
1.98 times better than ERMS and 2.39 times better than
OPTIMIS (Figure 4e). In the TeraSort experiment (also in
Figure 4e), ARM achieves 2.34, 1.62 and 1.80 times better
than the default scheme, ERMS, and OPTIMIS, respectively.
The effectiveness of the data locality improvement can be
observed in the execution time benchmark of the TeraSort
experiment (Figure 4f). Firstly, it is important to mention

that the data locality benefits the map phase rather than the
shuffle and reduce phases. Therefore, in the TeraSort test,
ARM helps to reduce 52% and 37.98% mapping time, re-
spectively, as compared with the default replication scheme
and the second best approach (ERMS).

As mentioned previously, because the delay scheduling
algorithm (hereinafter: delay sched) might confuse the eval-
uation result, this algorithm should be compared with ARM
in a separate TeraSort test, which is shown in Figure 4g.
Theoretically, the efficiency of the delay sched decreases
with the increment in the map task length [2]. Indeed,
the delay sched achieves 4.71% better than ARM at the
data locality measurement when the map task is 10s long.
However, when the map task is 22s long, the delay sched
and the ARM score analogous results. By increasing the
map task length continuously, the delay sched is suffered
for the decline in data locality metric faster than ARM.
By the end of the experiment, when the map task is 60s
long, the data locality of ARM is still maintained at 73.96%
as compared with 40.98% of the delay sched. This is the
significant advantage of proposed approach over the state
of the art method.

Lastly, the evaluation on the effect of knowledge base is
conducted on the TeraSort experiment in Figure 4h. When
getting enough information (after around 250 seconds), the
knowledge base and the heuristic detector can reduce the
duration of creating the access potential, up to 2.17 times.
Frankly, this result is varied as time progresses, but it indi-
cates that caching the access patterns can help to improve
the performance of the access potential prediction.

Prediction level - completion time: in Facebook trace ex-
periments, Figure 5a shows that within the same error
bound (ε = 10−11) and the same size of dataset (103

points), the proposed method approximately cuts down an
amount of hyper-parameters learning time up to 89.37%
as compared with the second best method. Because of the
approval problem of Facebook trace data, the training phase
evaluation is skipped for this kind of experiments. In the
TeraSort experiment, as also shown in Figure 5a, with the
different dataset (102 target points), the proposed method is
measured to be 92.11% faster than the second best method
in the hyper-parameters learning phase. It is worth noting
that the Gauss-Jordan elimination method takes too much
time to finish the tasks, this method is eliminated for later
evaluation. Finally, during the training phase as well as the
overall prediction evaluation described in Figures 5b and 5c,
respectively, when the number of training points increases,
the proposed method continues to outperform the other
methods in terms of reaction rate.

Prediction level - accuracy: depending on the degree of reli-
ability, because the proposed method also partially relies on
the IFGT which defines the precision ε = 10−11 in advance,
the accuracy is safely maintained. Figure 5d shows that for
an accuracy benchmark of 18 consecutive testing points in
the TeraSort experiment, the mean prediction adapts quite
well to the testing data with 95% confidence maintained by
the variance.

7 CONCLUSION

In order to improve the availability of HDFS by enhancing
the data locality, our contribution focus on following points.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

Facebook_trace_01 Facebook_trace_02 TeraSort
0

200

400

600

800

1000

1200

Experiment name

C
o

m
p

le
ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

Proposed method

CG

Gauss−Jordan

(a) Hyper-parameters learning speed evaluation (lower is
better).

10
1

10
2

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of training point

C
o

m
p

le
ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

CG

Proposed method

(b) Training speed evaluation in the TeraSort benchmark
(lower is better).

10
1

10
2

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

10
6

Number of data point

C
o

m
p

le
ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

CG

Proposed method

(c) Overall prediction speed evaluation (lower is better). (d) Mean prediction and error bar of proposed method given
18 training points in the TeraSort benchmark.

Fig. 5: Performance evaluation of proposed method at prediction level

First, we design the replication management system which
is truly adaptive to the characteristic of the data access
pattern. The approach not only pro-actively performs the
replication in the predictive manner, but also maintain the
reliability by applying the erasure coding approach. Second,
we propose a complexity reduction method to solve the
performance issue of the prediction technique. In fact, this
complexity reduction method significantly accelerates the
prediction process of the access potential estimation. Finally,
we implement our method on a real cluster and verify the
effectiveness of the proposed approach. With a rigorous
analysis on the characteristics of the file operations in HDFS,
our uniqueness is to create an adaptive solution to advance
the Hadoop system. For further development, some parts of
the source code developed to test our idea would be made
available under the terms of the GNU general public license
(GPL).

ACKNOWLEDGMENTS

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(MSIP) NRF-2014R1A2A2A01003914. Corresponding author
is Professor Sungyoung Lee (sylee@oslab.khu.ac.kr).

REFERENCES

[1] “What is apache hadoop?” https://hadoop.apache.org/, accessed:
2015-08-13.

[2] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: a simple technique for achieving
locality and fairness in cluster scheduling,” in Proceedings of the 5th
European conference on Computer systems. ACM, 2010, pp. 265–278.

[3] K. S. Esmaili, L. Pamies-Juarez, and A. Datta, “The core storage
primitive: Cross-object redundancy for efficient data repair &
access in erasure coded storage,” arXiv preprint arXiv:1302.5192,
2013.

[4] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg,
I. Stoica, D. Harlan, and E. Harris, “Scarlett: Coping with skewed
content popularity in mapreduce clusters.” in Proceedings of the
Sixth Conference on Computer Systems, ser. EuroSys ’11. New
York, NY, USA: ACM, 2011, pp. 287–300. [Online]. Available:
http://doi.acm.org/10.1145/1966445.1966472

[5] G. Kousiouris, G. Vafiadis, and T. Varvarigou, “Enabling proac-
tive data management in virtualized hadoop clusters based on
predicted data activity patterns.” in P2P, Parallel, Grid, Cloud and
Internet Computing (3PGCIC), 2013 Eighth International Conference
on, Oct 2013, pp. 1–8.

[6] A. Papoulis, Signal analysis. McGraw-Hill, 1977, vol. 191.
[7] Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng, “Cdrm: A

cost-effective dynamic replication management scheme for cloud
storage cluster.” in Cluster Computing (CLUSTER), 2010 IEEE Inter-
national Conference on, Sept 2010, pp. 188–196.

[8] C. L. Abad, Y. Lu, and R. H. Campbell, “Dare: Adaptive data
replication for efficient cluster scheduling.” in CLUSTER. IEEE,
2011, pp. 159–168.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

[9] Z. Cheng, Z. Luan, Y. Meng, Y. Xu, D. Qian, A. Roy, N. Zhang, and
G. Guan, “Erms: An elastic replication management system for
hdfs.” in Cluster Computing Workshops (CLUSTER WORKSHOPS),
2012 IEEE International Conference on, Sept 2012, pp. 32–40.

[10] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “Xoring elephants: Novel
erasure codes for big data,” in Proceedings of the VLDB Endowment,
vol. 6, no. 5. VLDB Endowment, 2013, pp. 325–336.

[11] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: a
scalable and fault-tolerant network structure for data centers,”
ACM SIGCOMM Computer Communication Review, vol. 38, no. 4,
pp. 75–86, 2008.

[12] A. Duminuco and E. Biersack, “Hierarchical codes: How to make
erasure codes attractive for peer-to-peer storage systems,” in Peer-
to-Peer Computing, 2008. P2P’08. Eighth International Conference on.
IEEE, 2008, pp. 89–98.

[13] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McK-
elvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci et al., “Windows
azure storage: a highly available cloud storage service with strong
consistency,” in Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles. ACM, 2011, pp. 143–157.

[14] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson, “Diskreduce: Repli-
cation as a prelude to erasure coding in data-intensive scalable
computing,” Parallel Data Laboratory, Carnegie Mellon University,
Pittsburgh, 2011.

[15] S. B. Wicker and V. K. Bhargava, Reed-Solomon codes and their
applications. John Wiley & Sons, 1999.

[16] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to
trade space for access efficiency in reliable data storage systems,”
ACM Transactions on Storage (TOS), vol. 9, no. 1, p. 3, 2013.

[17] A. Datta and F. Oggier, “Redundantly grouped cross-object coding
for repairable storage,” in Proceedings of the Asia-Pacific Workshop
on Systems. ACM, 2012, p. 2.

[18] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical pro-
cessing in big data systems: A cross-industry study of mapreduce
workloads,” Proceedings of the VLDB Endowment, vol. 5, no. 12, pp.
1802–1813, 2012.

[19] Z. Guo, G. Fox, and M. Zhou, “Investigation of data locality in
mapreduce,” in Proceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012).
IEEE Computer Society, 2012, pp. 419–426.

[20] “What is ganglia?” http://ganglia.sourceforge.net/, accessed:
2015-08-13.

[21] X. Wu, Performance Evaluation, Prediction and Visualization of
Parallel Systems, ser. The International Series on Asian Studies in
Computer and Information Science. Springer US, 1999. [Online].
Available: http://books.google.co.kr/books?id=IJZt5H6R8OIC

[22] R. Gallager, Stochastic Processes: Theory for Applications.
Cambridge University Press, 2013. [Online]. Available:
http://books.google.co.kr/books?id=CGFbAgAAQBAJ

[23] K. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf, “An in-
troduction to kernel-based learning algorithms.” Neural Networks,
IEEE Transactions on, vol. 12, no. 2, pp. 181–201, Mar 2001.

[24] C. Rasmussen and C. Williams, Gaussian Processes
for Machine Learning, ser. Adaptive Computation And
Machine Learning. MIT Press, 2005. [Online]. Available:
http://www.gaussianprocess.org/gpml/chapters/

[25] K. Chalupka, C. K. I. Williams, and I. Murray, “A framework for
evaluating approximation methods for gaussian process regres-
sion.” CoRR, vol. abs/1205.6326, 2012.

[26] E. G. Tsionas, “Maximum likelihood estimation of stochastic fron-
tier models by the fourier transform.” Journal of Econometrics, vol.
170, no. 1, pp. 234–248, 2012.

[27] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kgl, “Algorithms for
hyper-parameter optimization.” in NIPS, J. Shawe-Taylor, R. S.
Zemel, P. L. Bartlett, F. C. N. Pereira, and K. Q. Weinberger, Eds.,
2011, pp. 2546–2554.

[28] T. T. Cai, T. Liang, and H. H. Zhou, “Law of log determinant of
sample covariance matrix and optimal estimation of differential
entropy for high-dimensional gaussian distributions.” CoRR, vol.
abs/1309.0482, 2013.

[29] P. Sollich and C. K. I. Williams, “Understanding gaussian process
regression using the equivalent kernel.” in Deterministic and
Statistical Methods in Machine Learning, ser. Lecture Notes in
Computer Science, J. Winkler, M. Niranjan, and N. D. Lawrence,
Eds., vol. 3635. Springer, 2004, pp. 211–228. [Online]. Available:
http://dblp.uni-trier.de/db/conf/dsmml/dsmml2004.html

[30] J. de Baar, R. Dwight, and H. Bijl, “Speeding up kriging through
fast estimation of the hyperparameters in the frequency-domain.”
Computers & Geosciences, vol. 54, no. 0, pp. 99–106, 2013.

[31] S. Boyd and L. Vandenberghe, Convex Optimization.
Cambridge University Press, 2004. [Online]. Available:
http://books.google.co.kr/books?id=mYm0bLd3fcoC

[32] J. R. Shewchuk, “An introduction to the conjugate gradient
method without the agonizing pain.” Carnegie Mellon University,
Pittsburgh, PA, USA, Tech. Rep. CMU-CS-94-125, 1994.

[33] C. Yang, R. Duraiswami, N. Gumerov, and L. Davis, “Improved
fast gauss transform and efficient kernel density estimation.” in
Computer Vision, 2003. Proceedings. Ninth IEEE International Confer-
ence on, Oct 2003, pp. 664–671 vol.1.

[34] C. Yang, R. Duraiswami, and L. S. Davis, “Efficient kernel ma-
chines using the improved fast gauss transform,” in Advances in
neural information processing systems, 2004, pp. 1561–1568.

[35] T. I. Alecu, S. Voloshynovskiy, and T. Pun, “The gaussian trans-
form.” in EUSIPCO2005, 13th European Signal Processing Conference,
2005, pp. 4–8.

[36] L. Greengard and J. Strain, “The fast gauss transform.” SIAM
Journal on Scientific and Statistical Computing, vol. 12, no. 1, pp.
79–94, 1991.

[37] M. Spivak, S. K. Veerapaneni, and L. Greengard, “The
fast generalized gauss transform.” SIAM J. Sci. Comput.,
vol. 32, no. 5, pp. 3092–3107, Oct. 2010. [Online]. Available:
http://dx.doi.org/10.1137/100790744

[38] Y. Chen, A. Ganapathi, R. Griffith, and R. H. Katz, “The case
for evaluating mapreduce performance using workload suites.”
in MASCOTS. IEEE, 2011, pp. 390–399.

Dinh-Mao Bui received the B.S. degree in Com-
puter Science from the Computer Engineering
Department at Ton Duc Thang University, Viet-
nam, in 2009 and the M.S. degree in Data
Communication and Networking from the Posts
and Telecommunications Institute of Technology,
Vietnam, in 2012. He is now working toward
the PhD degree in the Department of Computer
Engineering at Kyung Hee University, Korea. His
research interests include Convex Optimization,
Stochastic Process and Big Data.

Shujaat Hussain received his B.S. with distinc-
tion from Mohammad Ali Jinnah University Uni-
versity, Pakistan in 2005. He got M.S. from Mo-
hammad Ali Jinnah University University, Pak-
istan in 2009. Since September 2011, he has
been working on his PhD degree in the Depart-
ment of Computer Engineering at Kyung Hee
University, Korea. His research interests include
cloud computing, health analytics in big data and
distributed systems.

Eui-Nam Huh is a chair professor in Dept. of
Computer Engineering. His interesting research
areas are: Cloud Computing, Big Data Comput-
ing, IoT, Distributed Real Time System, Network
Security. He earned Masters degree in Com-
puter Science from University of Texas, USA
in 1995 and Ph. D degree from the Ohio Uni-
versity, USA in 2002. He has also served for
the WPDRTS/IPDPS, SOICT, APIST, ICUIMC
and ICCSA community as various chair positions
since 2003.

Sungyoung Lee received his Ph.D. degree in
Computer Science from Illinois Institute of Tech-
nology (IIT), Chicago, Illinois, USA in 1991. He
has been a professor in the Department of Com-
puter Engineering, Kyung Hee University, Korea
since 1993. Before joining Kyung Hee Univer-
sity, he was an assistant professor in the De-
partment of Computer Science, Governors State
University, Illinois, USA from 1992 to 1993. His
current research focuses on Ubiquitous Comput-
ing, Cloud Computing, Intelligent Computing and

eHealth.

