
Bringing Handhelds to the Grid Resourcefully: A 
Surrogate Middleware Approach 

Maria Riaz, Saad Liaquat Kiani, Anjum Shehzad, Sungyoung Lee 

Computer Engineering Dept., Kyung Hee University 
Yongin-Si, Gyeonggi-Do, 449-701, Republic of Korea 

{maria, saad, anjum, sylee}@oslab.khu.ac.kr 

Abstract. This paper presents the design of a middleware approach that aims at 
assisting handheld devices in accessing Grid services by wrapping the 
computational and resource intensive tasks in a surrogate and shifting them to a 
capable machine for execution. The performance of the surrogate approach is 
evaluated with the help of a test scenario. The reduction in computational 
intensity at the handheld device, achieved through task delegation, is examined 
and the optimization of communication mechanisms, that reduce the load on a 
resource constrained handheld device, is presented1.  

1   Introduction 

With ever decreasing costs and increasing functionality in small sized chips, mobile 
handheld devices e.g., Personal Digital Assistants (PDA) and smart phones are 
becoming mainstream now. While mobile elements will improve in absolute ability, 
they will always be resource-deprived relative to their static counterparts 
(desktops/workstations). In [1], the author argues that for a given cost and level of 
technology, considerations of weight, power, size and ergonomics will exact a penalty 
in computational resources such as processor speed, memory size, and disk capacity. 
These devices do not have enough resources in effect to utilize the Grid services 
comprehensively.  

Owing to monotonically increasing mobility of users and greater adoption of 
handheld devices, job submission to Grid through handheld devices comes up as a 
viable option for maximizing usability of devices and efficiency of services. 
Constraints that hinder handheld devices from such interactions include limited 
network bandwidth, CPU power, memory (small network buffers) and intermittent 
connectivity. Keeping such limitations in mind, we aim to define a middleware 
approach that will allow handheld devices, e.g. PDA units, to interact with Grid 
services while inducing minimal burden on the device itself. We demonstrate a 
solution based on Jini Network Technology’s [2] Surrogate Architecture [3] which 
provides a network framework in which a device can deploy a client or a service on a 
device other than itself. 

                                                           
1 This work is partially supported by Ministry of Commerce, Industry and Energy, Republic of 

Korea. 



Since we are stepping in a new realm of Grid access through handheld devices, 
many design and performance challenges need to be considered and countered. In the 
domain of Grid infrastructure, where services and data resources are replicated across 
geographical boundaries [4], [5], communication costs can be minimized by careful 
selection of intermediate network. The communication mechanisms involved in job 
submission, execution and resource access are optimized at three levels: 1) Selection 
of the host to which the device will submit the job/task for execution, 2) Resource 
access by the surrogate during execution and 3) filtering and optimization of 
intermediate results that are to be transferred to the device from the remote machine. 

One possible approach for facilitating handheld device interaction with the Grid is 
to narrow down the criteria for Grid access and make it less resource hungry; but 
doing so will also take away several benefits. How can a resource constrained device 
be configured and supplemented with software based techniques to make it Grid-
interaction capable? A handheld device wishing to host a service and unable to do so 
can be allowed to delegate this task to a relatively powerful machine (desktop, 
server). Conversely, if the interaction with remote Grid services proves too much for 
limited local resources of a handheld device, it can deploy the actual client 
functionality at an intermediate machine and receive the results in a form that is in 
keeping with its hardware resources. This second scenario has a greater probability of 
being used in real world applications and is the focus of our research.  

 

Fig. 1. Interaction between a mobile handheld device with Grid services through middleware 
deployed at a ‘in-between’ gateway 

The ‘client’ process, transferred from the device, is called a ‘surrogate’ (The term 
‘surrogate’ is used to describe an entity that performs some action on behalf of 
another entity). The middleware component at intermediate machine, which provides 



the execution environment and access to extensive resources for the handheld 
device’s surrogate, is called the ‘Gateway Surrogate Host’ or simply ‘Host’. An 
interconnect mechanism, defined as “logical and physical connection between the 
surrogate host and a device” [6], also needs to exist. A handheld device that can 
communicate on IP (wirelessly or wired) can be programmed to shift its processing to 
a host capable machine. 

An overview of our middleware approach is presented in Sect. 2. Section 3 deals 
with the communication mechanisms and the proposed optimizations in the 
middleware. Prototype implementation and test results are presented in Sect. 4. We 
conclude our discussion in Sect. 5 and also list relevant related work. 

2   3 – Tier Architecture 

The main concept driving our approach is to shift the 1) access to generic Grid 
services and 2) intensive task processing, from a resource constrained handheld 
device to a resource rich system (i.e. the Surrogate Host). This is to be achieved by 
wrapping the access and processing mechanisms in a ‘surrogate’ module. Consider 
the example of a physicist who needs to see graph plots, on his PDA, of data 
produced as a result of high energy collisions between atomic particles. The amount 
of information stored in data-stores from which graphs are to be generated will be in 
the range of several gigabytes or even terabytes. The processing of such data for the 
purpose of plotting graphs is not a job to be handled by a handheld device. Moreover, 
the handheld device may have low network bandwidth, further diminishing the 
prospects of a successful remote analysis by a user. By utilizing the Jini Surrogate 
Architecture based middleware support, one can ‘pack’ the functionality of access 
mechanisms for data-stores and graph plotting routines in a surrogate and transfer the 
surrogate to a host machine. The host machine will provide the surrogate with the 
necessary resource rich execution environment and network connectivity. The 
surrogate is able to communicate back to the device (PDA) through available 
interconnects e.g. IP, USB, Bluetooth etc. The aforementioned tasks of service access 
and intensive processing can be shifted from the handheld device to a more 
appropriate host machine, with the device only managing less intensive tasks of 
displaying the tailored results returned from its surrogate. The middleware framework 
consists of three distinct tiers namely Device, Surrogate and Gateway. These are 
discussed one by one in the subsequent paragraphs. 

2.1   Tier 1 – Gateway 

Gateway Surrogate Host is the middleware component that aids the Device to 
overcome resource and computational limitations by accepting tasks, packed as 
surrogates, for execution. The middleware provided at these hosts consists of three 
main sub-modules. Host Adapter sub-module offers an interface to client devices for 
accessing the Gateway Surrogate Host. It enables the initial communication between 
a device and the host so that both can agree on the transfer of the surrogate after 
authenticating the device and its related surrogate. Once the surrogate is available at 



the host, it is delivered to the Execution Engine sub-module. It consists of a Surrogate 
Wrapper that exposes the functionality of the surrogate that is required to facilitate 
surrogate’s execution at the host. Dispatcher allocates a separate thread for the 
execution of the surrogate from a thread pool, and then activates the surrogate. 
Resources required for surrogates’ execution are resolved and handled by the 
Resource Manager module. These resources include memory and disk space, 
processor, JVM (for Java based surrogates, as is the case with our implementation), 
network resources etc. The Access Gateway sub-module provides interface to the 
external resources e.g. discovery of available Grid services and resources.  

A Gateway Surrogate Host announces attributes relevant to its properties and 
capabilities including, but not restricted to: 

• ID, Location, Currently hosted surrogates etc 
• Network address and Discovery/Listening port for incoming 

Device/Client requests 
• Available/Allocated Resources e.g. CPU, Memory, Storage, Throughput  
• Environment e.g. Java VM availability and version, SOAP/WSDL [7], 

[8] XML parser etc 
• Grid services available through this Surrogate Host 

 
Advertising these attributes allows clients to identify appropriate hosts based on 

their location, network proximity and other desired features. Administrator of a host 
can restrict the number of surrogates that are allowed to execute, restrict memory, 
bandwidth allocation etc on per surrogate basis. Security policies can be configured 
based on public/private key pairs and digital certificates. 

2.2   Tier 2 – Surrogate 

A generic surrogate for Grid service access contains the following features: client 
authentication based on public/private key pairs; generic functionality to 
communicate and interact using WSDL/SOAP for web service based Grid services; 
persistency safe i.e. to be put to persistent storage if its functionality is periodic; 
migration – to be able to stop and save current execution, mark restore points and 
migrate to a different Surrogate Host. The functionality of the generic surrogate, as 
shown in surrogate stack in Figure 1, is incorporated at the top layer along with the 
specific logic of the extended Surrogate. Moreover, the surrogate has complementary 
modules for communicating with the middleware stack at the Device. Surrogate can 
be hosted in the file system of the Device or it can be stored at a URL accessible store 
e.g. a web server or FTP server. Some clients may be void of any Surrogates. These 
sorts of clients/devices are still able to use other deployed surrogates if they can 
provide valid credentials as their rightful owner or users.  

2.3   Tier 3 – Device 

At the Device, a lightweight middleware stack is provided to facilitate the 
coordination with its exported surrogate. The stack consists of a Surrogate Handler 



module which has three sub modules for providing services complementary to the 
middleware at the Gateway Surrogate Host. Registration Handler discovers and 
selects the Host and registers and transfers the surrogate. Once the surrogate is 
transferred, Keep Alive Monitor keeps track of the status of the surrogate. Data 
Handler retrieves the results from the surrogate-side corresponding module, and 
makes them available for the application executing at the device. Surrogate to be 
transferred can be stored at the Device or at a URL accessible store e.g. a web server 
or FTP server. 

3   Optimizations 

There is a critical requirement of clients/devices being able to discover available 
Gateway Surrogate Hosts. A good discovery mechanism is required to avoid single 
points of failure in the system. For reasons of efficiency and fault tolerance, multiple 
discovery techniques are provided in the architecture.  

The foremost method of discovery is multicast announcements from Gateway 
Surrogate Hosts. This automatically provides for finding ‘nearby’ hosts by the 
devices (as multicast is geographically contained within a limited network boundary 
by most administrators). HTTP based discovery is provided as a supplement. All 
available Gateway Surrogate Hosts register with a web service hosted on a known 
location. Client devices/applications can query for a particular host by submitting 
appropriate parameters to this service over HTTP. 

The surrogate paradigm will function most efficiently when the network delays 
between the device/client side and surrogate are minimal. Moreover, efficiency also 
depends on the proximity of surrogate to the actual service being accessed. Since a 
mobile user may be in motion with respect to the Gateway Surrogate Host as well as 
the Grid resources it wants to access, support is needed in the architecture to optimize 
both proximity based parameters. Each Gateway Surrogate Host will keep track of its 
access quality towards available Grid service hosts/networks. On the other hand, 
before deploying a surrogate, client side application can determine its network 
connectivity and temporal efficiency with a specific host. This procedure poses a 
certain one time per start-up burden, but improves runtime performance relative to a 
scenario where such optimizations are left to good luck.  

Table 1. Attributes published by a surrogate host 

Name Description 
Host Identification ID, Location, Network address and Discovery/Listening 

port for incoming Device/Client requests 
Host Resources Currently Hosted Surrogates, Available/Allocated 

Resources  e.g. CPU, Memory, Storage, Throughput  
Host Environment JVM availability, version; SOAP/WSDL etc 
Network Resources Grid services available through this Host, Proximity to 

service and client side (in terms of network access) 
 



Table 1 lists the attributes computed and advertised by each host allowing clients to 
select hosts based on location, proximity and other desired features. The following 
pseudo-code describes a selection approach for 1) the device to choose a host and 2) 
the surrogate to select resources: 
 
1)  Discover available Surrogate Hosts 
  Listen for Multicast Announcements from Hosts 
  Query Web Service W for available Hosts 

Select Optimal Gateway Surrogate Host 
For all discovered Hosts 

   Retrieve attributes 
Choose best host through function ‘f’ 

Transfer Surrogate 
 
2) Retrieve Resource List from Gateway Surrogate Host 
  For all known Resources 

Retrieve Resource attributes  
 Choose optimal resource 
 
In order to elaborate the given algorithms, let D be a set of Devices willing to 

transfer surrogates and let G be a set of available Gateway Surrogate Hosts:         
    

},...,,,{= 321 nddddD  (1) 
 

},...,,,{= 321 nggggG  (2) 

 
Let R be the resources known to a particular Gateway Surrogate Host gi that 

might be of interest to arriving surrogates: 
 

},...,,,{= 321 nrrrrR  (3) 

where Rgi will a subset of resources R known to host gi. 
 
The set Agi, of attributes associated with a Gateway Surrogate Host gi is listed as 

follows: 
 

},,,{= , iiijii gggdgg NCMTA  (4) 

where Tgi,dj represents the network throughput available between the device dj 

and a host gi, Mgi represents the available memory resources and Cgi represents 
the average idle CPU availability. Basing on the type of surrogate, a subset of these 
parameters is chosen to decide the most suitable host for the surrogate of the device.  

A device with a CPU intensive surrogate task can choose a Gateway Surrogate 
Host, as follows: 

 
)},({max=

iii ggGgsel NCfg ∈  (5) 

where gsel is the Gateway Surrogate Host selected as a function of processing 
power and number of surrogates hosted to avoid contention for CPU.   



Similarly, a number of attributes can be retrieved from job schedulers and resource 
managers in generic grid infrastructures such as approximate wait time (AWT), 
network throughput, CPU availability, wait queue length; [9] describes a ‘resource 
utilization status’ (RUS) being maintained by a grid computing facilities that indicates 
resource availability. Attributes associated with each resource ri include: 

 

...},,{= , kkk rrri RUSCTAr  (6) 

where Trk is the network throughput [10] available between the resource and the 
Gateway Surrogate Host and Crk is the CPU availability at the resource host.  

 
The surrogate can select the resource to access basing on these attributes. 

}{=
irsel Agr  (7) 

where rsel is the Resource selected as a function over attributes of available 
resources.  
 

The attributes of a host and resource along with corresponding selection functions, 
as shown in (5) and (7), help in optimizing access to the resources.  

4   Implementation Overview 

The authors have provided a bare-bones implementation of the proposed architecture 
so that before this design is tested for actual Grid service interaction, its viability can 
be validated in a general scenario. The scenario of choice should involve considerable 
CPU, memory and network utilization. Simple Network Management Protocol [11] is 
a widely accepted and utilized way of monitoring network entities. We have chosen to 
verify our approach by monitoring a remote server for 14 system statistics 
periodically, through a handheld device. Handheld device has network connectivity 
through a wireless LAN interface. A desktop machine is configured to act as a 
Gateway Surrogate Host. A Surrogate has been coded for the handheld device with 
the functionality of monitoring the remote server through SNMP queries and 
adjusting the results to be sent back to the Device. The results of these queries are to 
be displayed on the handheld device in the forms of dynamic line, bar and pie 
charts/graphs. Performance of the device and the impact of the running system will be 
measured and the benefits and shortcomings of the approach will be highlighted.  

The Gateway Surrogate Host module has been implemented by modifying and 
extending the Surrogate Host provided with the reference implementation of Jini 
Surrogate Architecture specification. The extensions include addition of useful 
attributes to be announced, additional discovery mechanism and addition of an SNMP 
agent. IBM’s J9 VM for java is used to implement the surrogate for the handheld 
device and contains classes which implement the functionality of the task that the 
Device wishes to execute i.e., monitoring. Moreover, it contains the ‘device-to-
surrogate’ interconnect implementation which, in the case of this scenario, is based on 
IP Interconnect Specification. 



4.1   Analysis 

Measurements were taken to analyze the performance of the Device during the course 
of execution. The client application on the PDA consumes fewer than 6 MB of 
memory at maximum. This also includes the foot print of the J9 JVM and Java AWT 
classes. Delay during the transmission of results from the surrogate and their display 
in the form of graphs on the Device were found to be negligible (quite less than 1 
second) owing to 100 % signal strength of the wireless connection and CPU 
availability to client application on the PDA The size of result object depends on the 
type of values stored in the fields. The 14 statistical values are received in 5 ‘Result’ 
objects and amount to, on average, 62 bytes of results per 5 seconds with additional 
44 bytes after every minute. An interesting comparison is made by considering the 
number of result parameters and their size as retrieved by the surrogate (executing at 
the Gateway Surrogate Host) with the corresponding values at the Device. A 
significant amount of information can be condensed by applying intermediate 
calculations and filtration of values at the surrogate module.  

        

Fig. 2. Left: Comparison between number of values at the Host and values sent to the Device; 
Right: Comparison between size of intermediate results at the Host and size of results at Device 

It can be observed that the number of parameters is reduced by 75% (4 times 
reduction) when transferring results to the Device. Similarly, more than 64% of the 
data has been filtered out in intermediate calculations and trimming at the surrogate. 
This performance markup is in addition to the communication and delay reduction 
achieved by careful selection of host machine and resource access mechanisms during 
surrogate lifetime, as explained earlier. The burden on PDA has been reduced to a few 
hundred bytes of data and graph formation. 

5   Conclusion and Related Work  

Research and development in enabling handheld held devices to interact with Grid 
services is in its early stages. Signal [12] proposes a mobile proxy-based architecture 
that can execute jobs submitted to mobile devices, in-effect making a grid of mobile 
devices, but this approach may affect the fault tolerance of the system as the mobile 



device hosting the proxy also has to deal with the adverse effects of a mobile/wireless 
environment. Also, the proxy schedules the jobs submitted to it by other mobile 
devices, but in our case as the middleware has far more resources at its disposal, so 
there is no particular need for scheduling. In [13] mobile agent paradigm is used to 
develop a middleware to allow mobile users’ access to the Grid. It focus’s on 
providing this access transparently and keeping the mobile host connected to the 
service. GridBlocks [14] builds a Grid application framework with standardized 
interfaces facilitating the creation of end user services. They state that SOAP usage on 
mobile devices may be 2-3 times slower than a proprietary communication protocol, 
but the advantages of using SOAP (such as overcoming device heterogeneity) maybe 
far more profitable than the effects of this limitation 

A solution based on Jini Surrogate Architecture, to access Grid services, is 
demonstrated in this paper. In the proposed approach, a resource constraint device 
wishing to access a resource-demanding service is allowed to delegate this task to a 
relatively powerful machine (desktop, server). Specifically, CPU intensive, network 
oriented tasks can be efficiently delegated to such systems when network connectivity 
is available. In case of intermittent connectivity, applications and services requiring 
on demand or periodic network access can benefit from this approach. 

Optimization of the overhead caused by an additional layer between the source 
service and the destination device, location based dynamic scalability, and multi-
protocol discovery services, are the main focus of the research. The implementation 
has been tested for a moderately intensive task. We intend to extend and implement 
the architecture to interact with existing Grid services and analyze the working of our 
framework incorporating HTTP discovery, client authentication, and surrogate 
migration support. A notable constraints suffered by our approach include the 
requirement of Java virtual machine at the device. Furthermore, at present we have 
not addressed the notions of client/surrogate authentication and authorization and are 
the focus of our future work. 

References 

1. Satyanarayanan, M.: Fundamental Challenges in Mobile Computing. In: Proceedings of the 
15th Annual ACM Symposium on Principles of Distributed Computing, Philadelphia (1996) 

2. Sun Microsystems, Inc.: JiniTM Architecture specification. http://www.sun.com/jini/specs/ 
3. Sun Microsystems, Inc.: JiniTM Technology Surrogate Architecture Specification.  

http://surrogate.jini.org/sa.pdf (2003) 
4. S. Vazhkudai, S., Tuecke, S.,  Foster, I.,:Replica Selectionin the Globus Data Grid. 

Proceedings of the first IEEE/ACM International Conference on Cluster Computing and the 
Grid (CCGRID 2001), IEEE Computer Society Press,( 2001) 106-113, 

5. Lee, B., Weissman, J.B.: Dynamic Replica Management in the Service Grid. In: High 
Performance Distributed Computing 2001 (HPDC-10’'01), San Francisco, California (2001) 
p. 0433 

6. Sun Microsystems, Inc.: JiniTM Technology IP Interconnect Specification. 
http://ipsurrogate.jini.org (2001) 

7. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: Unraveling the 
Web Services Web – An Introduction to SOAP,WSDL, and UDDI. In: IEEE Internet 
Computing, vol. 6, no. 2,(2002) 86–93 



8. Box D., et al. Simple Object Access Protocol 1.1. Technical report, 
W3C.,http://www.w3.org/TR/2000/NOTESOAP-20000508/ (2000) 

9. Shan, H., Oliker,L, Biswas, R.: Job Superscheduler Architecture and Performance in 
Computational Grid Environments. In: Super Computing Conference 2003 (SC2003), 
Phoenix, Arizona (2003) 15-21 

10. Wolski, R.: Dynamically Forecasting Network Performance Using the Network Weather 
Service. In: Journal of Cluster Computing, (1998) 

11. Stallings W.: SNMP, SNMPv2, SNMPv3, and RMON1 and RMON2. 3rd Edition Addison-
Wesley, California (1999) 71-82 

12. Hwang, P. Aravamudham Middleware Services for P2P Computing in Wireless Grid 
Networks. IEEE Internet Computing vol. 8, no. 4, July/August 2004,  pp. 40-46 

13. Bruneo, M. Scarpa, A. Zaia, A. Puliafito, Communication Paradigms for Mobile Grid 
Users. Proceedings 10th IEEE International Symposium in High-Performance Distributed 
Computing, (2001) 

14. Gridblocks project (CERN) http://gridblocks.sourceforge.net/docs.htm 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


