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Fast Gaussian Process Regression for Multiuser
Detection in DS-CDMA

Dinh-Mao Bui, Sungyoung Lee

Abstract—Recently, Gaussian process has been excellently proved the effectiveness in solving the multiuser detection issue in Code
Division Multiple Access system. Even with limited training sequences, Gaussian process-based solutions still surpass other
approaches. However, due to the high complexity in terms of computation, the performance of this approach might be degraded. In this
letter, we would like to propose an efficient method to reduce the complexity while still maintaining the desired accuracy. Finally, the
proposed method is validated via the experiment.

Index Terms—Gaussian process regression, complexity reduction, multiuser detection, DS-CDMA, hyper-parameters estimation,
signal interference.
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1 INTRODUCTION

THE direct sequence code division multiple access (DS-
CDMA) system distinguishes users by signals over

the channel. Unfortunately, the interference between the
signals happens even with a small number of users and
can be recognized as the multiple access interference (MAI).
This noisy issue critically increases the bit error rate (BER)
under the near/far effect. To alleviate this issue, the mul-
tiuser detection [1] (MUD) technique has been developed
to reduce the interference. The known optimal solution for
MUD can be retrieved via minimizing the mean square
error (MMSE) estimation [2]. Nevertheless, doing this es-
timation immensely costs the computational resources. In
order to solve this problem, many approaches have been
proposed. Among these approaches, Gaussian process re-
gression (GPR) is considered as the most promising method
in terms of flexibility and accuracy [3].

Practically, GPR is widely used in many research fields
such as data communication, networking and signal pro-
cessing. Rather than finding exact parameters for the model,
GPR helps to adapt the parameters to represent the under-
lying function. As such, GPR is a suitable choice for noisy,
corrupted or erroneous input data. However, this method
encounters a critical drawback, namely the high complexity.
Theoretically, GPR requires O(n3) for computation when
calculating n training points of dataset. In this research, we
propose a method to reduce the complexity to O(n log n).
Consequently, this improvement significantly accelerates
the regression while still maintaining the analogous BER
compared with the MMSE estimation.

2 REGRESSION MODEL

2.1 Assumption
The target system is a synchronous DS-CDMA system. This
system is designed to serve a number of users on the same
channel. To differentiate the signals, the spreading codes are
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assigned to the users. Initially, these codes are multiplied
with the up-sampled original signals. Subsequently, the
chips for these signals are transmitted through the channel.
Since the channel is linear and noisy, the separated chips
are combined together including a known additive white
Gaussian noise (AWGN). In the end, the MUD takes re-
sponsibility to recover the original signals from the received
chips.

Assume that the input dataset with n training points is
denoted by D ≡ {xt, yt|t=1,... ,n}, where xt is the vector
of original signals, yt is the vector of received chips. Both
xt and yt are collected at time t. The relationship of these
vectors can be shown in matrix notation as follows:

yt = S A xt + nt, (1)

where S is an U × V matrix (each column of this matrix
comprises the U -dimensional spreading codes for each in-
dividual of V users), A is a V × V diagonal matrix which
comprises the amplitude for each user. In fact, the amplitude
shows the fading of the transmitted signal (the degree of
fading represents how far the user is from the receiver).
Finally, nt stands for the known AWGN added to the U
received chips yt as time progresses.

At the receiver, the original signal xt(i) of the ith user is
needed to recover as follows:

x̂t(i) = sgn(w>i yt), (2)

where wi is the matched filter for the ith user. Although
the optimal solution of wi is nonlinear, this vector can be
estimated by using the MMSE estimation method as below:

w∗i = arg min
wi

E [(xt(i)−w>i yt)
2] = C−1yy Cyx, (3)

where Cyy = E [yty
>
t ] is the auto-correlation of the received

vectors, and Cyx = E [ytxt(i)] is the cross-correlation be-
tween the received vectors and original ones. Equation (3)
is known to be the decentralized MMSE estimation and can
be solved without the awareness of the spreading sequences
of the other users. However, the problem of this solution
is the huge size of the required training set and the high
computational complexity regarding the matrix inverse.
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2.2 MUD derivation of GPR
Let Φ = [φφφ(y1),φφφ(y2)], . . . ,φφφ(yn)] denote the vector of
nonlinear mapping into the higher dimensional space for
the received signals, and φφφ(·) is the corresponding mapping
function. Conditioning the original signal vector x(i) on the
received signal vector Y = [y1, y2, . . . , yn], the distribution
of x(i) is as follows:

p(x(i)|Y,w) = N (x(i)|Φ>w, σ2
noise In), (4)

where σnoise and σw are the standard deviations of the noise
and the match filter, respectively; In is the identity matrix of
size n. The aforementioned matched filter w is assumed to
be a zero-mean Gaussian random variable. Hence, the distri-
bution of w can be calculated as p(w) = N (w|0, σ2

w In). By
engaging Bayes’ rule on (4), the posterior of w is calculated
as follows:

p(w|x(i),Y) =
p(w)p(x(i)|w,Y)

p(x(i)|Y)
. (5)

Theoretically, (3) can be transformed into a nonlinear
form by using the maximum a posteriori (MAP) estimation
of the random variable w. The transformation is represented
as below:

w∗ = arg min
w

{
||x(i)−Φ>w||2 + λ||w||2

}
, (6)

where λ equals to (σnoise/σw)2. The term λ||w||2 is incorpo-
rated into the MAP as a regularizer to bypass the over-fitting
issue. By finding w∗, the estimation of the original signal
x̂(i) can be obtained as follows:

x̂(i) = k>P−1x(i), (7)

where k = [k(y, y1), k(y, y2), · · · , k(y, yn)] with k(yi, yj) =

(φφφ(yi)
>φφφ(yj)) is the kernel function of the above nonlinear

transformation; P = K + σ2
noise I (where K is the covari-

ance matrix with Kij = k(yi, yj)). After having the kernel
function, (7) can be solved without inverting the matrix P by
using the improved fast Gauss transform (IFGT) method [4].
It is worth noting that by applying the IFGT, the complexity
of the solution for (7) drops to O(n). The detail of IFGT
implementation can be found in the original paper [4] and
not be in the scope of this letter.

Due to the high priority of processing speed, the square
exponential (SE) kernel function is engaged to compute the
estimation of the original signals instead of the Matérn-class
kernels [5] [6]. The SE kernel function is defined as below:

k(yi, yj) = θ21 exp

(
−
||yi − yj ||2

2θ22

)
, (8)

where θ1 is an output-scale amplitude and θ2 is a time-scale
of y from one moment to the next. The set θθθ = {θ1, θ2} is
known as the set of hyper-parameters. The estimation of θθθ
can be calculated as below:

θθθ∗ = arg max
θθθ

p(x(i)|Y, θθθ). (9)

Theoretically, the hyper-parameter set θθθ∗ can be esti-
mated via minimizing the following negative marginal log
likelihood − log p(x(i)|Y, θθθ):

− log p(x(i)|Y, θθθ) =
1

2
x>(i)P−1x(i) +

1

2
log |P|+ n

2
log(2π).

(10)

In this equation, due to the high complexity of calculat-
ing the matrix inverse P−1, developing the approximation
method is needed instead of finding exact values.

Analytically, in (10), the dominant computation focuses
on two terms: the data-fit term [5] denoted by x>(i)P−1x(i)
and the log determinant log |P|. Solving these terms costs
O(n3) for computational complexity [7]. Obviously, this
drawback is a burden for DS-CDMA system. To solve the
problem, we propose a complexity reduction method to
significantly accelerate the calculation process. By equipped
with the proposed method, the computational complexity
can be dropped to O(n log n).

2.3 Complexity reduction
Our complexity reduction method is a combination of three
techniques: the fast Fourier transform (FFT), the law of
log determinant and the stochastic gradient descent (SGD).
Instead of putting effort in minimizing the above negative
marginal log likelihood, we think of approximately mini-
mizing the upper bound of this term [8]. First, a simplifi-
cation derivation is needed to apply on the aforementioned
terms to compact the equation. In order to do that, the law
of log determinant [9] is engaged to calculate the log deter-
minant P̂ of the empirical covariance matrix P̂, whereby (10)
is simplified to

− log p(x(i)|Y, θθθ) =
1

2
x>(i)P−1x(i) +

1

2
P̂ +

n

2
log(2π), (11)

where P̂ is calculated based on the empirical covariance
matrix P̂ and a constant τ as follows:

P̂ = log |P̂| − τ,
with

P̂ =
1

n− 1

n∑
k=1

[xk(i)− x̄(i)][xk(i)− x̄(i)]>,

τ = γ(
n

2
)− log(

n

2
),

(12)

where γ(·) is the Digamma function and x̄(i) is the mean
of the empirical data. After a number of re-calculations,
the term P̂ converges to a constant according to the central
limit theorem [10]. This convergence leads to a consequence
that minimizing the above negative marginal log likelihood
might involve approximately minimizing the following re-
duced negative marginal log likelihood (rMLL):

− log p(x(i)|Y, θθθ) =
1

2
x>(i)P−1x(i). (13)

It is worth noting that (11) and (12) are used to derive
(13). The full proofs and derivations can be found in the
original paper [9]. For real implementation, the calculation
of these equations is not required. Practically, solving the
matrix inverse of P in (13) is still very computationally
expensive. Therefore, there would be an alternative method
to achieve the same goal. Since the covariance matrix P
is positive-definite, it is possible to do the transformation
by using FFT. This technique aims to bring the computa-
tion from the spatial-temporal domain into the frequency
domain. It is worth noting that the cost of FFT is just
O(n log n). Obviously, this cost is much better than the
traditional method.
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First, the SE kernel k(yi, yj) in (8) needs to be re-written
in Fourier transform representation [11] as shown below:

FSE(ω) = θ2θ
2
1

√
2π exp (−2π2ω2θ22), (14)

where ω is the frequency representation of the received
signal y in the periodic domain. Under this domain, (13)
can be restated as follows:

− log p(x(i)|Y, θθθ) =
1

2
x>◦ (i)Ψx◦(i), (15)

where Ψ is the function that generates Q = P−1, x◦(i) de-
notes the data vector in the periodic domain. Subsequently,
the Parseval theorem [12] [8] and the Fourier transform are
applied to derive (15) as follows:

FrMLL(θ) = F
(
− log p(x(i)|y, θθθ)

)
=

1

2n
x̃>(i) ˜Ψ ∗ x◦(i),

(16)
where tilde sign and star sign denote a Fourier transform
and a convolution, respectively. In the next step, by continu-
ously applying the convolution theorem with regard to the
convolution theorem’s constraint: ΨFSE ≡ 1, the final form
of the rMLL can be represented as follows:

FrMLL(θ) =
1

2n

∑
k

Ψ̃k ∗ x̃2k(i) =
1

2n

∑
k

x̃2k(i)

FSE(ωk)
, (17)

where Ψk is the corresponding function of FSE at the
frequency ωk with regard to the aforementioned constraint.
By this form of (17), the set θθθ of the hyper-parameters is
estimated by using the gradient-based technique. In this
case, the stochastic gradient descent (SGD) is chosen due
to the properties of fast convergence and less sensitive to
the local optima [13]. To integrate the SGD, the partial
derivatives of (17) are required for each hyper-parameter.
These equations are given by:

∂

∂θ2
FrMLL = x̃2k(i) exp (2π2θ22ω

2)

(
2
√

2π3/2ω2

θ21
− 1√

2πθ22θ
2
1

)
∂

∂θ1
FrMLL = −

√
2
π x̃

2
k(i) exp (2π2θ22ω

2)

θ2θ31
.

(18)

Subsequently, an updating process is issued to up-
date the hyper-parameters to the corresponding convergent
points. This process is represented as below:

θ
(k)
2 ← θ

(k−1)
2 + α(k)

∂

∂θ
(k−1)
2

FrMLL,

θ
(k)
1 ← θ

(k−1)
1 + α(k)

∂

∂θ
(k−1)
1

FrMLL,

(19)

where α(k) = 1/(k + 1) is the Robbins-Monroe decay func-
tion with regard to the kth iteration. Clearly, the compu-
tation can be done without the matrix inverse. By the end
of the proposed method, the required set θθθ∗ of the hyper-
parameters is obtained within the computational complexity
of O(n log n).

3 PERFORMANCE EVALUATION

In the experiments, we plan to evaluate some typical metrics
in communications, namely the bit error rate (BER) and
the signal to noise ratios (SNRs). The target system is of
synchronous DS-CDMA type with 8 users spreading by
the Gold sequences. Particularly, these binary sequences are
generated with the length of 31. The powers of all users are
equal with SNR = 4dB. The channel model is as follows:

H(z) = 0.4 + 0.9z−1 + 0.4z−2. (20)

For evaluation purpose, the traditional Gaussian process
regression (traditional GP), the MMSE estimation and the
proposed method are performed and compared together.
Initially, the hyper-parameters θ1 and θ2 of GPR-family are
set to 0. By the end of the learning process, the values of θ1
and θ2 are updated to 0.6782329 and 6.782329, respectively.
Note that the MSE threshold is limited to ε = 0.1. With
this threshold, the hyper-parameters need around 4 to 5
iterations to reach the above values.

In Figure 1a, a series of experiments are conducted in as-
cending order of size of the training dataset. For each experi-
ment, the BER is computed for 106 bits. Obviously, the result
of proposed method is very analogous to the traditional GP.
It is worth mentioning that the GPR-family outperforms the
MMSE estimation in terms of BER performance, especially
when the size of training dataset is small. When the number
of training points increases dramatically, the results of three
approaches come close together. However, when training
size skyrockets, the processing rate of the proposed method
outperforms the remaining approaches as a consequence of
lower complexity level. In order to make the conclusion
more reasonable, the benchmark of completion time is con-
ducted on a larger dataset with more than 3000 training
points. This dataset is a subset of Google traces dataset [14].
The simulation is implemented in Python on a minimal
CentOS system with no algorithmic change. Critically, the
significant improvement of the proposed method can be
seen in Figure 1b.

In Figure 1c and 1d, the relationship between the BER
and the SNRs is depicted via the tests on 100 and 200 train-
ing points, respectively. Based on these tests, a conclusion
can be made that the proposed method provides a very
close result to the traditional GP. Only a small gap exists
between the GPR approaches due to the error in the hyper-
parameters approximation. Even in that case, the result
of proposed method is still much better than the MMSE
estimation.

4 CONCLUSION

In this research, we propose an approach to reduce the com-
putational complexity of the hyper-parameters estimation of
GPR, which is mainly used to solve the issue of multiuser
detection in DS-CDMA system. Previously, the contribution
of GPR to the field is limited because of the high complexity.
Therefore, by developing the complexity reduction method,
we believe that the enhancement would innovate the de-
velopment of Gaussian process-based applications to deal
with the challenges in communication systems. For future
works, the parallelism is also considered to be the next step
to optimize our approach.



1089-7798 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCOMM.2016.2620430, IEEE
Communications Letters

IEEE COMMUNICATIONS LETTERS 4

0 50 100 150 200
10

−2

10
−1

10
0

Training points

B
E

R

 

 

Traditional GP

MMSE

Proposed method

(a) Relationship between BER and the number of training points
(SNR=4dB).
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(b) Completion time benchmark (lower is better).
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(c) BER vs SNRs on 100 training points.
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(d) BER vs SNRs on 200 training points.

Fig. 1: Performance evaluation of proposed method
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